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a b s t r a c t

This paper proposes a new scheduling method to obtain a maximum allowable delay bound for a

scheduling of networked discrete control systems. The proposed method is formulated in terms of linear

matrix inequalities (LMI) and can give a much less conservative delay bound than the existing methods.

An event based network scheduling method is presented based on the delay bound obtained through

the proposed method, and it can adjust the sampling period to allocate identical utilization to each

control loop. The presented method can handle sporadic emergency data, periodic data, and non-real-

time data.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

In distributed control systems (DCSs), a feedback control loop
is closed through a network. The DCSs with networks are called
networked control systems (NCSs). In an NCS, various delays occur
due to sharing a common network medium, which are called
network-induced delays (Asok & Yoram, 1988; Krtolica et al.,
1994). Network-induced delays can vary widely according to the
transmission time of messages and the overhead time. The
performance of the control system is assumed to be affected by
network-induced parameters such as delays, jitters, packet losses
and link failures (Vatanski, Georges, Aubrun, Rondeau, & Jamsa-
Jounela, 2008). The network in the NCS should handle three types
of data: sporadic emergency data, periodic data, and non-real-
time message. The transmission time through the media is largely
dependent on the network protocols, especially data link layer
protocols of networks and data length. Hence, it is necessary to
present the methods to make these network-induced delays
bounded and smaller, which are called network scheduling
methods for the NCS.

In general, a faster sampling rate is said to be desirable in
sampled-data systems so the discrete-time control design and
performance can approximate that of the continuous-time
system. But in NCSs, a faster sampling rate bound can increase
network load, which in turn results in longer delay of the signals.
Thus finding a sampling rate that can both tolerate the network-
induced delay and achieve desired system performance is
ll rights reserved.

+82 54 478 7449.
important in NCS design. This certain bound is called a maximum
allowable delay bound (MADB) of the NCS.

Therefore, it is necessary to find the MADB for stability of the
NCS, and then to find an appropriate network scheduling method
that limits the network-induced delay to less than the MADB.
A network scheduling method is required to reduce network-
induced delays within the MADBs, while guaranteeing real-time
transmission of sporadic, periodic data, and minimizing network
utilization for non-real-time message.

The MADB has been obtained from stability conditions of control
systems. There have been some results on the stability of NCSs
(Lian, Moyne, & Tilbury, 2002; Yoram & Asok, 1988). Less
conservative results on the MADB in non-NCSs are reported in Li
and de Souza (1997a,1997b) and Park (1999). In these papers, the
MADB is obtained using the Ricatti equation approach, which yields
conservative delay bounds. A scheduling method was presented in
the NCS with Fieldbus networks (Beauvais & Deplanche, 1995;
Cavalieri, Stefano, & Mirabella, 1995). But those papers did not
consider the MADB, which were important in control applications.

There have been some studies on scheduling algorithms that
can be applied to the NCS (Hong, 1995; Raja, Vijayananda, &
Decotignie, 1993; Walsh, Hong, & Bushnell, 1999; Zhang, Branicky,
& Phillips, 2001). A dynamic scheduling algorithm modified from
the rate monotone scheduling algorithms was presented for
periodic and sporadic data in Fieldbus networks (Raja et al.,
1993). A heuristic algorithm was presented for periodic tasks only
(Beauvais & Deplanche, 1995), but it did not support sporadic data.
The several algorithms for dynamically scheduling of NCSs were
proposed (Hong & Walsh, 2001; Zuberi & Shin, 1997). It had
limitations when applied to the NCS because it did not consider
some characteristics of the NCS, such as the MADB and sampling
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periods. A scheduling algorithm that can allocate the bandwidth
of a network and determine sensor data sampling periods was
presented by Hong (1995). In Hong (1995), the control system had
only single input and single output (SISO), only periodic data were
considered, and the MADB was not obtained analytically.

A network scheduling method considering three types of data
based on a multi-input and multi-output (MIMO) system was
proposed by Park, Kim, Kim, and Kwon (2002). In this paper, the
estimation of MADB using the Ricatti equation is too conservative,
which means the estimated MADB is too small and the network
scheduling method discussed is somewhat heuristic.

In Branicky, Phillips, and Zhang (2000) and Walsh and Hong
(2001), calculation methods of MADBs and stability analysis of
NCSs were presented. However, these results were conservative to
be of practical use and still remains to be improved. Further
research is needed with regard to estimation of a less conservative
MADB for stability of the NCS and systematic scheduling methods
for three types of data.

In Kim, Lee, Kwon, and Park (2003), a calculation method of
MADBs of NCS based on continuous-time was presented in terms
of linear matrix inequalities (LMI). This method gave a much less
conservative delay bound than previous methods. However, a
calculation method of MADBs based on continuous model and a
scheduling method for three types of data remain to be improved.

This paper proposes a method to obtain the MADB guarantee-
ing a stability of the discrete-time NCS. Using obtained MADBs,
sampling period decision and bandwidth allocation method are
presented. A proposed scheduling method can adjust the
sampling period to allocate the same utilization to each control
loop. It can handle three types of data and guarantees real-time
transmission of sporadic emergency and periodic data. It is
modified earliest deadline first (EDF) scheduling method which
give priority to sporadic emergency data.

This paper is organized as follows. In the following section, an
discrete-time NCS model is described. The MADB for the stability
of the NCS is derived by LMI formulation. In Section 3, a network
scheduling method that allocates the bandwidth and determines
the sampling period for the NCS is presented. In Section 4,
simulation results are given to show that method is useful. Finally,
the conclusions are presented in Section 5.
2. MADB for stability in a control loop

In general, NCSs can be described as Fig. 1 (Nilson, 1998;
Nilson, Bermhardsson, & Wittermark, 1998). A networked control
loop is composed of a controller, sensors, and actuators through a
common communication medium.
Fig. 1. Networked control loops with sensors and actuators.
In Fig. 2 (Kim et al., 2003), the timing diagram illustrates the
process output and sampling instants, the signal into the
controller node, the signal into the actuator node and the
network-induced delay.

The MADB is defined as the maximum allowable interval from
the instant when sensor nodes sample sensor data from a plant to
the instant when actuators output the transferred data to the
plant. If the sampling period in the jth loop exceeds the given
MADB, then stability of the NCS could not be guaranteed. In this
case, the outputs of the plant could deviate from the desired
trajectory, or the controlled system. Hence, it is necessary to
derive the MADB from parameters and configurations of the given
plant and the controller.

In this paper, a stability is checked by single control loop model
with each sensor and actuator node. The node which have a
multiple control loop can be changed to the sum of nodes have a
single control loop. That is to say, the node which have a multiple
control loop can be changed to the sum of nodes which have a
single control loop.

2.1. MADB in discrete-time system

A plant in a single control loop can be described in the
following discrete-time state space form:

xpðkþ 1Þ ¼ Apxk þ BpūðkÞ,

yðkÞ ¼ Cpxk, (1)

where ūðkÞ 2 RNA , xpðkÞ 2 RNP , yðkÞ 2 RNS . NA, NS, and NP is the
dimension of the actuators, sensors, and plant in the control loop.
Ap, Bp, and Cp are matrices of appropriate sizes.

A controller in the control loop j can be described by

xcðkþ 1Þ ¼ AcxcðkÞ þ BcȳðkÞ,

uðkÞ ¼ CcxcðkÞ þ DcȳðkÞ, (2)

where uðkÞ 2 RNA , xcðkÞ 2 RNC , ȳðkÞ 2 RNS . NC is the dimension of the
controller in the control loop.

yðkÞ is the output of the plant and ȳðkÞ is the input to the
controller. Similarly, uðkÞ is the output of the controller and ūðkÞ is
the input to the plant. Let the step number of transmission from
sensor to controller is tsc , which satisfies 0ptscpt̄sc and the step
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number of transmission from controller to plant is tcp, which
including the time from controller to actuator and other required
time, and also satisfies 0ptcppt̄cp.

The communication delays are modeled as

ȳðkÞ ¼ yðk� tscÞ,

ūðkÞ ¼ uðk� tcpÞ,

tcp ¼ tca þ tother . (3)

Using the above equations, a discrete-time NCS model becomes

xpðkþ 1Þ ¼ ApxpðkÞ þ Bpuðk� tcpÞ

¼ ApxpðkÞ þ Bp½Ccxcðk� tcpÞ þ Dcȳðk� tcpÞ�

¼ ApxpðkÞ þ Bp½Ccxcðk� tcpÞ þ Dcyðk� tcp � tscÞ�

¼ ApxpðkÞ þ Bp½Ccxcðk� tcpÞ þ DcCpxpðk� tcp � tscÞ�. (4)

Similarly,

xcðkþ 1Þ ¼ AcxcðkÞ þ Bcyðk� tscÞ

¼ AcxcðkÞ þ BcCpxpðk� tscÞ. (5)

Let xðkÞ ¼ ½xpðkÞxcðkÞ�
T, then Eqs. (4) and (5) become

xðkþ 1Þ ¼
xpðkþ 1Þ

xcðkþ 1Þ

" #

¼ AxðkÞ þ A1xðk� t1Þ þ A2xðk� t2Þ þ A3xðk� t3Þ, (6)

where

A ¼
Ap 0

0 Ac

" #
,

A1 ¼
0 BpCc

0 0

" #
,

A2 ¼

0 0

BpCp 0

" #
,

A3 ¼
BpDcCp 0

0 0

" #
,

t1 ¼ tcp; t2 ¼ tsc; t3 ¼ tcp þ tsc .

Eq. (6) presents each control loop in the discrete-time NCS using
three types of delays. To generalize results to the multiple state-
delayed case, consider the following system:

xðkþ 1Þ ¼ AxðkÞ þ
Xm

i¼1

Aixðk� tiÞ,

xðkÞ ¼ fðkÞ; k 2 ½�t̄;0�, (7)

where xðkÞ 2 Rn is the discrete-time system state, ti40 is the delay
step number of the system, fðkÞ is the initial condition, A, Ai are
real constant matrices with appropriate dimensions, and t̄ is
upper bound of ti.

Main purpose is to develop a new method to obtain the MADB
guaranteeing stability of the discrete-time NCS. In obtaining the
results of this paper, the following upper bound for the inner
product of two vectors plays an important role:

�2aTIbp inf
X;Y ;Z

X Y � I

YT
� I Z

� �
, (8)

where X
YT

Y
Z

h i
X0 and I denotes an identity matrix with an

appropriate dimension. Extending the idea of Eq. (8), the
following lemmas are derived.

Lemma 1 (Moon, Park, Kwon, and Lee, 2001). Assume that

að�Þ 2 Rna , bð�Þ 2 Rnb , and Nð�Þ 2 Rna�nb are defined on the interval

O. Then, for any matrices X 2 Rna�nb , Y 2 Rna�nb and Z 2 Rna�nb , the
following holds:

�2
X

j

aTðjÞNbðjÞp
X

j

aðjÞ

bðjÞ

" #T
X Y �N

YT
�NT Z

� �
aðjÞ

bðjÞ

" #
, (9)

where

X Y

YT Z

� �
X0.

Lemma 2. Let D, E, and D be real matrices of appropriate dimensions

with D ¼ diagfD1; . . . ;Drg, DT
i DipIni

, i ¼ 1; . . . ; r. Then, for any real

matrix L ¼ diagfl1I; . . . ; lrIg40, the following inequalities will be

true:

DDEþ ETDTDTpDLDT
þ ETL�1E, (10)

DDEþ ETDTDTpDL�1DT
þ ETLE. (11)

Let us consider a discrete-time NCS equation (7). Theorem 1
presents a delay-dependent stability condition.

Theorem 1. If there exist P, Qi, XI , Yi and Zi, i ¼ 1; . . . ;m such that

ð1;1Þ ð1;2Þ

ð1;2ÞT ð2;2Þ

" #
o0, (12)

Xi Yi

YT
i Zi

" #
X0, (13)

where

ð1;1Þ9
�P þ

Pm
i¼1

ðt̄Xi þ Yi þ YT
i þ QiÞ �YM

�YT
M �QM

2
664

3
775,

YM9½Y1 � � �Ym�,

QM9diagfQ1; . . . ;Qmg,

ð1;2Þ9
ATP t̄

Pm
i¼1

ðA� IÞTZi

AT
MP t̄AT

Z

2
664

3
775,

AM9½A1 � � �Am�,

AZ9½Z1A1 � � � ZmAm�,

ð2;2Þ9diagf�P;�t̄Z1;�t̄Z2; . . . ;�t̄Zmg

then the discrete-time system equation (7) is asymptotically stable

for any time-delay ti satisfying 0ptipt̄, i ¼ 1; . . . ;m.

The MADB can be obtained efficiently using the MATLAB LMI
Toolbox. System (6) can be represented by Eq. (7) with N ¼ 3 and
t̄ can be interpreted as maxft̄1; t̄2; t̄3g.

The MADB in a discrete-time system is a maximum sampling
time which is obtained from Theorem 1. The delay bound of each
control loop is used as a parameter in the sampling period and
allocation of bandwidth.
3. Event-based scheduling algorithm

This section describes an event-based network scheduling
method using the MADB. The modified EDF algorithm is proposed
to guarantee real-time transmission of sporadic emergency data.
The modified EDF algorithm is that the sporadic data have a high
priority than real-time periodic data. In general, a real-time
periodic data has a priority higher than non-real-time data.
Hence, real-time periodic data is scheduled by EDF algorithm
using MADB of each loop as a deadline. After the end of
transmission of real-time periodic data, non-real-time message
data is transmitted. However, if the sporadic emergency data is
occurred, it has a priority over other data. Hence, first of all, a
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sporadic data is scheduled and transmitted. After the transmission
of sporadic emergency data, real-time periodic data is trans-
mitted. A basic scheduling period consists of TS, TP , and TN as
shown in Fig. 3.

The following assumptions are used in this paper:
1.
 Sampling time of sensors in a loop is synchronized at starting
instant of basic scheduling periods.
2.
 Control actions of one control loop do not affect other control
loops.
3.
 In networks, communications are error-free. That is, there are
no failures in transferring messages.
4.
 Packets transferred from sensors to controllers of controllers to
actuators have the same length.
5.
Set MADB

Go to band width allocation
algorithm

Scheduling
is failed

≤T T

All sampling periods are
decided?

j++, k++

no

yes

= ≤∑ 1−max (Us,UN)
min( , )

T
Up T T

=T T

yes

yes

no

Reorder control loops according to
the TB

= ×
1−max(Us,UN)

nTj T

no

i = 1

n
jj

D

j
P

P
j

D
j

B
k j

j

Fig. 4. Flow chart of sampling period decision algorithm.
Controller computational delay can be absorbed into either tca

or tsc (Walsh & Hong, 2001).

Above assumptions are used to simplify the scheduling
condition. The fifth assumption was used for absorbing controller
delay time to node data transmission time without loss of
generality.

A channel utilization equation (14) is used to determine a
sampling period and schedulability:

U ¼
Xn

j¼1

Cj

minðtj;DjÞ
p1, (14)

where tj, Dj, and Cj represent period, deadline, and processing
time of each task, respectively.

Eq. (14) becomes the channel utilization equation of periodic
data:

UP ¼
Xn

j¼1

Tj
P

minðTj; Tj
DÞ

p1�maxðUS;UNÞ,

Tj
P ¼

XNj
S

i¼1

ðTj
Si
þ TOP

Þ þ
XNj

A

i¼1

ðTj
Ci
þ TOP

Þ. (15)

UP , US, and UN are the channel utilization of periodic data,
sporadic emergency data, and non-real-time message, respec-
tively. Tj

b is the data transmission time of b in the jth loop
(hereinafter, b can be P (periodic data), S (sporadic emergency
data), and N (message)). Nj

A and Nj
S represent the number of

actuator and sensor in the jth loop. Tj is the sampling period in the
jth loop. Tj

D is the MADB in the jth loop. TOb is the overhead time to
transfer b data, Tj

ai
is the data transmission time of periodic data

in the ith a node in the jth loop (hereinafter, a can be C

(controller), A (actuator), and S (sensor)).
Note that the NCS cannot be scheduled if Eq. (15) is not

satisfied. In this case, high-speed network protocols should be
selected or the number of nodes should be reduced.
The sampling period decision method considers that identical
channel utilization for each loop. Considering a channel utilization
of one loop, it can be written as

Tj
P

Tj
¼

1�maxðUS;UNÞ

n
, (16)

where TjpTj
D. Eq. (16) becomes

Tj
¼

n

1�maxðUS;UNÞ

� �
� Tj

P , (17)

where dZe is the smallest integer larger than or equal to the value
Z. The obtained sampling period of each loop is used as a
parameter in the determination of scheduling algorithm. Fig. 4
shows the flow chart of sampling period decision algorithm.

The sporadic data are allocated prior to periodic data,
regardless of the deadline. Fig. 5 shows the result of a modified
EDF algorithm, where, T1

D and T2
D are deadline of each loop. Here,

T1 is scheduling period.
The scheduling period is calculated by greatest common

divisor (GCD) of sampling periods. The GCD can obtain by dn=1�
maxðUS;UNÞe of Eq. (17).
4. Simulation

For the simulation, a plant with three DC motors is considered.
Each motor has an armature position controller with two sensors
and one actuator, which are linked via the network. If the
armature inductance ðLaÞ and viscous frictional coefficient ðBmÞ are



ARTICLE IN PRESS

1 1 1 1Loop 1

Loop 2

Event

Result

T1

1TD

2TD

2 2

E E

1 2 E 2 E 1 2 1 21

Fig. 5. Example of scheduling result.

Table 1
Simulation results of MADBs (ms).

Control loop Ra ðOÞ Lemma 1 (Park et al., 2002) Theorem 1

Loop 1 14 3.1 1:77� 103

Loop 2 19 6.1 1:78� 103

Loop 3 21 7.5 1:79� 103

DTR Control FCS FTR

ID_DAT
Identifier

DATA
RP_DAT

List of Identifier
RP_RQ

Identifier
ID_RQ

14 bit 1 Byte 2 Byte 7 bitvariable

payload

2 Byte

2 Byte

1 ~ 128 Byte

(1 ~ 64) X 16 bit

Fig. 6. Frame format of FIP.
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negligible, the motor dynamics becomes (Park et al., 2002)

xpðkþ 1Þ ¼ FpxpðkÞ þ GpupðkÞ

¼
�KiKb=RaJ 0

1 0

" #
xpðkÞ þ

Ki=RaJ

0

" #
upðkÞ,

ypðkÞ ¼ xpðkÞ, (18)

where xpðkÞ ¼ ½o y�T, upðkÞ is applied voltage (V), and o and y are,
respectively, the rotor angular velocity (rad/s) and displacement
(rad). Ra, Ki, Kb, and J represent, respectively, the armature
resistance, torque constant, back emf constant, and inertia of rotor
and load. If a constant gain (K) is used as a state feedback
controller, the system equation (6) is changed to

xpðkþ 1Þ ¼ FpxpðkÞ þ Gp � Kxpðk� tÞ,

as a single control loop in the NCS, where t ¼ t̄c þ t̄sc þ t̄ca.
For the simulations, the motor in each loop has nominal values

such that Ra ðOÞ, Ki ¼ 10 (oz-in/A), Kb ¼ 0:075 (V/rad/s), and J ¼

0:006 (oz-in-s2). The tested motors in each loop have the same
nominal values as the previous one except Ra. Motors have the
value of Ra ¼ 14 ðOÞ, Ra ¼ 19 ðOÞ, Ra ¼ 21 ðOÞ, respectively. Using
Lemma 1, the MADBs are calculated as 3.1, 6.1, and 7.5 ms. Using
Theorem 1, the MADBs are calculated as 1:799� 103, 1:785� 103,
and 1:802� 103 ms. Table 1 shows the simulation results of
MADBs.

The MADBs, obtained using Theorem 1, provide much less
conservative delay bounds. Therefore, the number of node and
loop can be increased for the scheduling method of the large-
scaled NCSs.

From now, the MADBs of each loop can be set as 3, 6, and 7 ms
for convenience of calculations. It is assumed that data for the
sensor and actuator have 4 bytes. Using the equations in Section 3,
the following parameters are given:

T1
D ¼ 3 ms; T2

D ¼ 6 ms; T3
D ¼ 7 ms,

US ¼ 0:17,

Um
N ¼ 0:16,

Nj
C ¼ Nj

A ¼ 1 for j ¼ 1;2;3,

Nj
S ¼ 2 for j ¼ 1;2;3,

Nj
¼ 3 for j ¼ 1;2;3,

N� ¼ 1; P ¼ 3,

where N� is the number of sporadic emergency data nodes which
do not participate in control loops of NCS.
The transmission speeds are different according to the given
network protocols, but in this example the transmission speed is
assumed to be 1 Mbps for convenience of calculations. The data
length of sensors and controllers is assumed to be 4 bytes and that of
sporadic data is assumed to be 2 bytes. For simplicity of an analysis,
it is assumed that buffering and packetizing delays are neglected.

Now consider the application of the scheduling method of the
polling control network such as field instrumentation protocol
(FIP) (Lorenz & Mammeri, 1995). In FIP, considerable overhead TOS

is required for sporadic data transmission by request frame and its
corresponding frame from bus arbitrator. Fig. 6 shows the frame
format of FIP. In periodic data transmission, ID_DAT is request
frame, transmitted from bus arbitrator, and RP_DAT is response
frame. In case of sporadic data transmission, ID_RQ and RP_RQ are
added to the periodic one.

Parameters can be given as follows:

Tj
Si
¼ Tj

C1
¼ M ¼ 4 bytes� 8ms=bit ¼ 32ms

for i ¼ 1;2, j ¼ 1;2;3,

TM
S ¼ 2 bytes� 8ms=bit ¼ 16ms.

Message overhead for periodic and sporadic data:

TM
OS
¼ TM

OP
¼ 45 bits ðRP_DATÞ � 1ms=bit ¼ 45ms.

Protocol overhead for periodic data:

TP
OP
¼ 61 bits ðID_DATÞ � 1ms=bit ¼ 61ms.

Protocol overhead for sporadic data is calculated as

TP
OS
¼ f61ðID_RQ Þ þ ð45þ 16ÞðRP_RQ Þ þ 61ðID_DATÞg bits� 1ms=bit

¼ 183ms.
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In the simulation, one time slot, which is transmission time for
one packet of real-time periodic data, can be calculated as
M þ TM

OP
þ TP

OP
¼ 138ms. In Table 1, MADBs can be determined

1.799, 1.785, and 1.780 s by Theorem 1. Hence, the sampling period
can be reduced to 1.6 ms and the scheduling period is 0.552 ms.
Since the number of transmission node in each loop is identical,
sampling periods of each loop have the same period. The
scheduling results are shown in Fig. 7.
5. Conclusion

In this paper, the MADBs are obtained for the stability of the
discrete-NCS using LMI formulation, and are used as the basic
parameter for an event-based scheduling method for the NCS. The
scheduling method for the NCS can schedule efficiently to
guarantee real-time transmission for sporadic data. The presented
sampling period decision algorithm is useful, as it provides a fair
channel utilization to loops, and calculates sampling period easily.
The modified EDF algorithm schedules sporadic data prior to
periodic data. Hence, real-time performance of sporadic data is
improved.

As a future direction of this work, one may be consider non-
real-time message with real-time data and more realistic bounds
on NCSs including packet retransmission.
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Appendix A
Proof (Lemma 2). From the fact ðL1=2DT
�L�1=2DEÞTðL1=2DT

�

L�1=2DEÞX0, it follows that DDEþ ETDTDTpDLDT
þ ETDTL�1DE.

For D and L, we have the relation

DTl�1D ¼ diagfl�1
1 DT

1D1; . . . ; l
�1
r DT

r Drg

pdiagfl�1
1 In1

; . . . ; l�1
r Inr g ¼ l�1.

Hence, ETDTL�1DEpETL�1E. From this, Eq. (10) follows. The
proof of Eq. (11) starts from the fact ðL�1=2DT

�L1=2DEÞT
ðL�1=2DT
�L1=2DEÞX0. The remaining procedure is quite clear,

hence omitted. This completes the proof. &
Appendix B
Proof (Theorem 1). Choose a Lyapunov functional as follows:

VðkÞ9V1ðkÞ þ V2ðkÞ þ V3ðkÞ, (19)

where

V1ðkÞ9xðkÞTPxðkÞ,

V2ðkÞ9
Xm

i¼1

X�1

b¼�ti

Xk

j¼kþbþ1

dxðjÞTZdxðjÞ,

dxðjÞ9½xðjÞ � xðj� 1Þ�,

V3ðkÞ9
Xm

i¼1

Xk�1

j¼k�ti

xðjÞTQixðjÞ.

Since it holds that

xðk� hiÞ ¼ xðkÞ �
Xk

j¼k�tiþ1

½xðjÞ � xðj� 1Þ�

the discrete-time system (7) can be written as

xðkþ 1Þ ¼ Aþ
Xm

i¼1

Ai

 !
xðkÞ

�
Xm

i¼1

Ai

Xk

j¼k�tiþ1

½xðjÞ � xðj� 1Þ�

8<
:

9=
; (20)

and thus increment of V1 satisfies the relation

DV1ðkÞ ¼ V1ðkþ 1Þ � V1ðkÞ

¼ xðkÞT Aþ
Xm

i¼1

Ai

 !T

P Aþ
Xm
i¼1

Ai

 !
xðkÞ

� 2xðkÞT Aþ
Xm

i¼1

Ai

 !T

PG

þ
Xm

i¼1

ðdxhi
ðkÞTAT

i PAidxhi
ðkÞÞ � xðkÞTPxðkÞ,

G ¼
Xm

i¼1

Ai

Xk

j¼k�tiþ1

½xðjÞ � xðj� 1Þ�

8<
:

9=
;,

dxhi
ðkÞ ¼ ½xðkÞ � xðk� hiÞ�. (21)

Defining að�Þ, bð�Þ, and N in Eq. (9) as aðjÞ9xðkÞ, bðjÞ9xðjÞ � xðj� 1Þ
and N9ðAþ

Pm
i¼1AiÞ

TPAi for all i ¼ 1;2; . . . ;m and j 2 ½k� hþ 1; k�,
and applying Lemma 1

DV1ðkÞpxðkÞTH1xðkÞ þ
Xm

i¼1

2xðkÞT½�Yi þ ATPAi�xðk� hiÞ

þ
Xm
i¼1

xðk� hiÞ
TAT

i PAixðk� hiÞ þ
Xm
i¼1

Xk

j¼k�hiþ1

dxðjÞTZidxðjÞ,

Hi9ATPA� P þ
Xm
i¼1

ðh̄Xi þ Yi þ YT
i Þ. (22)

Since DV2ðkÞ and DV3ðkÞ yield the relation

DV2ðkÞ ¼
Xm
i¼1

hiH
T
2ZiH2 �

Xm

i¼1

Xk

j¼k�hiþ1

dxðjÞTZidxðjÞ, (23)

H2 ¼ ðA� IÞxðkÞ þ A1xðk� hÞ,
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DV3ðkÞ ¼
Xm

i¼1

½xðkÞTQixðkÞ � xðk� hiÞ
TQixðk� hiÞ�. (24)

Therefore,

DVðkÞ ¼ DV1ðkÞ þDV2ðkÞ þ DV3ðkÞ

p
xðkÞ

XhðkÞ

" #
ð1;1Þh ð1;2Þh

ð1;2ÞTh ð2;2Þh

" #
xðkÞ

XhðkÞ

" #
, (25)

where

XhðkÞ9½xðk� h1Þ � � � xðk� hmÞ�
T,

ð1;1Þh9ATPA� P þ
Xm

i¼1

ðh̄Xi þ YiY
T
i Þ

þ
Xm

i¼1

ðh̄ðA� IÞTZiðA� IÞÞ þ
Xm

i¼1

Qi,

ð1;2Þh9½B1 � � �Bm�,

Bi9� Yi þ h̄ðA� IÞTZiAi þ ATPAi,

ð2;2Þh9diagfD1 � � �Dmg,

Di9AT
i PAi þ h̄AT

i ZiAi � Q .

Then, using the Lyapunov–Krasovskii stability theorem and Schur
complement, the discrete-time system (7) is asymptotically stable
if Eqs. (12) and (13) hold. This completes the proof. &
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