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Abstract—Video telephony is becoming popular over smart-
phones and tablets. Unlike the Desktop era, smartphone users
are often ‘mobile’ and this impacts how the video is processed
and transmitted over the network. The significant increase in the
motion content in such videos change the composition of video
frames. Coupled with wireless packet losses, it often leads to
poor quality of video received by the end user. In this work, we
propose RVD, a framework for Reliable Video Delivery in mobile
telephony by accounting for video object motion comprising
foreground end-user motion and background scene changes in
the network transmission of video. Multilayer perceptron (MLP)
based non-linear regression model is used to analyze the impact of
redundancy on received video quality under network variations
and different degrees of video motion. RVD achieves 17-25%
bandwidth savings for a target video quality, and 50-56% quality
improvement over video-oblivious approaches.

I. INTRODUCTION

Mobile video telephony is one of the most sought-after real-

time interactive application with its usage on the rise in both

enterprise and consumer worlds [1]. Many applications such

as Skype, Google Hangout, FaceTime, Fring, Tango, Vtok,

ooVoo are becoming popular in the market.

The challenge for mobile video telephony applications is

to provide reliable delivery of real-time videos on lossy links

under strict delay constraints [2]. To combat such wireless link

losses, FEC (Forward Error Correction) is the most efficient

technique [3]. FEC is based on adding redundancy to the

transmitted data at the expense of network bandwidth. Thus, it

is important to apply only the required amount of redundancy

to telephony videos.

The video content of video telephony applications have

been conventionally perceived as confined to the user’s facial

expressions in static background, and are often modeled as

‘head-and-shoulder’ videos [4], [5]. Advent of smartphone

has changed these notions about video telephony applications.

Unlike the traditional desktop or video-conferencing scenarios,

smartphone end-users have the flexibility to hold the end-

device and move around. Thus, user movements can result in

frequent background changes captured by the device camera.

The term ‘mobility’ has been often used in context of

user mobility and its impact on network performance [6] and

handover [7]. Those effects are not so grave in commonplace

situations such as a person walking in a room or park while

attending a video call. Thus, a more direct impact of user

mobility in video telephony is in terms of ‘motion’ in the

‘created’ video content itself and its increased demands for

network resources.

Increased user motion may lead to frequent changes in video

data. Failing to communicate these relevant video data to end

user due to network losses can lead to long term impairment

in visual quality [8]. The impact of user ‘mobility’ has not

been studied properly, nor applied to improve reliability of

video delivery services. In this paper, we propose RVD, an

architecture for Reliable Video Delivery in real-time ‘mobile’

applications. To the best of our knowledge, this impact on

video data and a strategy to provide reliable video delivery

considering the impact has never been looked into before. The

main contributions of our work are as follows:

• We characterize the impact of user/camera motion on

generated video data in real-time telephony applications.

• RVD studies ‘motion’ in video content generated by

mobile video telephony in terms of motion-vectors and

scene-change information which is easily accessible in

video codecs and needs no extra computations.

• RVD uses motion vector and scene change information,

along with packet loss rate to derive a Multi-Layer Per-

ceptron (MLP) based non-linear regression model which

gives an accuracy of 95% in estimating the redundancy

required to provide a desired video quality to end user.

• We implement RVD on test-beds and our results show -

1) Performance improvement of received video quality

by 50%-56% for 4%-10% network loss rates, in

comparison to the approach oblivious of video data

characteristics.

2) RVD saves network bandwith utilization by 17%-

25% with 4% -10% network loss rates, respectively,

in comparison to the approach treating all video data

having high motion vector values.

RVD provides insights to improve mobile video chat appli-

cations such as Skype. Skype currently uses FEC codes to add

redundancy to video telephony [9]. However, in our prior work

[10], we have shown how Skype videos with mobile clients

have reduced video quality (higher blocking) in case of mobile

scenarios as shown in Figure 1 [10]. RVD can be used in such

applications to opportunistically decide the FEC redundancy

levels and hence sending rate of the video-chat application

depending on the network packet loss rate and user/camera

motion to guarantee a high video quality to the end client.
The paper is organized as follows: In Section II, we discuss

related works followed by telephony video classifications and

understanding their distinguishing characteristics in Section

III. Section IV discusses the impact of motion vector and

scene change characteristics on the received video quality

under variable loss-rates. In Section V, we provide detailed978-1-4799-4657-0/14/$31.00 c© 2014 IEEE
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Fig. 1. Skype Video Quality under varying network conditions (Packet loss
rates)

methodology to design RVD system including experiments and

results followed by conclusion in Section VI.

II. RELATED WORK

Real-time video data transmission over lossy wireless links

is a challenging task [2]. Existing solutions use the following

approaches to this problem: improving the efficiency and

compression rates of codec or improving the reliability of

network transmission or both.

Usach et. al [11] modulate the generated video information

adapting frame-rate or adapting the bit-rate by varying frame

quality for a given frame-rate. However, this requires frequent

changes to the video codec parameters in real-time. The packet

loss rate in wireless networks typically fluctuates depending on

the interference, fading and noise. This may result in repeated

changes in video coding parameters at the video codec, making

it inefficient and/or too slow [12]. Moreover, such solutions are

codec dependent.

The problem of reliable video delivery in network in pres-

ence of packet loss has been widely studied in the litera-

ture [13], [14], [15], [16], but these works do not differen-

tiate real-time multimedia applications with video streaming

applications. Due to the sensitivity to delay, re-transmissions

and buffering techniques can not be applied to real-time

multimedia communications. FEC (Forward Error Correction)

codes are generally used for applications with strict delay

constraints [3] to make them more resilient to packet loss.

These codes introduce redundancy to existing bits of video

stream.

Using inappropriate levels of FEC codes may lead to either

lack of resiliency or else wastage of network resources. How

much FEC is required remains an open question? Many FEC

variants have been proposed [17], [18], [19], [20] to manage

the amount of redundancy based on the networking conditions.

The work in [17] focuses on adaptive FEC scheme for audio

packets of internet telephony. In [18], the authors use block-

based FEC codes which can be computationally intensive

in real-time. The authors in [19], optimize FEC for layered

video coding, but single-layer videos are more suitable for

video telephony applications to reduce computational cost and

latency [1].

The work in [20], [21] relies on frame type information -

whether the packet represents I-frame, P-frame or B-frame.

This analysis is valid for desktop-styled video telephony, but

user mobility may sometimes reverse the relative importance

of video frames. Higher information content in a frame should

be the criterion for giving higher redundancy, not just classifi-

cation into I, P or B categories. Based on the motion of video

content, the video packets size vary proportionally.

To the best of our knowledge, none of the works address the

issues of transmission of mobile video telephony and how we

can leverage the video motion and scene changes information

to reliably transmit video in lossy wireless links.

III. TELEPHONY VIDEO CHARACTERISTICS

In this section, we study different types of videos generated

during video telephony and their characteristics.

Video Classification

Real-time videos can be filmed with fixed or moving camera

with objects in a camera having no motion to moderate motion.

We classify the videos into four different groups, consistent

with prior work [22].

1) Low-Mobility (LM) Videos - These videos contain end-

users facial, head and shoulder movements. Background

remains unchanged. These sequences are filmed with a

fixed camera with relatively low motion on the scene.

Video telephony has been conventionally considered to

be LM videos [4], [5].

2) Medium-Mobility (MM) Videos - These videos are gen-

erated when end-users hold their smartphones and are

walking during video conversation. The sequences have

moderate scene changes and some pannings and other

smooth camera movements. The videos also contain

end-users facial, head and shoulder movements.

3) High-Mobility (HM) Videos - The background in video

keeps changing continously though foreground is fo-

cused on end-users head, face and shoulder. These

sequences have high motion scenes filmed with a camera

which is in continuous movement.

4) Mixed (MX) Videos - These videos which have se-

quences that have combinations of all types of situations

mentioned above.

The set of all videos is represented as Vtype, where, Vtype =
{LM,MM,HM,MX}. For our work we recorded 20 video

clips for each video type using Galaxy Nexus S smartphone.

The videos are encoded to H.264/AVC videos with 352x258

resolution at 29.97 frames per second (fps) using FFMPEG

[23]. The GOP size was chosen to be 250 to enable high

compression rates. We validated our results for this section at

high resolution (720p) and small GOP sizes (30) and observed

consistent results.

We use Peak Signal-to-Noise Ratio (PSNR) metric to de-

termine the quality of received video. PSNR is the simplest

and most widely used video quality evaluation methodology,

defined as ratio between the maximum possible power of video

signal (square of maximum pixel value, 255) and the power of

corrupting noise that affects the fidelity of its representation.

It is measured in dBs. In our case, the corrupting noise
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Fig. 2. Plot of MVk per frame fk for LM and MM videos.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Motion Vector, MV
k

C
D

F
, 

F
(M

V
k
)

Empirical CDF

LM Videos
MM Videos

HM Videos

Fig. 3. CDF of motion Vectors MVk per frame fk for LM, MM and HM
videos.

originates from the packet losses in network transmission.

Mathematically, PSNR is calculated between two video frames

PSNR = 10 log
10

3MN × 2552
∑M

i=1

∑N
j=1

∑
3

d=1
(S(i, j, k)−R(i, j, k))2

where S(.) and R(.) are the source and received video frames

respectively. MxN , is the resolution in two dimensions and 3

is color depth.

Understanding Mobile Videos

We, henceforth, study the properties of LM, MM and HM

videos in terms of their average motion vectors and scene

changes. Though we discuss and demonstrate the efficacy of

our approach using the ITU-T H.264 video codec, our method

is valid for most video codecs.

First, let us review how video frames are coded and com-

pressed. Recent video coding standards use intra and inter-

frame predictions to exploit the temporal and spatial correla-

tions found in natural image sequences for bit-rate reduction.

Intra-frames (I-frame or reference frame) are coded indepen-

dently using only information present in the frame/picture

itself where as inter-frames (P or B-frames) are predicted

from neighboring intra and inter-frames. These frames are then

grouped into g number of frames known as GOP (Group of

Pictures) with an intra-frame followed by g − 1 inter-frames

[24]. To maintain low-latency, baseline profile (I and P-frames

only) is considered for video telephony applications [25].

A frame in a video is divided into slices. A slice in

turn is divided into macroblocks. I-slice contains intra-coded

macroblocks only. In P-frame slices, each macroblock may

be either coded using inter-prediction or intra-prediction or

skipped. The macroblocks may be split into partitions of size

- 16x16, 16x8, 8x16 or 8x8 pixels. These partitions can be

divided into sub-partitions, for example, an 8x8 partitions

can have sub-partitions as- 8x8, 8x4, 4x8 and 4x4. The

choice of partitions, sub-partitions, inter and intra-prediction

for macroblocks are determined by rate-distortion optimization

scheme used by video codec.

Inter-coded macroblocks in a P-slice are predicted from a

number of previously coded frames using motion compen-

sation. A single motion vector is required for each of such

partition or sub-partition. The absolute motion vector, amv, for

the ith macroblock in kth frame is evaluated as [24] follows

-

amvi =

15∑

j=0

|mvx(i, j)|+ |mvy(i, j)| (1)

where mvx(i, j) and mvy(i, j) are the displacements in x-

and y- direction of jth 4×4 sub-block in the ith macroblock.

Hence, the sum of absolute motion vectors (MVk) of the kth

frame with N inter-coded macroblocks is

MVk =

N−1∑

i=0

amvi (2)

This is indicative of frame motion quantified and stored in the

form of motion vectors. Figure 2 plots motion vector values

of each video frame for LM and MM videos. The MV values

clearly indicate that MV values are higher for MM compared

to LM. Figure 3 shows the CDF (Cummulative Distributed

Function) of motion vectors for LM, MM and HM videos.

We find that the motion vector values are non-linearly related

to video type. Hence, the relationship between v, where,

v = {x|x ∈ Vtype} and average MV values, M̂V is derived

using non-linear decision tree (REPTree [26]) algorithm for

approximately, 72,000 video frames as following

M̂V < 0.19 ∀ v = LM (3)

0.19 ≤ M̂V < 0.46 ∀ v = HM (4)

M̂V ≥ 0.46 ∀ v = MM (5)

The model has both Mean Absolute Error (MAE) and Root

Mean Squared Error (RMSE) as 0. It is evident that the motion

vectors of MM videos have considerably higher values than

LM videos whereas the motion vectors of HM videos have

lower values than MM videos, the reason being discussed later

in this section.

Intra-coded P-slice macroblocks are encoded in spatial

domain using blocks of pixels that are already encoded within

the current frame and requires much larger bits than inter-

coded predicted macroblocks. Thus, for a P-frame, if number

of intra-coded macroblocks are more, then the scene change

has been detected in the video. Scene change in the video is

an active research area and many approaches have been laid

down in the literature and is not a part of our study. To keep

in line with our codec-independent approach, we use Sum of

Absolute Differences (SAD) metric [24] to detect the scene
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Fig. 4. Plot of δk per frame fk in MM and HM videos. LM videos (not
shown here) have δk = 0 ∀ fk .

changes.

SADk =
4∑

i=1

4∑

j=1

|aij − ãij | (6)

SAD is one of the simplest similarity measures which is

calculated by subtracting pixels ãij of frame fk−1 (reference-

frame) and the pixels aij of the target frame fk followed by

the aggregation of absolute differences. High SAD values are

generated on scene changes, thereby, making such changes

detectable. If SADk > η where η is pre-defined threshold,

then we can conclude that the scene has changed i.e. δk = 1
and 0 otherwise. Using empirical studies, we find η = 60

suitable for detecting scene changes.
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Fig. 5. Cumulative plot showing cumulative SCD events as a function of
frame number.

Figure 4 plots the scene change event in an arbitrary

video trace of MM and HM videos. Figure 5 shows average

cumulative scene changes, δ̂ =
∑N

j=1

∑k
i=1

δi

N
detected for k

frames for each type of videos having N test videos. LM

videos detect no scene changes consistently for all test videos.

We find that scene changes detected in the HM videos is higher

compared to MM videos where as motion vectors have higher

values in comparison to HM videos (Figure 3). The reason

being the HM videos have more frequent background changes.

Hence, with a scene change, most macroblocks are intra-coded

and there are very few or even no inter prediction motion

vectors. On the other side, the more macroblocks are inter-

coded, the more likely the current frame is correlated with

the previous frame and has no scene change thus resulting in

higher values of motion vectors for MM videos. This inference

RVD System - ReceiverRVD System - Sender

Encoder
Motion Vector

Scene Change

Redundancy 

Level

DecoderReconstruct 
Orig. Video

F

F : Feedback

Feedback Channel (PLR)

Fig. 6. Overall architecture for proposed RVD system.

TABLE I
SYSTEM PARAMETERS

Symbols Descriptions

k Frame Number.

fk kth video-frame.
g GOP size.

MVk Motion vector of kth frame.
δk Scene Change detected in frame fk .
plr Packet loss rate.
R Redundancy Level ∀k.

is counter-intuitive, as one would expect linearly higher values

of motion vectors in higher user mobility videos.

Inferences

1) Motion Vector (MV) values are higher in MM videos.

The average motion vectors for LM, MM and HM videos

are 0.0360, 0.5321 and 0.3552 respectively (Figure 3).

2) Scene Change Detection (SCD) is higher in HM videos.

The average scene change detected for LM, MM and

HM videos are approximately 0, 5 and 30 respectively

(Figure 4) for 1000 video frames.

IV. RVD SYSTEM

Figure 6 gives block diagram of proposed system. The video

encoder in Figure 6 encapsulates the frame slices into Network

Abstraction Layer (NAL) units. These NAL units are suitable

for transmission over packet networks [3] using RTP (Real-

time Protocol). RTP/UDP/IP is the dominant standard used for

video telephony applications [1]. RVD sender system along

with NAL units receives the following additional information

from video encoder - (1) motion vector information per frame

and (2) scene change detected per frame. The macroblock

motion vectors are in any case generated as a part of the video

compression at the video encoder. SAD (Sum of Absolute

Differences) used for scene change detection is a metric

available in most of the codecs and is the simplest and less

expensive metric [27]. Hence obtaining information of these

two metrics from video encoder does not require any changes

in the video codec itself. RVD thus receives MVk, δk from

video encoder and network loss rate, plr from receiver via

RTCP (Real-time Control Protocol). We assume plr remains

constant during the transmission of all packets corresponding

to video frame fk.

We use extensive simulations to study the video quality

at the receiver for different video types by varying network

loss rates and applying different degrees of redundancy. We



design RVD algorithm based on simulations data and perform

experiments on real test-bed discussed in later sections.

The MV and SCD information are obtained using FFMPEG.

The simulations are carried using NS3 QoE Monitor [28]. NS3

QoE Monitor provides the network interface to examine the

impact of networking conditions on received video quality. The

point-to-point wireless link is set to 20Mbps with 2ms delay

and maximum transmission unit as 1400 bytes. We assume

that the packet loss probability of the wireless link is time-

varying with error link model having uniform distribution.

Such feedback about wireless link can be made available to

the sender from receiver by using RTCP [29].

We, hereby, examine the impact of MV and SCD on

received video quality for LM, MM and HM videos.

A. Impact of Scene Changes

The HM telephony videos have on an average 30 scene

change detected (Figure 4) for approximately 40 seconds

of captured videos. We examine the impact of ensuring the

transmission of scene change packets on video delivery. Figure

7, hereby, shows the performance of adding redundancy to

SCD frames and non-SCD frames in transmitted video. In

all figures, PSNR imply average PSNR across all frames of

received video in dB. When non-SCD frames are given redun-

dancy (R), PSNR of such frames improve marginally, but the

video quality of the subsequent frames have no improvements

as shown in Figure 7(a). The lower the PSNR values, the

more is the video quality degradation. The maximum PSNR of

received videos is limited to 99dB [28] for plotting purposes.
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Fig. 7. Mitigating the impact of scene changes in video quality by added
redundancy.

Figure 7(b) shows quality improvement with the addition of

redundant packets for SCD frames (k ∈ {431, 443, 461, 462,

469, 478, 479}) in a sample HM video. PSNR is improved

by 10dB for subsequent video frames. This increase in PSNR

ceases to exist around k = 750 as the videos considered in

our simulations have maximum GOP size, g = 250. If SCD

is detected in g̃ position, the reliable delivery of SCD frame

packets likely improves the performance of g − g̃ frames till

next GOP.

With addition of redundant packets for SCD frames (Figure

7(c)), the PSNR on an average increases for HM videos. The

errorbars in all figures henceforth represent two standard devi-

ation of the mean PSNR. However, the increase in redundancy

levels (R = 2) does not further improve the video quality.

The distribution of SCD frames in a video is bursty by na-

ture (Figure 4). The average number of SCD frames obtained

from ≈ 40 second videos is 30 which corresponds to 200 pack-

ets on average, where as, average number of packets generated

by these videos are 43, 880. SCD frames, thus comprises only

0.46% packets of total packets transmitted. Providing reliable

delivery to only 0.46% packets with increased redundancy,

intuitively, is not going to effect the global video quality

beyond certain level and hence explains the result shown in

Figure 7(c).

MM videos have overall no impact on received PSNR for

redundancy addition on scene changes (Figure 7(d)). This

can be attributed to the fact, MM videos have very few

scene changes. Hence, the overall impact on video quality is

negligible.

Inferences

1) Adding redundancy to SCD frames does improve quality

of subsequent frames till next GOP.

2) SCD based redundancy addition is suitable for HM

videos.

3) The amount of redundancy level added, has no impact

on the video quality i.e. the performance saturates for

R ≥1.

The SCD results are based on 2840 video transmission ses-

sions under variable conditions. As we mentioned earlier, effi-

cient SCD algorithm is an active area of research and is out of

the scope of our work. In RVD, we take advantage of existing

SCD algorithms for providing content-aware reliable delivery

to encounter network losses for mobile video telephony.

B. Impact of Motion Vector

The performances of LM, MM and HM videos in terms of

PSNR is shown in Figure 8(a). It is evident, that the PSNR

(in dB) degradation for MM videos is higher in comparison

to other two video types for same packet-loss rates. PSNR

degradation of LM videos is the least. Intuitively, loss of video

data with less variations can be recovered by the decoder based

on past video frames. We discussed in Section III, that MM

videos have higher motion vector values compared to LM and

HM videos. Hence, from Figure 8(a), we observe there is a

positive correlation between PSNR degradation and motion

vectors.

Figures 8(b), 8(c) and 8(d) show performances of LM, MM

and HM videos for R = 1, 2 and 3. The redundancy level

of more than 3 is not applied since the average PSNR for



all video types is already more than 80dB. The performance

improvement for different degrees of redundancy differs based

on the video type. MM videos have least improvement in

quality in comparison to LM and MM videos. The results of

simulations are further summarized in Figures 8(e) and 8(f).

The increase in video quality of LM videos relative to MM

videos, referred as LM-MM for R = 1 is as high as 70%.

However, as R is increased, the disparity in video quality for

LM-MM decreases significantly for lower loss rates (<=6%).

The MM videos having highest motion vector values also

performs poorly in comparison to HM videos as shown in

Figure 8(f). For higher loss rates (plr), the percentage PSNR

improvement of LM and MM videos over MM is higher.

Inferences

1) MV is positively correlated to the received video quality

degradation.

2) Variable degrees of redundancy is required depending

on video motion for maintaining video quality at the

receiver.

V. RVD METHODOLOGY

Our primary aim is to build a video delivery system for

video telephony applications taking into consideration video

content and network resources. The objective of the RVD

system is to minimize the usage of network resource and

maximize video quality at the receiver for video telephony

applications. In total, 10,778 video transmission sessions are

used to identify and examine features per video frame of RVD

system. In this section, we first briefly introduce the regression

techniques used to analyze and model the system followed

by the impact of system features. The performances of these

models are measured in terms of Mean Absolute Error (MAE)

and Root Mean Squared Error (RMSE).

A. Prediction Model

Since the simulation results indicate non-linearity between

RVD system parameters, therefore, we apply Multiple Layer

Perceptron (MLP), a non-parametric, non-linear and data

driven machine learning approach to model the weights of

RVD system. MLP is an example of an Artificial Neural

Network represented as a finite directed acrylic graph com-

prising sets of input (Y ), output (X) and hidden nodes. The

weights of hidden nodes organized in layers is determined

using supervised learning (also referred to as training). The

process involves initializing the hidden nodes weight matrix,

Wxy , between input and output nodes.

Y = f(X,Wx,y) (7)

The weights are changed during training in order to minimize

the error between the estimated MLP output and the correct

value of output. The weights at each node is computed as -

X → flog(W0+ < W,X >), (8)

flog(z) =
1

1 + e−z
(9)

where, flog is known as sigmoid function. MLP uses gradient

descent techniques for error minimization. Further MLP details

can be referred in [26].
Using WEKA toolbox, we divide the data for the model into

n = 10 folds, where, n − 1 folds are for supervised learning

and one fold is used to test the model for errors. The errors

obtained in a fold is added to the weights of nodes of next fold

in the training set. 10-fold cross validation is used to build a

robust model.
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(a) Plot of received video quality in dif-
ferent networking conditions.
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(b) Performance of LM Videos with dif-
ferent redundancy levels.
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(c) Performance of MM Videos with dif-
ferent redundancy levels.
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(d) Performance of HM Videos with dif-
ferent redundancy levels.
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(e) Increase in PSNR(%) for LM videos
with respect to MM videos

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

10

20

30

40

50

60

70

80

90

Redundancy Level (R)

P
S

N
R

 I
n

c
re

a
s
e

 (
%

)

 

 

plr = 2

plr = 4

plr = 6
plr = 8

plr = 10

(f) Increase in PSNR(%) for HM videos
with respect to MM videos

Fig. 8. Impact of added redundancy on videos with different motion.



B. System Features

System features of feature vectors are the inputs we give to

MLP. We identify several input factors:

Target PSNR (Qt): Target PSNR is required video PSNR

at the receiver to maintain perceptual video quality at the

end-user. The importance and computation of PSNR has been

elaborated in Section III.

Target sending rate (St): The data stream generated by

LM, MM and HM videos are between 1Mbps-2Mbps. The

sending rate at the transmitter, intuitively, increases n-times if

there are n redundant transmissions for each packet. Hence,

St can impose major constraint for RVD system.

Target video frame jitter (Jt): We consider worst case

scenario with plr = 10% to examine impact of added re-

dundancy on jitter. Figure 9 shows impact of MV based

redundancy on jitter experienced by video frames. The video

frame jitter is computed as the difference in RTP time-stamps

of first packet of a video frame to the last packet of the same

video frame. As per [30], in high-quality videoconferencing

all packets of each video frame are expected within 33 ms.

The impact of video frame jitter is observed in Figure 9.

Since the GOP size is 250 for the test videos, the video jitter

for I-frames spikes to 30-35 ms for R = 3 as I-frames have

larger sizes. Thus for video data, even if packet level jitter

is within limits, video frame jitter may not be within limits

which is more relevant for video applications. Hence, target

video frame jitter, Jt should be taken into consideration for

evaluation of R.
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Fig. 9. Impact of redundancy addition on video frame jitter at packet loss
rate = 10%.

SCD frame (δk): Since SCD-based redundancy addition

applies to selective frames, the sending rate and jitter per frame

packets are increased marginally. However, the performance

gains for such redundancy is not more than 10dB (Figure 7(c)).

Hence, based on sending rate, jitter constraints per video frame

and target PSNR, RVD can switch between MV and SCD

based redundancy for HM videos, whereas, redundancy for

LM and MM videos are based on MV.

Motion: The impact of motion vector (M̂V k) on video

quality under variable network conditions is observed in

Figure 8. The received video quality of videos having highest

values of motion vectors deteriorates more in comparison to

the videos having smaller motion vector values under same

networking conditions.

In mixed videos, the user/camera movements may lead to

one or more type of video sequences. We, therefore define

Algorithm 1 RVD

1: Input Qt, St and Jt
2: for each frame fk
3: Objective - Minimize Rk

4: Obtain MVk, vk, δk and plrk
5: switch(vk)

6: case(HM)

7: if (Qt ≤ Qscd) then

8: Evaluate Rk = scdlevel(δk)
9: else

10: Evaluate Rk = mvlevel(M̂Vk, plrk, Qt, St, Jt)
11: end if

12: otherwise

13: if vk == vk−1 then

14: Rk = Rk−1

15: else

16: Evaluate Rk = mvlevel(M̂Vk, plrk, Qt, St, Jt)
17: end if

18: End

M̂V k, the value of average motion vector till kth video frame.

It is computed as M̂V k =
∑K

k=K−ω
MVk

K
, where, ω is a fixed

window to be observed for determining average motion vector

of the video till kth frame.

Packet loss rate (plrk): We assume packet loss experi-

enced per frame packets (plrk) during transmission remains

constant.

C. RVD Algorithm

Algorithm 1 discusses our proposed RVD algorithm. Since

telephony videos are generally mixed videos - a combination

of one or more video types (LM, MM and HM videos), it

becomes essential to compute our algorithm at each video

frame level. The objective of RVD system is to thus, minimize

redundancy level required per frame, Rk for received PSNR

≥ Qt, transmission rate ≤ St and video frame jitter ≤ Jt.

For HM, RVD selects SCD based redundancy (scdlevel(.)) or

MV based redundancy (mvlevel(.)) depending on the system

constraints. Qscd is the maximum PSNR achieved applying

scdlevel(.). Our simulation data shows scdlevel(δk) = δk
where as mvlevel(M̂V k, plrk, Qt, St, Jt) is modeled as MLP

described above. vk is the video type (v) in which kth frame

is classified and is a function of M̂V k (Equations 3 - 5).

D. Experiments

In this section, we discuss RVD implementation and its

results. Mixed videos, captured using Nexus S, are used in

implementation phase to test the efficacy of proposed RVD.

We configure a single hop wireless testbed between a sender

and a receiver. The configuration of WLAN in the testbed is

IEEE 802.11n and the average minimum endto-end delay is

0.504 milli-seconds. FFMPEG is used for video encoding and

decoding. The real-time video transmission is established by

using VLC player. A FreeBSD iMAC server (3.2GHz Intel

Core i5 with 8GB) was used for a sender and FreeBSD-based



TABLE II
PERFORMANCE OF SYSTEM FEATURES.

System Features MAE RMSE

{M̂V k, Qt, Jt, St, plr} 0.1153 0.1692
{v,Qt, Jt, St, plr} 0.1284 0.187

{Qt, plr} 0.3702 0.4679
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Fig. 10. Prediction error (of R) without and with accounting for video
motion.

system (2.7GHz Intel Core i3 with 4GB) for a receiver. During

the video transmission session, we use IPFireWall tool in order

to introduce desired packet loss rates in the link.

Table II shows the MAE and RMSE values for the MLP

model considering different combinations of system features.

If we consider MLP with input X = {plr, PSNR} and

Y = R, then the trained model has a high prediction error

in comparison to RVD as shown in Figure 10. The error for

this model frequently fluctuates between ±1. Since R can take

values from {0, 1, 2, ...}, such a model will lead to inaccurate

R for the system. Table II, also gives MAE and RMSE values

for different combinations of inputs. We can see how MAE

increases significantly (3X) if we only account for channel

loss rate and not other input variables. The performance of

the models considering system features - MV or video type

do not differ in terms of MAE and RMSE. Thus, we can infer

that MV values can be replaced by video types as a system

feature to build MLP model.

Instead of implementing MLP on a smartphone or laptop,

we port input-output relationships into a look-up based on

Algorithm 1. A condensed version of look-up table is shown

in Table III. Qt = 31 dB was chosen to indicate modest

video quality [31] while Qt = 50 dB indicate high visual

fidelity of received videos. It is evident from Table III that

videos with higher values of motion vectors may require

higher redundancies. For Qt = 31 dB, LM videos require

no redundancy for loss-rates 2% and 4%, whereas, MM and

HM videos require R = 1 to achieve the target PSNR of 31

dB. The required redundancy levels are also observed different

for 8% and 10% loss-rates. HM videos, having lower values

of motion vectors in comparison to MM videos at plr = 8%

achieves 31 dB with a reduced redundancy level than MM

videos. With required Qt = 50 dB (high fidelity videos) and

plr = 4%, the redundancy level of MM is more than other

two video types whereas, LM videos require lower redundancy

level in comparison to MM and HM videos.

Next, we use these values to stream videos over network. We

consider four cases : 1) No-R implies no redundancy is applied

2) RVD 3) Min-R implies minimum redundancy applied i.e.

TABLE III
REDUNDANCY VALUES

Target PSNR = 31dB

plr(%) 2 4 6 8 10
LM 0 0 1 1 1
MM 1 1 1 2 2
HM 1 1 1 1 2

Target PSNR = 50dB

plr(%) 2 4 6 8 10
LM 1 1 2 2 2
MM 1 2 2 3 3
HM 1 1 2 3 3
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Fig. 11. Experiment results using mixed videos.

entire video data is classified as LM and 4) Max-R implies

maximum redundancy applied considering entire video as

MM. Figure 12(a) shows RVD and Max-R, both consistently

perform better than target PSNR, Qt, where as, bandwidth

consumed by Max-R is greater than RVD as shown in Figure

12(b). Performance improvement of received video quality by

50%-56% for 4%-10% network loss rates, in comparison to

the approach oblivious of video data characteristics (No-R).

RVD saves network bandwith utilization by 17%-25% with

4% -10% network loss rates, respectively, in comparison to

the approach treating all video data having high motion vector

values (Max-R).

Next, we study how the performance varies across different

locations on the second floor of a two-storey building at UC

Davis (see Figure 12). The location of transmitter and receiver

not only impact how signal propagates over the time but more

importantly affect the selective fading at spectral domain. For

desired PSNR threshold of 31 dB (Qt) we observe that RVD

is able to achieve this performance in all scenarios while

No-R leads to poor performance in L2 and L3. Max-R is

able to achieve high quality (50 dB) but leads to over twice

the bandwidth requirements (2X) of RVD. The results are

averaged over 12 video sessions for each location and scheme.

L1 has low losses, hence No-R scheme also approaches 31

dB performance, while RVD quality is close to 50 dB. In

these results, we have limited the maximum PSNR to 50 dB

(Qt > 40 dB represents excellent quality and any distortion is

invisible to human eye [31]).

VI. CONCLUSION

In this work, we propose a scheme for intelligent video

transmission by adjusting redundancy levels based on video

motion. We focus on two main attributes of video information -



Server
Receiver

L3
L2

L1

50 ft.

(a) Map

L1 L2 L3
0

10

20

30

40

50

P
S

N
R

 

 

No−R

RVD

Max−R

(b) Video Quality
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scene changes and motion vectors. The videos with high values

of average motion vectors have higher degradation in video

quality and require additional redundant packet transmissions.

Scene change frames need additional redundancy for high

quality.

With extensive simulations and experiments, we conclude

that video content plays a vital role in improving video

quality at the receiver. Such insights can be exploited by the

video telephony application providers to fine-tune the video

transmissions. RVD gives better trade-off between bandwidth

usage and received video quality in comparison to approaches

which are oblivious of video content. We used standard FEC

codes to demonstrate the impact of video motion. However,

advanced redundancy mechanisms such as Raptor Codes or

Selective Re-transmission can also be used to further reduce

the required data redundancy.
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