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ABSTRACT
This demonstration presents a tool, called DustDoctor , for
troubleshooting sensor data fusion systems where data are
combined from multiple heterogeneous sources to compute
actionable information. Application examples include target
detection, critical infrastructure monitoring, and participa-
tory sensing. In such systems, the correctness of end results
may become compromised for a variety of possible reasons,
such as node malfunction, bugs, environmental conditions
unfavorable to certain sensors, or assumption mismatches
(such as use of incompatible units on different nodes of the
same distributed computation). DustDoctor adapts algo-
rithms borrowed from previous discriminative mining liter-
ature to analyze data fusion flow graphs, called provenance
graphs, and isolate sources and conditions correlated with
anomalous results. This information is subsequently used
to isolate malfunctioning components or filter out erroneous
reports. We demonstrate our approach on MicaZ motes,
running a simple data collection application, where users
are allowed to inject a variety of different emulated faults,
leaving it to DustDoctor to find and isolate them to prevent
contamination of fusion results.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging-
Distributed Debugging

General Terms
Design, Reliability, Experimentation

Keywords
Multi-sensor fusion, Data fusion, Wireless sensor networks,
Quality of information

1. INTRODUCTION
We demonstrate a data fusion troubleshooting tool, called
DustDoctor, that builds on a series of successful results on
software troubleshooting published by the authors in Sensys
2008 (DustMiner) [4] and other conferences [3, 2]. The au-
thors’ previous tool, DustMiner, was designed to diagnose
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root causes of non-reproducible bugs in distributed software
systems. It leveraged the insight that such bugs often arise
as a result of unexpected interactions between components.
Given examples of execution traces where the bug manifests
and examples where it does not, the tool used discrimina-
tive sequence mining to find sequences of events most likely
responsible for failure. DustDoctor applies this type of anal-
ysis to data fusion systems. By focusing on a well-defined
category of distributed systems (namely, data fusion), we
are able to implement “self-healing” functionality as well.
For example, once the root cause of the problem is identi-
fied, data from the problem node or nodes can simply be
ignored in order not to contaminate fusion results. This is
the first demonstration of Dustminer, and its descendent,
DustDoctor, since their conception.

In order to reason about root causes of problems when ob-
serving only final results of data fusion, DustDoctor exploits
data provenance information of reported observations. Data
fusion systems typically collect provenance information and
send it along with the data, such that recipients know where
the data came from and who operated on it. This informa-
tion is invaluable in attributing failures to the correct causes.
DustDoctor also leverages the received sensor data itself.
Individual nodes’ sensor readings, when reported, could be
useful for providing further context that sheds light on pos-
sible causes of an anomaly. For example, when a camera
turns dark and fails to deliver a picture, it may be useful
to know whether or not the nearby light sensor was indeed
in the dark. The operation of the tool involves two steps,
namely, (i) data labeling, (ii) diagnosis. We describe each of
these steps below.

1.1 Data Labeling
In order to trace root causes of problems one must first rec-
ognize that a problem has occurred. Hence, DustDoctor
requires a data labeling capability, whereby results of fusion
can be assigned a category, such as “good” or “bad”. There
are multiple ways data labeling can be done. The most
obvious is for the user to indicate that results do not seem
credible or for the system to perform application-specific au-
tomated sanity checks. In the absence of an educated user
guess or a sanity check, prior work [6, 5] described algo-
rithms to assess quality of information that may be used for
labeling. For purposes of this demonstration, we augment
our data fusion system with several sanity checks. The in-
jected faults will cause these checks to fail, indicating that
something is wrong.



1.2 Diagnosis
Once labeling is done, the tool processes the provenance
graphs of labeled results, as well as any received sensor mea-
surements, to generate discriminative features. A discrimi-
native feature, in this context, refers to a subgraph of data
fusion nodes, that is correlated with the occurrence of “bad”
labels, together with any conditions under which such corre-
lation is observed (e.g., only when it is dark, or only at high
temperatures). Different results may have been computed
from data of different nodes. For example, in a target track-
ing scenario, only sensors near the target might be sending
data. The set of such sensors changes when the target moves.
Each node in the data fusion graph can have an arbitrary
number of parameters, such as sensorID, manufacturer, and
driver version. Any combination of these can be a contrib-
utor to problems. For example, it could be that a certain
driver is not compatible with sensors by a certain manufac-
turer, causing problems whenever such a sensor reports data.
Finally, environmental context reported by sensors can also
be part of the problem.

The diagnostic problem reduces to one of comparing the
provenance graphs of all “good” results to the provenance
graphs of all “bad” results. In each graph, each node is
annotated by both its parameter values and its reported
sensor measurements, if any. The comparison searches for
combinations of nodes and their parameters and measure-
ments, that are primarily correlated with “bad” behavior.
To simplify this search, we replace each node that has N

parameters (including sensor measurements, if any) with N

virtual nodes representing a single parameter each, as well
as an extra virtual node with no parameters (i.e., a total of
N +1 virtual nodes) as shown in Figure 1. We then consider
the discriminative power of each virtual node individually in
classifying good and bad behavior. This helps remove irrel-
evant parameters early in the process and makes the rule
mining more tractable for large scale data fusion graphs.
More specifically, the tool applies association rule mining [1]
to identify all sequences of virtual nodes (in Fig 1-b) that
most accurately correlate with bad results. Association rule
mining [1] is a well established approach to identify such
sequences. The set of found sequences is then coalesced to
form a single discriminative graph. The graph simultane-
ously describes which nodes are (likely to be) responsible,
as well as which conditions hold true at these nodes, when
bad fusion results are observed. The identified nodes are
then disconnected from the rest of the data fusion system,
whenever these offending conditions are observed, hence pre-
venting result contamination. For example, a sensor that is
observed to malfunction when humidity exceeds some level
is disconnected when this humidity level is observed.

2. DEMO DESCRIPTION
To highlight the capabilities of our tool, in this demonstra-
tion, we shall troubleshoot a small-scale deployment of a
typical data collection application implemented on MicaZ
motes. Each node reports its sensor readings such as tem-
perature, light, and accelerometer values. Simple functions
of these measurements are also constructed across the node
set. Nodes can join and leave dynamically when powered on
or off.

For demonstration purposes, we shall use two categories of
nodes. The first category always reports correct readings
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Figure 1: Handling of Multiple Parameters

and performs correct computations. The second category is
programmed to exhibit different types of failures, including
those that are conditioned on some environmental context.
For example, some node may malfunction only when it is in
the dark (light sensor does not detect light) or only when
it is up-side-down (the polarity of the vertical accelerometer
axis reading is reversed). We shall also emulate failures that
occur when certain nodes are used together (e.g., two nodes
that unbeknowingly use different measurement units whose
results are averaged).

During the demonstration, the user will be allowed to turn
on or off both functional and faulty nodes to test our tool.
When a faulty node is turned on and conditions that trig-
ger the fault materialize, the sanity checks performed on
fusion results will fail. This failure will be communicated
to the user. With the user’s permission, DustDoctor will
troubleshoot the problem and learn the triggering condition
that explains it. This condition will be explained to the
user and, if so requested, will be subsequently utilized to fil-
ter out erroneous readings. The user will be able to repeat
the experiments multiple times and test the tool with differ-
ent kinds of faults of increasing complexity. A GUI will be
provided for users to enhance the experience of interactive
debugging.
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