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Abstract—Crowd-sourced Wi-Fi-based localization systems uti-
lize user input for RF scene analysis and map construction.
Such systems reduce the deployment cost and privacy concerns
that expert-based site survey systems can create. However, the
main bottleneck of such crowd-sourcing localization systems is a
bootstrapping stage, where lack of contributions by users results
in no accuracy guarantee and frequent unnecessary prompting
for users’ input, even for explored areas. In this paper, we propose
a crowd-sourcing localization system that uses both Wi-Fi scene
analysis and Bluetooth beacons to address the insufficient con-
tribution challenge. After prompting for user input, the mobile
device not only submits Wi-Fi fingerprint to a map server, but
also enables Bluetooth beacons to disseminate/share its location
and fingerprint information to quickly populate the signal map.
Then, subsequent user devices entering the area can discover the
Bluetooth beacons and are able to instantly obtain room-level
location information without causing unnecessary prompting to
users. We implement our proposed system in the Linux OS and
evaluate the prototype extensively through both experiments and
simulation. Our evaluation results show that using Bluetooth
beacons help to improve signal map growth, while maintaining
reasonable localization accuracy.

I. INTRODUCTION

Recently, thanks to the increasing popularity of location-
based service (LBS), a considerable amount of research effort
has been made to develop indoor localization systems. Because
of the rapid growth of smartphones, such localization systems
often adopt various techniques that use sensory capabilities
provided by commodity mobile phones and pervasive indoor
Wi-Fi infrastructure. Among numerous existing solutions,
scene analysis or fingerprinting approach [1], [2] is widely
favoured because of its high accuracy and low complexity,
compared to other schemes. However, the localization accu-
racy in this approach largely depends on a Wi-Fi signal map
that is built through a dedicated scene survey. This survey
normally conducted by expert is expensive, laborious and
time-consuming. Furthermore, its results are often distorted
by instability of the wireless signal and raise privacy or
administrative concerns [3].
On the other hand, many LBSes today do not require more

than room-level accuracy for location, which can be achieved
using a signal map with mediocre quality fingerprints. Based
on this observation, authors in [4]–[6] suggest crowd-sourcing
the map-building task to users by accepting impromptu finger-
prints and creating a map in an incremental way. Naturally,
the bootstrapping stage of such a crowd-sourcing approach
is crucial, since at which the lack of sufficient user input
may adversely affect localization performance as well as user
experience on the LBS.
To improve the bootstrapping performance of crowd-

sourced Wi-Fi localization systems, two key questions emerge:
1) When does a user have to make a contribution and 2)
How fast does the crowd-sourced localization system become

operational, compared to an expert survey system. The former
addresses the balance between faster data collection and less
user prompting. The latter deals with how efficiently the
system can handle user feedback with respect to localization
accuracy. Most existing work (e.g., [5], [6]) dismisses these
questions by assuming that there is a large group of users
who are willing to actively contribute whenever they can.
However, in practice, such assumption does not always hold,
and thus users might receive localization service without any
accuracy guarantee. Authors in [4] appreciate the importance
of these two questions. They propose a spatial uncertainty
metric that reflects coverage condition of the space around
the estimated location. Nonetheless, spatial uncertainty could
be too ambiguous to promptly and effectively represent the
exploring and crowd-sourcing process in physical space, and
the building of the association from physical space to signal
map, due to low confidence of estimate.
If there is a guide stationed in these newly explored areas

that can distinguish the explored areas from nearby unexplored
areas with a high confidence, the spatial uncertainty suddenly
becomes straightforward. The use of low-power short-range
Bluetooth available in a mobile device can be a suitable
candidate for the guide. In fact, Bluetooth-based applications
have gained success in proximity marketing and medical
scenarios [7], [8]. Bluetooth is practically ubiquitous in most
mobile devices, and thus it is feasible to use the radio as local-
ization beacons in a crowd-sourcing manner without requiring
its careful deployment. Based on this intuition, we propose
a new crowd-sourcing indoor localization scheme that allows
users to set up Bluetooth beacon sites in local areas as a guide
for other users. Once users are prompted for location, besides
adding the record into signal map, they can also choose to
encode this location information and the current Wi-Fi signal
observation into a Bluetooth beacon. Then, subsequent user
devices that enter the same location may scan for Bluetooth
beacon. If beacon(s) is found, it can be localized instantly with
significantly higher confidence. Otherwise, it can be prompted
to improve coverage or resort to basic Wi-Fi localization using
maps built by previous users.
In this paper, we design and evaluate an experimental

system that augments Wi-Fi crowd-sourcing scene analysis
localizer with Bluetooth beaconing capability. Similar to other
crowd-sourcing schemes, our proposed system aims to provide
room-level accuracy, yet avoiding expert-based site-survey
cost. The use of Bluetooth beacons will provide several
additional benefits: 1) It will facilitate the bootstrapping and
decrease unnecessary user prompting, which can improve user
experience. 2) It will provide room-level accuracy with high
confidence even when only few fingerprints are available for
the targeted area. This trait also ensures that the quality of
such obtained fingerprints can be fair enough to be used for



a signal map, which expedites the map construction process.
3) Leveraging beacons to locally share location information
reduces the need of frequent communication with a remote
map server for evolving updates, and thus potentially helps
in power conservation. 4) Bluetooth protocol is designed to
minimize interference, and beacons are set up in an ad-hoc
and on-demand manner. These properties enable beacons to
grow automatically to provide scalability.
Several technical challenges are encountered during the

design of such a system. First, we observe that Wi-Fi signal
characteristics such as temporal variations and available AP
instability in our experimental environment are more compli-
cated than we expect. Next, due to the wireless nature of
Bluetooth beacons, detection delay, transmission range and
reception rate of the beacons might cause adverse impact on
localization accuracy. Further, it requires significant efforts
to understand the effects of those factors and devise new
mechanisms to alleviate them. Issues such as incentive for
users to enable their Bluetooth interface working as beacon
and the scanning delay are also discussed.
Our main contributions in this paper are summarized as

follows:

• We study the feasibility of using the Class II Bluetooth
component equipped in most of the mobile devices as a
localization beacon site.

• We design a crowd-sourcing localization system that
incorporates both Wi-Fi scene analysis and Bluetooth
proximity approaches.

• We identify several major challenges in using Bluetooth
beacons (e.g., penetrating beacons from adjacent space)
via extensive experiments and propose novel approaches
to mitigate the challenges.

• We implement the proposed localization system in the
Linux OS and demonstrate its effectiveness via both
experiments and simulations.

In the next section, we describe the related works. Then,
we explain the motivation of our approach in Section III. In
Section IV and Section V, we provide background information
about Wi-Fi scene analysis approach and characteristics of
Bluetooth transmission, respectively. In Section VI, we detail
the design of our proposed system. Performance evaluation
of a prototype implementation is given in Section VII. Sec-
tion VIII discusses remaining issues and future work, and
Section IX concludes the paper.

II. RELATED WORK

Authors in [1] introduce the RADAR system that relies
on Wi-Fi scene analysis. This approach has attracted much
research effort [9], thanks to its favorable properties such
as utilizing existing infrastructure and resilience to multi-
path effect, compared to traditional triangulation method or
proximity-based approach. Most work from the effort focuses
on improving accuracy with a given signal map, by adopting
different classification techniques, such as k-NN in [1], its
variant [10], and Bayesian or probabilistic method [2].
However, the quality of signal map is a key to localiza-

tion accuracy. Building a high quality signal map requires a
tremendous cost in both labour and time. In order to reduce
such cost, approaches proposed in [11], [12] require a few
fingerprints collection and then use propagation models to de-
rive the signal map. In [3], authors propose an adaptive survey
system that identifies and reduces survey spaces, instead of
rebuilding a whole map. Solutions that eliminate a dedicated
map construction task and crowdsource the task to users are
proposed [4]–[6]. However, they assume enough number of
crowd-sourcing users.

Use of Bluetooth for localization has been studied in the
past. Some work requires the deliberate placement of Blue-
tooth devices to infer proximity [13]. While others perform
scene analysis on metrics such as Bluetooth RSSI [14] or
response rate [15]. By contrast, in this work, we use user-
managed Bluetooth beacon as a mean to facilitate the crowd-
sourcing map construction.

III. MOTIVATION

As Bluetooth is widely adopted in most of mobile devices,
we propose to use Bluetooth beacon to enhance the per-
formance of crowd-sourced Wi-Fi localization systems. This
approach not only keeps most of the salient properties pro-
vided by Wi-Fi crowd-sourcing localizer: room-level accuracy,
symbolic location, adaptation to variation, and low deployment
costs, but also helps solve key design challenges of indoor
localization systems as follows:

• Prompting Efficiency: When a user is located at unknown
locations, a localization system should promptly ask
for user inputs in order to improve the map coverage.
However, frequent prompting will disturb users, and this
becomes even worse if the system cannot distinguish
explored areas from unexplored areas with a high proba-
bility [4]. By introducing Bluetooth beacon, users in ex-
plored areas will not be falsely prompted, thus improving
prompting efficiency and usability of the system.

• Accuracy with High Confidence: While existing Wi-Fi
crowd-sourcing localizer produces meaningful estimate
only after the certain amount of fingerprints have been
accumulated over a large part of the areas, using Blue-
tooth beacons system can immediately provide accurate
result with high confidence in areas where a user(s) has
explored and beacon is set up.

• Accelerating Map Growth: Bluetooth beacons can work
as a projection from signal map to physical space. Knowl-
edge conveyed via beacons helps other devices generate
reliable fingerprints, and thus quickly populate the signal
map without frequent prompting, when the physical area
is densely populated. When the signal maps need to be
downloaded into local cache, beacons can be used as
indices to minimize the size of map downloads.

• Communication Overhead Reduction: In practice, there
should be a central map server for aggregating finger-
prints measured by crowd-sourcing devices. During a
bootstrapping period, a Wi-Fi crowd-sourcing localizer
needs to frequently communicate with the server to obtain
timely updates contributed by other contemporary users.
Beacon in the physical space helps in reducing commu-
nication overheads, thus improving power efficiency.

Motivated by the above factors, we will first explain the
limitations and potential enhancements of Wi-Fi scene analysis
scheme (Section IV) and further describe challenges and
approaches in using Bluetooth (Section V). Finally, we present
a system design (Section VI).

IV. WI-FI SCENE ANALYSIS LOCALIZER

Static Wi-Fi scene analysis is a statistical approach that
exploits the temporal and spatial variation of received signal
strength indicator (RSSI) from Wi-Fi infrastructure. Typical
Wi-Fi fingerprint consists of a position descriptor, a list of
visible access points and corresponding RSSI statistics, namely
observation. For areas of interest, a map of fingerprints, the
signal map, is compiled through site survey. When a mobile
user is localizing, Wi-Fi observation at unknown location is
collected and then is matched against reference fingerprints



in the signal map. Here, localization accuracy depends on
classification technique as well as distance metric that is used
for the matching. The resolution of the signal map carries
even more weight. In principle, map resolution is affected by
temporal variation of fingerprints and site survey methods. To
investigate such impacts, we have conducted experiments and
established baseline observations for (room-level) localization
accuracy. The experiment environment is a typical office floor
that consists of offices, meeting room, and student laboratories,
including rooms illustrated in Figure 4. The environment has
moderate traffic and is stuffed with computers, mobile devices,
and a number of APs, and the student labs are usually further
partitioned by cubicle walls.

A. Temporal Variation in RSSI

Temporal variation in RSSI [2], [16] poses severe threat
to localization accuracy because it decreases the correlation
between map record and physical space over time, eventually
invalidating the entire signal map. We measure RSSI in our
experiment environment by using a laptop that continuously
scans Wi-Fi signal at a fixed location (center of Room2106 in
Figure 4) for 7 days. Figure 1(a) shows RSSI traces of 4 APs
(out of 21 visible APs), which are picked to show different
RSSI ranges, for the first day. As shown in the figure, severe
turbulence and diversity among APs can be observed. Some of
the turbulences can reach as large as 15dBm, which is enough
to cause serious error in localization.
Overall, the above results reaffirm that signal maps should

be updated frequently to maintain the desired level of localiza-
tion accuracy. Compared to calibration and sensing monitors
(e.g., [3]) in static scene analysis, a crowd-sourcing approach
has intrinsic advantage of faster map updates with less cost.

B. Measurement and Distance Metric

As we mentioned, the accuracy of Wi-Fi localization sys-
tems heavily relies on a distance metric and a classifier (for
fingerprint matching). Thanks to the simplicity and relatively
stable performance [1], we begin with measurement study
on Root-Mean-Square-Error (RMSE) as a distance metric
(and 1-Nearest-Neighbor (1-NN ) for a classifier in the next
section). We then propose modification to RMSE to improve
localization performance.
1) Measurement Methodology: The measurements are

recorded using probabilistic method used in [17]. A mobile
device issues ten consecutive Wi-Fi scans, and then the mean
and standard deviation of the reported RSSI values are calcu-
lated for each visible AP. Finally, they are stored as fingerprint
along with a valid record count, which keeps the number of
observations for each AP in the 10-round-scan.
During the 10-round-scan, we notice that a few RSSI values

drastically deviate from others, which could swing the mean.
Based on closer analysis on scanning results, we found that
the deviation is caused mainly by overheard signal from
adjacent channels. The 802.11 scanning mechanism scans one
channel at a time looking for available APs on current channel,
and repeat this until it goes through all 11 channels. When
performing scan on a current channel, wireless interface may
accidentally capture and report beacons from channel(s) that
the interface is not currently listening on, with a significantly
lower RSSI. We consider such RSSIs not the representative
ones and perform a clustering on the 10-round-scan before
the averaging. The clustering excludes any RSSI value that
differs more than 30 dBm from half of the rest values.

2) Fingerprint Normalization: Each fingerprint collected
from different time and locations may include the list of
different observed APs. Before applying the distance metric
(i.e., RMSE) to the fingerprint for calculating the distance
between observation and record, different fingerprints have to
be formatted into such lists that consist of the same set of APs.
For such normalization, a fusion step is necessary to examine
all fingerprints and generate an aggregated AP list. For APs
that are not observed in certain fingerprints, their RSSI values
are replaced with an ‘invalid’ one (i.e., -100dBm).
Throughout our experiment, some APs temporarily appear

on site-survey phase and then disappear on localization phase
or vice versa, we call them transient APs. They are most
likely the result of misconfiguration or malfunction rather than
physical distance and transmission range. Such inconsistency
becomes a source of error when calculating the distance
metric, especially as the fusion process assigns the penalty
of -100dBm value to RSSI of transient APs. To avoid such
errors, we define and use the valid record count (w), which
is defined as the ratio of record count over total scans (10 in
our case), as a weight factor to such APs. Here, transient APs
typically have very low valid record count.
3) Modified RMSE Metric: Bearing the aforementioned

issues in mind, we define a modified RMSE metric as our
distance metric for Wi-Fi localizer, in Equation (1).
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where Dom is a distance from observation o to fingerprint
m, c is the number of APs observed by both observation o
and fingerprint m, n is the total number of APs after fusion,
ro

i
represents RSSI value of ith AP in observation o, rm

i

represents RSSI value of ith AP in fingerprint m, and wi is the
valid record count of ith AP. Dom as a distance metric for Wi-
Fi localizer is used in all subsequent experiments. Note that
the summation of n determines AP observed by only one party
will introduce a penalty to distance. Normalized by c indicates
that more common APs observed suggests closer distance.

C. Map Resolution and Localizer

Resolution of a signal map determines how many fingerprint
samples should be collected for a given area and has significant
effect on accuracy. The larger the unit sampling grid is, the
more is the signal diversity exhibited within a grid [3], and
the coarser is the location descriptor per observation. We
performed site survey in accessible areas of our office floor
for localization. The experiment space is gridded into 1m2

tiles. One fingerprint is collected within each unit grid—109
fingerprints in total. The map with the highest resolution is
denoted as 1m2-map. Several lower-resolution maps are built
backwards to simulate the crowd-sourcing map construction
phases, using the following two methods:

• Remove: A granularity region with varying sizes is a
combination of unit grids that are defined to represent the
accuracy we expect to achieve. Within each granularity
region, we randomly remove samples from 1m2-map and
leave one sample only. This mimics the evolution of a
crowd-sourcing system, where few fingerprints available
to represent a large area. Using these approaches, we
create 4m2 remove-map and 10m2 remove-map, whose
granularity region sizes are 4m2 and 10m2, respectively.

• Merge: As suggested in [2], one can merge samples in
the granularity region by fitting them into a Gaussian dis-
tribution and use the resulting distribution parameters to
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Fig. 1. Measurement results for Wi-Fi Localizer (a)-(b) and Bluetooth EIR Beacon (c)-(f).

represent each region. In addition to different granularity
region size, we also study the impact of different numbers
of samples used in merge by randomly removing samples
before merging. For this approach, we use 4m2, 10m2,
and 20m2 as granularity size and vary sample number
parameter according to multiple of 2.

We feed all collected samples as input into the 1-NN -based
localizer with the modified RMSE metric, using different maps
we generated. We only show the case that is most relevant to
our room-level accuracy setting. The result in Figure 1(b) in-
dicates that with a detail map of 1m2 resolution, even a simple
1-NN -based localizer can achieve an approximate accuracy of
3.2 metres for 90%. It is comparable to existing work using
similar techniques [1]. When reducing the resolution of the
map to 2 samples per 20m2 as in 10m2 remove case, the
accuracy dropped to 4.8 metres for 90%. It also verifies that
collecting more fingerprints to increase map detail has positive
impact on accuracy.

V. BLUETOOTH EIR AS LOCALIZATION BEACON

Once one mobile device acquires its location information
through either Wi-Fi localizer or user input, it can share this
information with new users coming into its area. Bluetooth
beacons can be used for such sharing, thanks to its wide
adoption in mobile devices, and energy-efficient design. In
addition, Bluetooth specification [18] defines a frequency hop-
ping inquiry process for neighbor discovery and an Extended
Inquiry Response (EIR) procedure that allows a message
of 240 bytes to be sent immediately after inquiry response
without the need of establishing connection. We propose to
use this inquiry process for localization beacon discovery, and
use EIR to carry fingerprint information from the beaconing
node.
Even though the idea of using EIR as beacon carrier

is straightforward, we encounter several challenges to take
advantage of it. In a lossy and indoor environment, EIR data

might be lost or corrupted due to frequency hopping, collision,
and obstacles. Such loss might lead to false negative on the
beacons, triggering unnecessary user prompting. Furthermore,
the EIR data that traverses through wall into adjacent room
may lead to false positive and suppress necessary prompting.
Therefore, the reception rate of EIR data, defined as the ratio
of successfully received EIR count over total inquiry count,
determines the feasibility of using Bluetooth for localization
beacon in practical terms.
In the remaining part of this section, we will discuss the

effects of key parameters, including inquiry duration, physical
distance, and neighboring beacons with measurement results.
Note that other parameters, such as data length, packet type,
and inquiry type do not show significant impact on EIR
reception and thus we omit their results due to page limit.
In subsequent experiments Bluetooth ACL packet types are
automatically chosen and inquiry type is set to Standard
Inquiry Scan.

A. Inquiry Duration

We first study the impact of inquiry duration on EIR
reception. The Bluetooth specification specifies that an inquiry
should last for 10.24 secs to maximize the discovery proba-
bility. Analysis in [19] concludes that the inquiry duration can
be reduced to 5.12 secs without endangering the effectiveness
of discovery. To validate this analysis indoor, we place one
beacon in the same room as a mobile device is in, and another
beacon node is placed in the adjacent room where both are
2 metres apart from the mobile device. The device performs
100 inquiries with inquiry duration ranging from 3.84 secs to
10.24 secs, and we measure the reception rates. The results
shown in Figure 1(c) suggest a weak trend under the decrease
of reception rate for the above two cases (same and adjacent
rooms), although it has more negative influence on adjacent
rooms case. It also confirms that a 5.12-second-inquiry (i.e.,
inquiry duration slot 4 in the Figure 1(c)) would be sufficient



for the discovery of beacons in the same room, achieving the
balance between delay and desirable reception rate (> 90%).

B. Environmental Factors

Because Bluetooth is a short-range radio, the reception rate
of Bluetooth transceivers may be relevant to their surrounding
environment as well. We perform a set of experiments to
investigate the impact of the physical distance, obstacles on
the propagation path, and interference from other Bluetooth
devices.

• Line-of-Sight (LOS) Scenario: A beacon node and a
mobile device are placed in the same office room with
no obstacle in between. The distance between the nodes
is increased from 1 metre to 6.5 metres, and a 5.12-sec
inquiry is repeated 100 times for every 0.5 metre.

• Non-LOS (NLOS) Scenario: Same settings as in LOS
scenario are used in this experiment, except that both
nodes are moved to the other part of the room where
obstacles such as plastic cubicle partitions, metal frames,
and electronic devices are present.

• Adjacent Room Scenario: Bluetooth beacon is moved to
adjacent room and the transceivers are separated by an
approximately 5cm thick, wooden wall.

• Interference Free (IF) Scenario: Scenarios aforemen-
tioned are exposed to interference from multiple back-
ground Bluetooth devices, five of which are computers
and two mobile devices. To study the impact of inter-
ference, immediately after each test in LOS and NLOS
scenarios, we redo the same test with all interference
sources eliminated.

Figure 1(d) shows the results of the first three scenarios and
the interference free counterparts for LOS/NLOS scenarios.
Overall, at least in our settings, distance does not show
significant influence on the reception rate. In both LOS and
NLOS scenarios, the reception rate stays above 85%, when
transceivers are located within less than 6 metres. In the
adjacent room scenario, the wooden wall does not act as a
strong isolator to Bluetooth signal. The signal has transmission
power enough to penetrate the wall and reach a neighboring
room, and the reception rate varies between 60% and 75%.
Nevertheless the decreasing trend and large variance compared
to the relatively stable one in NLOS case still suggests large
obstacles such as walls will have greater impact than smaller
obstacles, which is in fact a desirable feature for our case.
Therefore, in terms of reception rate, given distance within
transmission range different kinds of obstacles will show more
diverse influence than physical distance does, while both are
not significant enough for isolating beacons from adjacent
rooms. We can also note that the impact of interference from
other Bluetooth devices is negligible, most likely due to the
frequency hopping nature of Bluetooth discovery process.

C. Penetrating Beacon Discrimination

As shown in the previous experiment (i.e., the adjacent
room scenario), the beacons can travel across rooms, and
such penetrating beacons can cause significant impact on
localization accuracy. Ideally, if Bluetooth beacon can be very
well confined within a room, a prompting policy can only
depend on whether a beacon is successfully received or not.
However, in practice we found that Bluetooth signal from
Class II adapter that is widely used in mobile devices has
certain probability to penetrate walls into adjacent rooms,
despite the use of low transmission power. If one device
is located in a room without beacon nodes but accidentally

−RSSIb ≤ 79 79 < −RSSIb ≤ 83 83 < −RSSIb

pb 0 0.5 1

Dob ≤ 7 7 < Dob ≤ 9 9 < Dob

pw 0 0.5 1

TABLE I
EMPIRICAL PENALTY VALUES OF BLUETOOTH BEACON (pb) & WI-FI (pw )

receives penetrating beacons from an adjacent room, it will
cause false positive—incorrect ‘association’ with the adjacent
room. Therefore, the system has to be able to identify/exclude
those penetrating beacons.
To discriminate such penetrating beacons, lowering the

transmission power of Bluetooth device is a straighforward
approach. However not all off-the-shelf devices support power
adjustment feature at the moment. Instead, we propose a
threshold-based approach that uses both RSSI of Bluetooth
beacon packet and the Wi-Fi fingerprints the beacon carries.
We first show the benefit of using the beacon RSSI and then
present a unified metric to integrate the both.

1) Using RSSI of Bluetooth Beacon: While RSSI of Blue-
tooth beacon is a weak indicator for inferring distance between
adjacent nodes [14], [15], the RSSI does exhibit characteristics
to distinguish beacon between rooms and wall-types obstacle.
Figure 1(e) shows the CDF of RSSI for scenarios used in our
previous experiments. As shown in the figure, in the adjacent
room scenario, RSSI shows clear difference from ones in the
same room scenarios. Thus, we use this value as another
dimension to better discriminate penetrating beacons. Note that
the impact of interference from background Bluetooth devices
on RSSI distribution is again insignificant.
However, there are two major questions to answer before

we use RSSI. First, because the frequency band of Bluetooth
is divided into 79 slots, during an inquiry process, a device
may receive multiple responses from the same beacon node in
more than one frequency slot and their RSSI values might be
different. We calculate the mean of all received RSSI values
and use the mean as the received power of the beacon.
Next, we have to define a threshold to identify between

the same room and the adjacent room. Figure 1(f) shows
empirical statistics of RSSI values. We use the intersection
of Adjacent Room Scenario and NLOS Scenario to derive a
threshold for identifying neighboring spaces. However, con-
sidering the instability of wireless signal, as opposed to using
an absolute threshold, we divide the RSSI range into three
categories and assign penalty values to them for the space
discrimination. The penalty values (pb) are abstracted from
empirical measurements (90th percentile in Figure 1(e)) and
shown in Table I. We apply the same classification to Wi-Fi
RMSE distance using empirical data from experiments in the
previous section and derive penalty values for Wi-Fi (pw).

2) Unified Metric: We now define a unified metric that
jointly uses the RSSI of Bluetooth beacons and the Wi-Fi
fingerprint carried by the beacons, as follows:

Uob = (1 + pb) · (
−RSSIb − 50

N
) + (1 + pw) · (Dob), (2)

where Uob is the unified distance from observation o to beacon
fingerprint b, RSSIb is the RSSI value extracted from beacon
b, Dob means the RMSE distance from observation o to beacon
fingerprint b, calculated using Equation (1), pb is penalty value
given to beacon RSSI component, pw is penalty value given
to Wi-Fi RMSE component Dob, and N is a constant for
normalizing RSSIb to the same numerical scale as Dob, so
that the metric will not bias towards either Bluetooth or Wi-
Fi. We choose N = 4. Once a Bluetooth beacon is received,
RSSI of the beacon will be extracted, and so is the Wi-Fi



Fig. 2. System architecture

Fig. 3. EIR Payload Format - Fingerprint Consists of Location Information
and Wi-Fi Observation List

fingerprint it carries. With fingerprint from beacon and local
Wi-Fi observation, RMSE distance from local device to the
beacon node is calculated, according to Equation (1). Based
on their values and empirical thresholds shown in Table I,
penalty values are assigned to the beacon RSSI and Wi-Fi
RMSE distance, respectively as in Equation (2).
We will explain how Uob is used to discriminate penetrating

beacons, especially for prompting policy in the next section.

VI. SYSTEM DESIGN

This section describes our proposed system design to im-
prove the performance of crowd-sourced Wi-Fi localization
systems, based on the aforementioned observations and met-
rics defined. Note that we assume that a user device is
equipped with both Wi-Fi and Bluetooth radios and that a
user should be relatively stationary during localization.
Figure 2 illustrates the architecture and operation of our

proposed design, which can be explained in the following
steps. First, a Wi-Fi scan is performed to collect local Wi-
Fi signal observation. If Bluetooth capability is disabled, the
device should try to localize with standalone Wi-Fi localizer
(i.e., modified RMSE). If Bluetooth is enabled, then it should
start Bluetooth inquiry searching for nearby beacons. Here,
the beacon search result determines the user prompting whose
policy is described in Algorithm 1. If beacons are received, the
device first identify whether the beacon(s) is transmitted from
neighboring rooms by using the unified metric in Equation (2)
(line 4 − 14). If not (i.e., beacon from the same room), the
device uses the location information from the received beacon
(Figure 3 shows the message format of the beacon) with
minimal unified metric value to localize. If no beacon is in the
range or if the value derived from the unified metric is greater
than a predefined threshold, the localizer considers current
location as unexplored areas and prompts user for location
input (line 15− 25). Once the system receives user input, the
user can opt in enabling Bluetooth beacons for subsequent
users entering the same space. Then, a beacon device should
periodically perform Wi-Fi scan and compare the recent Wi-
Fi observation to historical record in terms of RMSE distance.
If drastic change that may imply re-location or movement is
observed, then the beacon device should relinquish itself from
beaconing and start re-localizing.

Algorithm 1 Prompting Policy

1: INPUT: Local observation fgpto; Received beacon count
bconcnt; Received beacon list bcon[bconcnt]; Minimal distance
mindist; Maximum distance MAX DIST ; Distance Thresh-
old THRESHOLD;

2: OUTPUT: prompt = {TRUE, FALSE}
3: INIT: mindist = MAX DIST
4: if bconcnt > 0 then
5: for i = 1 to bconcnt do
6: Extract fgpti

b, RSSIi

b from bcon[i]
7: Di

ob = RMSE(fgpto, fgpti

b)
8: Decide penalty values pi

w, pi

b

9: U i

ob = UM(RSSIi

b, D
i

ob, p
i

w, pi

b)
10: if mindist > U i

ob then
11: mindist = U i

ob

12: end if
13: end for
14: end if
15: if bconcnt == 0 then
16: prompt = TRUE
17: setbeacon(fgpto)
18: else if bconcnt >= 1 then
19: if mindist > THRESHOLD then
20: prompt = TRUE
21: setbeacon(fgpto)
22: else
23: prompt = FALSE
24: end if
25: end if

VII. PERFORMANCE EVALUATION

To evaluate our proposed system, we first describe our
Linux-based implementation and then show our evaluation
results via both experiments and simulations.

A. Implementation Overview

We have implemented the proposed system as illustrated
in Figure 2. For simplicity of implementation, we use Dell
5400 laptops equipped with Cirago (CSR chipset) BTA-3210
Class II Bluetooth USB dongle and Intel Wireless 5300AGN
adapter, as our mobile device. We prototype the proposed
components on Linux 2.6.41 kernel. Briefly, the Wi-Fi scanner
(in Figure 2) calls iw scan routine in Wireless Extension [20]
and collects RSSI reported by the driver. To start inquiry and
set up Bluetooth beacon, the Bluetooth scanner makes a system
call provided by the HCI utility of Bluez [21] stack, and then
extracts RSSI and EIR data using event filter. The fingerprints
are stored based on their source: signal map, local cache, or
Bluetooth beacon. Fingerprints in local cache can be appended
to the signal map file for sharing purpose when needed. We
expect all functionalities can be port to smartphones embedded
with similar off-the-shelf chipsets.

B. Experimental Results

Using the implementation, we have performed experiments
to evaluate the technical foundation of the proposed design,
with respect to the probability of unnecessary prompting and
accuracy. We examine two variables concerning the trigger of
user prompting:

• Receive Failure: The probability that a device fails to
discover an established beacon due to loss or corruption
of Bluetooth beacon.

• Over-threshold Failure: The probability that a received
Bluetooth beacon is discarded by the discriminator due
to its Uob distance being larger than the preset threshold.

Experiments are set up in our laboratory office with the
size of approximately 5m × 8m (see Figure 4). The office is



Fig. 4. Experiment Layout

gridded into 20 unit grids of a 1.25m × 1.5m space, and a
total of 15 sampling positions are drawn from the junction of
unit grids.

1) Unnecessary Prompting Probability: In the above set-
ting, we first study the probability of unnecessary prompting
that is induced by the use of Bluetooth beacon. Users to be
prompted are assumed to agree to set up Bluetooth beacons.
Once the beacons are set up, unnecessary prompting prob-
ability is due to the aggregation of receive failure and over-
threshold failure. At each sampling position, we let the system
perform the localization 20 times and count the number of
prompting out of 20, in the following two scenarios.

• Same Room and Single Beacon (Scenario-1.1): One bea-
con, 2106 bc1, is set up to cover a entire room. A
distance threshold value is set to 19 (moderate). The result
for 15 sampling positions is illustrated in Figure 5(a)
(SRSB cases). As shown in the figure, different positions
possess varying characteristics in prompting probability.
However, unnecessary prompting due to receive failure
occurs with the probability of lower than 10%. Note
that over-threshold failure accounts for a large portion of
promptings at some positions. Nonetheless, if we assume
the probability of a user appearing at each sampling
position follows uniform distribution, the unnecessary
prompting imposed by introducing Bluetooth beacon is
3% due to receive failure, and 5% due to over-threshold
failure – only 8% in total.

• Same Room and Multiple Beacons (Scenario-1.2): Result
from scenario 1.1 suggests a single beacon may not be
enough to cover the entire 40m2 room. In this experi-
ment, one additional beacon, 2106 bc2, is set up near
position p13 where the largest over-threshold failure has
been observed, as indicated in scenario 1.1. Then, we
performed the same experiment as in the scenario 1.1, and
Figure 5(a) (SRMB cases) shows its result. As shown in
the figure, the overall prompting probability from either
beacon decreases significantly, and only one receive fail-
ure is recorded at position p4. The over-threshold failure
is reduced as well owing to the additional beacon that
covers its area.
One interesting finding is that since the inquiry du-
ration is fixed, areas that are crowded with beacons
may experience increase in receive failure of individual
beacon, despite the decrease in overall prompting. Since
the rendezvous chance of Bluetooth frequency hopping
is not necessarily related to distance between a mobile

device and a beacon node, there is a possibility that such
reduction happens to the beacon node that is actually
closer to the mobile device. This contributes in part to the
over-threshold failures as the mobile device only receives
the signal from the distant beacon node rather than the
nearby one. Even so, setting up multiple beacons reduces
the unnecessary prompting in large space. It is possible
to adopt an adaptive inquiry-duration that dynamically
increases inquiry time in subsequent scans, if the mobile
device stays in a crowded-beacon environment.

2) Accuracy: Next, we measure the location accuracy of
our proposed system. When using Bluetooth as localization
beacon, the localization accuracy might suffer due to false
positive—mobile device hears the beacons from other rooms
and incorrectly associates with the rooms. Therefore, we define
accuracy as the complement of the sum of receive failure
and over-threshold failure from beacon in the next room.
Experiment settings are similar to Scenario 1.1 except that we
place another beacon, 2104 bc3, at the adjacent room 2104
to investigate how much penetrating beacons affect different
positions and the room as a whole. We also observe how the
penetrating discriminator performs in these scenarios.

• Adjacent Rooms and One Beacon (Scenario-2.1): This
scenario simulates the early stage of crowd-sourcing
when users walk into an unexplored area that is next to
a populated region with beacon set up.
Only 2104 bc3 is active. As shown in Figure 5(b),
impacts of penetrating beacons are diverse, depending on
their positions. The central area (p4 - p9), where only
one wall stands between the beacon and mobile device,
suffers from severe penetrating beacons. The rest of the
room that is separated by office cubical partition shows
a relatively mild effect. However, we can also observe
that the penetrating beacon discriminator successfully
excludes most of such beacons, even with a moderate
threshold. More than 95% of the penetrating beacons are
filtered out.

• Adjacent Rooms and Two Beacons (Scenario-2.2): This
scenario resembles the case where both rooms are ex-
plored and have beacon set up in each one. Both
2106 bc1 and 2104 bc3 are used, and Figure 5(c) shows
a result. Similar to the previous scenarios, a total of 2%
of packets from 2106 bc1 are lost, while for 2104 bc3
the probability is 54%. There are 18 (6%) unnecessary
promptings being triggered, 3 of them are caused by
receive failure from both beacons. However, the device
is never incorrectly associated to 2104 bc3, the beacon
from the other room. Penetrating beacons are either
dismissed by localizer in favor of local beacon which is in
shorter distance, or excluded by our beacon discriminator.

C. Simulation Study

We also perform simulation study to evaluate the perfor-
mance of the proposed design and compare it with existing
crowd-sourcing scheme, under different user mobility patterns.
For consistency, we use system parameters and threshold
values obtained from our experiments. A 10 × 10 grid is
used as a simulation layout to best resemble a large floor
with a few dozen rooms. We generate random moving trace
for users, but limit that a user can only stay or move to
rooms that are immediately next to his current location in any
single time slot. For simplicity, we consider a single beacon
scenario and use a beacon reception rate of 92% as indicated in
previous experiments. We also assume all penetrating beacons
are filtered out by the beacon discriminator, resulting in a
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Fig. 5. Performance Evaluation: Figures (a)-(c) show experimental results and Figures (d)-(f) show simulation results

100% accuracy. For comparison, we also implement a spatial
uncertainty approach [4]. All simulations are executed 50
times.
In addition, we study the prompting efficiency in terms of

the ratio of explored grid numbers over total prompting counts,
and the number of fingerprints collected by our Bluetooth
approach and the uncertainty approach. Mobility pattern M
is a parameter that determines user movement probability at
each time slot. A user has a probability of 4

M
to move and an

equal chance in 4 directions. Number of user U specifies the
number of contributors, who are the primary subjects we are
interested in for crowd-sourcing systems.

1) Impact of Mobility Pattern on Prompting Efficiency:
Figure 5(d) shows the impact of mobility pattern. We set u
to 20 and measure the ratio of explored grid number over
total prompting counts, as we increase M from 4 to 40.
As shown in the figure, when M = 4 (i.e., users move
every time slot), the Beacon approach has a low prompting
efficiency since the beacon set up at previous time slot has
to be relinquished as users move. However, as users become
stationary, prompting efficiency of Beacon approach increases
significantly and outperforms the spatial uncertainty approach.
In addition, we observe that at a certain point of the simula-

tion, the spatial uncertainty approach simply stops prompting
users even if only half of the area is covered. The reason for
this behavior is that the uneven density of user movements
eliminates spatial uncertainty around the explored areas too
quickly, so that it confuses the localization system to believe
there is no more unexplored area. On the other hand, in the
Beacon approach, all areas can be explored eventually. As
shown in Table II, at the end of simulation the coverage of
Beacon approach is usually better than those in the spatial
uncertainty approach.

2) Impact of Number of Users on Prompting Efficiency:
Although more contributing users can improve coverage faster,
it does not necessarily have a positive impact on the prompting
efficiency. In this simulation, we fix M = 20 and increase U

M = 4 M = 12 M = 20 M = 40

Coverage Count (Beacon) 100 89 83 57

Coverage Count (Spatial) 41 44 29 37

Prompting Count (Beacon) 760 259 175 85

Prompting Count (Spatial) 61 163 152 359

TABLE II
NUMBER OF COVERAGE AND PROMPTING AT THE END OF 50 ROUNDS

from 5 to 20. Results in Figure 5(e) indicate that the prompting
efficiency of Beacon approach actually decreases as more users
are added. This is due to the fact that more users may introduce
more randomness in the mobility pattern, which creates an
instability of beacon presence. In reality, mobility pattern is
diverse. Some users are much stabler than others within certain
particular space, who can work as anchor to minimize the
effect of large group. In space where traffic is always dynamic,
stationary anchor can be intentionally placed.
3) Comparison on Map Growth: We finally compare the

effectiveness of the beacon approach in map growth with
the uncertainty approach. In the Bluetooth beacon approach,
because of its localization accuracy with high confidence,
location estimates using Bluetooth beacon information can be
considered as proper fingerprints and is used for signal map.
On the other hand, for spatial uncertainty approach, when
signal map is sparsely populated, the localization accuracy
is low and thus only fingerprints provided by users can be
treated as quality fingerprints. In Figure 5(f), we can see
that fingerprints collected using the beacon approach have a
linear relation with user number and time period, whereas
the uncertainty approach becomes flat after certain time slots.
The beacon approach collects more fingerprints, helping in
populating signal map quickly.

VIII. DISCUSSION

There are several remaining issues associated with the
proposed localization system as follows:
User Incentive: The incentive issue is crucial for the success

of any crowd-sourced system. Establishing Bluetooth beacon



incurs two types of cost to beacon owner: power and privacy.
However, as a beacon the Bluetooth device merely needs
to be set in a discoverable mode and listen to the channel
from time to time, which consumes only an additional power
of 3mW [22], compared to its idle mode. Next, although
Bluetooth MAC address revealed during inquiry might raise
some privacy concerns, the effect is limited by the short
transmission range of Bluetooth. Furthermore, we imagine
most beacons would be set up by regular occupants of each
space, who may willingly offer helps for guests and visitors.
Nevertheless, since all beacon contributions can be recorded
on the map, it is not difficult to provide contributors tangible
incentive/reward.
Delay: When using non-modified wireless utility for Wi-Fi

active scanning, the delay is approximately 1.2secs each round,
and it becomes 12secs if we perform a full scan of 10 rounds.
The total delay is around 18secs if one performs Bluetooth
scans serially. This scanning period limits the viability of
relying on the proposed system for real-time tracking or
navigation. In the quest of trying to reduce this delay, we
have found that it is undesirable to cut short the unit Wi-Fi
scan duration, if accurate Wi-Fi observation is needed. As for
the repetition times, [2] suggests a minimal 6-round scan
is required to yield quality fingerprint. We will explore the
possibility of performing Wi-Fi and Bluetooth scans in parallel
as our future work, which can greatly alleviate the delay issue.
Erroneous Contribution: In current version of our prototype

no error-detection mechanism is implemented yet. An outlier
error-detection approach that clusters fingerprints in signal
map described in [4] could work fine in our proposed system
as well. The Bluetooth beacon scheme with the penetrating
beacon discriminator can reduce the need for user input while
improve fingerprint quality at bootstrapping stage, and thus re-
duce the probability of erroneous contributions to some extent.
In the system, fingerprints collected through localizer are less
trustworthy than those created by user, until the fingerprints
pass error detection mechanism. Therefore, if a submitted
fingerprint is associated with incorrect location, it will not
affect the system immediately. However, there still remains the
possibility of malicious users who set up misleading beacons.
Because of the limited transmission range and penetrating
beacon discriminator, the influence of malicious beacon will
be limited to local areas.

IX. CONCLUSION

This paper has presented an indoor localization system that
uses user-managed Bluetooth beacons to improve the crowd-
sourcing performance of Wi-Fi localization systems. Use of
Bluetooth beacons facilitates the construction of signal map,
which is crucial for Wi-Fi localization, and can help reduce the
prompting for new users. Further, we have identified several
technical challenges in using the Bluetooth via experiments
and propose new design and metrics, including the penetrating
beacon discriminator. In addition, our prompt policy allows
users to exploit existing Bluetooth beacons and/or help set up
beacon nodes to improve signal map growth. A prototype has
been implemented on Linux platform. Its evaluation results
demonstrate the viability of the proposed system, and shows
improvement over existing crowd-sourcing solutions in terms
of prompting efficiency, accuracy, and map population.
As part of future work, we plan to carry out large-scale

evaluations and user study with a large number of student
volunteers. Furthermore, the feasibility of integrating non-RF
elements such as ultrasound into the beacon discriminator to
further improve its effectiveness will be investigated.
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