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Abstract—Many smartphone applications, e.g., file backup, are
intrinsically delay-tolerant so that data processing and transfer
can be delayed to reduce smartphone battery usage. In the lit-
erature, these energy—delay tradeoff issues have been addressed
independently in the forms of Dynamic Voltage and Frequency
Scaling (DVFS) problems and network selection problems when
smartphones have multiple wireless interfaces. In this paper, we
jointly optimize the CPU speed and network speed to determine
how much more energy can be saved through the joint optimiza-
tion when applications can tolerate delays. We propose a dynamic
speed scaling scheme called SpeedControl that jointly adjusts the
processing and networking speeds using four controls: applica-
tion scheduling, CPU speed control, wireless interface selection,
and transmit power control. Through invoking the “Lyapunov
drift-plus-penalty” technique, the scheme is demonstrated to be
near optimal because it substantially reduces energy consumption
for a given delay constraint. This paper is the first to reveal the
energy—delay tradeoff relationship from a holistic perspective
for smartphones with multiple wireless interfaces, DVFS, and
multitasking capabilities. The trace-driven simulations based
on real measurements of CPU power, network power, WiFi/3G
throughput, and CPU workload demonstrate that SpeedControl
can reduce battery usage by more than 42% through trading a
10 minutes delay when compared with the same delay in existing
schemes; moreover, this energy conservation level increases as the
WiFi coverage extends.

Index Terms—CPU speed scaling, energy—delay tradeoff, hetero-
geneous wireless networks, multitasking, network interface selec-
tion, transmit power control.

I. INTRODUCTION

MARTPHONES now comprise a large part of our lives.
Recent surveys have reported that daily usage time of
smartphones is between 3.5 and 5 hours [2], [3], and 89% of

Manuscript received April 17, 2014; revised October 17, 2014, February 02,
2015, and March 04, 2015; accepted March 30, 2015; approved by IEEE/ACM
TRANSACTIONS ON NETWORKING Editor M. Meo. Date of publication April 21,
2015; date of current version June 14, 2016. This work was supported in part
by the ICT R&D program of MSIP/IITP [14-000-04-001, Development of 5G
Mobile Communication Technologies for Hyper-connected smart services], and
in part by the International Research & Development Program of the National
Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT
and Future Planning(MSIP, Korea) (Grant Number: K2013078191) and the Sev-
enth Framework Programme (FP7) funded by the European Commission (Grant
Number: 611165), and in part by the National Science Foundationthrough the
grant CNS-1319721. Part of this work was presented at the IEEE INFOCOM
2014, Toronto, ON, Canada.

J. Kwak, O. Choi, and S. Chong are with the Department of Elec-
trical Engineering, Korea Advanced Institute of Science and Technology
(KAIST), Daejeon 305-701, Korea (e-mail:jh.kwak@netsys.kaist.ac.kr; oky-
oung@netsys.kaist.ac.kr; songchong@kaist.edu).

P. Mohapatra is with the Department of Computer Science, University of
California, Davis, CA 95616 USA (e-mail: pmohapatra@ucdavis.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNET.2015.2419219

smartphone users use their smartphones throughout the day
[4]. Furthermore, many current applications are generating
significant amounts of mobile traffic. Cisco forecasts that a
single smartphone could generate as much network traffic as
37 feature phones in 2014; moreover, smartphones will reach
three-quarters of mobile data traffic by 2019 [5]. For these
reasons, the energy consumption of smartphones is drasti-
cally increasing. In particular, the energy consumption for
processing and transferring data in smartphone applications
is increasing.

The maximum CPU clock frequency is continually increasing
(e.g., the latest Qualcomm mobile chipset has a maximum of 2.5
GHz CPU clock frequency [6]) to meet the increasing demands
of applications and users. Operating at the maximum CPU clock
frequency results in significant amount of energy consumption
as the CPU power consumption is a superlinearly increasing
function of the clock frequency. Smarphones have multiple net-
work interfaces including cellular and WiFi networks, which
tend to facilitate more networking applications with higher data
rates that yield higher networking energy consumption.

In the CPU context, many application processors (APs)
for smartphones support Dynamic Voltage and Frequency
Scaling (DVFS) [6]-[8], which controls the CPU clock fre-
quency and voltage depending on the CPU workload. The
DVEFS exploits power saving opportunities because the CPU
power consumption depends superlinearly on the CPU clock
frequency; however, this power saving comes at the cost of
increasing processing delays. For example, our measurements
in Section V-A demonstrate that lowering the CPU speed of
a Galaxy Note smartphone from 1.4 GHz to 0.7 GHz reduces
80% of the CPU power while the processing delay is twofold.

In the network context, the selection between multiple net-
work interfaces and the transmit power control (which results
in data rate changes) exploits the power saving opportunities as
a result of the following two reasons. (i) The power consump-
tion for transmitting a single bit differs in each network inter-
face. Our measurements in Section V-A verify that the WiFi
network interface of the Nexus S smartphone is 5.5 times more
energy efficient than that of the 3G network for transmitting
the same quantity of data. (7)) The power consumption of net-
work interfaces for transmitting a single bit can be reduced when
the transmit power is reduced due to the transmit power being
an exponentially increasing function of the data rate from the
transformation of the ideal Shannon capacity [9]. To the best of
our knowledge, studies on the joint optimizations of CPU speed
scaling (i.e., DVFS policy) and network speed scaling (i.e., net-
work selection and transmit power control policies) have not
been undertaken for energy minimization.
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Many smartphone applications are likely to use both pro-
cessing and networking resources as well as having delay-tol-
erant natures.! For these applications, the controls in the CPU
and network will affect each other; thus, independent controls
for the CPU speed, network selection, and transmit power re-
sult in energy inefficiencies. For example, consider a situation
where a smartphone runs an application that processes a file
(e.g., transcoding a video file) and then uploads the transcoded
file to a cloud server, e.g., Dropbox [11]. Assume that the net-
work condition is bad, e.g., only a 3G link with a low data rate
is available. As the CPU workload increases in this situation,
DVFS would continue to increase the data processing speed ac-
cordingly resulting in the network queue becoming a bottleneck
with a large backlog because the data processing speed would
exceed the low data transmission speed at some point. This sit-
uation should be avoided from an energy efficiency perspective
because the CPU would operate at an unnecessarily fast speed
and consequently waste energy.

In contrast, if the backlog in the network queue was small,
the data transmission could be postponed until the device lo-
cates an energy efficient network such as WiFi, or selects a low
transmit power in a WiFi network. Note that the average energy
consumption in transmitting a single bit over WiFi networks is
significantly less than that required in 3G networks (see the mea-
surements in Section V-A). Therefore, the situation described
above is also harmful in terms of energy efficiency because the
network queue would transmit data over the energy inefficient
links or increase the transmit power (which results in a high data
rate) due to the large backlog and it cannot wait for an energy
efficient network to be located.

According to our measurements in Section V-A, the CPU
power consumption required to process one bit for typical
transcoding applications is comparable with the power con-
sumption of WiFi or 3G interfaces to transmit one bit. Thus,
power management for the CPU and network interfaces are
equally important, and this supports the argument that the CPU
speed and network speed must be jointly optimized.

In a recent survey of the Top 50 smartphone applications
in Google Play [12], 44% of the top applications were net-
working applications (NAs) and 56% were non-networking ap-
plications (NNAs). Contemporary smartphone operating sys-
tems provide multitasking capabilities (e.g., i0OS and Android
[13], [14]); therefore, many smartphones run the two kinds of
applications simultaneously. NAs use both CPU and network
resources, whereas NNAs use CPU resources only. If the two
kinds of applications share the CPU queue, they interfere with
each other. Therefore, a method of isolating the performance of
NNAs from that of NAs should be considered in the joint opti-
mization of the CPU and network speed scaling.

In this paper, we propose a dynamic speed scaling scheme
called SpeedControl that simultaneously adjusts both the pro-
cessing speed and networking speed using four controls: appli-
cation scheduling, CPU speed control, network (wireless inter-
face) selection, and transmit power control. The contributions
of the paper are summarized as follows.

IThese types of applications do not need to instantaneously transmit or
process the data, i.e., delaying the data transmission or processing does not be
critical for user satisfaction in the delay-tolerant applications [10].
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* The proposed SpeedControl algorithm is the first to simul-
taneously optimize CPU speed scaling and network speed
scaling, which incorporates the network interface selection
and transmit power control, in order to minimize energy
consumption in delay-tolerant smartphone applications. It
is demonstrated that the proposed algorithm is near optimal
because it substantially reduces the energy consumption
for a given delay constraint.

* SpeedControl is the first algorithm to address the co-ex-
istence issues of networking/non-networking applications
sharing the CPU resource in a smartphone with mul-
titasking capabilities. To isolate the performance of
non-networking applications from that of networking
applications in this highly coupled environment, an ap-
plication scheduling policy that determines the sequence
of CPU access between the two kinds of applications is
incorporated in the SpeedControl algorithm.

* SpeedControl not only significantly outperforms existing
schemes but also does not affect the performance of
background non-networking applications. Trace-driven
simulations based on real measurements of operational
environments and system parameters demonstrate that
SpeedControl can reduce smartphone battery usage by
more than 42% by trading approximately 10 minutes of
transfer delay when compared with the existing schemes
when the WiFi temporal coverage is 65%. Moreover, the
energy saving tendency increases as the WiFi temporal
coverage increases. We also verify the practicality of the
simulation results through prototype experiments using an
Android smartphone with SpeedControl installed.

The remainder of the paper is organized as follows: we begin
with discussing the related work in Section II. In Section III,
we describe the proposed system model. Then, we describe
the problem formulation and derive the joint application
scheduling, CPU speed control, network interface selection,
and transmit power control algorithm, named SpeedControl,
and demonstrate theoretical analysis in Section IV. Next, in
Section V, we evaluate the proposed SpeedControl algorithm
through measurements, trace-driven simulations and experi-
ments. Finally, we conclude the paper in Section VI.

II. RELATED WORK

DVFS. There have been extensive studies on the en-
ergy—delay tradeoff in network devices such as cellular base
station or router using DVFS [15]-[17]. Son et al. [15] sug-
gested an energy efficient joint control algorithm of DVFS and
user association using the fact that the power consumption of
base station is well modeled by a cubic polynomial scaling of
the processing speed. Wierman et al. [16] analyzed the optimal
energy—delay tradeoff under several processing power models
including static and dynamic speed scaling.

Several DVFS techniques have been considered in mobile
devices [6]-[8]. Liang et al. [8] demonstrated that there exist
a critical CPU clock speed to minimize the energy consump-
tion of handheld devices. Recent mobile chipsets, e.g., Snap-
dragon S4 [6], have also adopted DVFS techniques for energy
efficiency. However, their DVFS policies are far from optimal.
For instance, in case of the Ondemand policy [18], the CPU
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speed is set to maximum when the amount of workloads ex-
ceeds a certain threshold, which is controlled manually, and then
the smartphone gradually decreases the speed depending on the
workloads.

Network selection. Recently, the interests on network selection
for delay-tolerant applications considering the battery consump-
tion of smartphones, which include [19]-[22], have been in-
creasing. Rahmati ez al. [19] suggested on-the-spot network se-
lection by examining the tradeoff between energy consumption
for WiFi search and transmission efficiency when the WiFi net-
works are intermittently available. Some studies suggested de-
layed network selection policies by exploring the tradeoff be-
tween the transmit power of heterogeneous network interfaces
(3G and WiF1i) and transmission delay [20], [21]. Lee et al. [22]
demonstrated that 20% power saving can be achieved by per-
mitting 1 hour delay for an application having strict delay con-
straints by exploiting the delayed WiFi offloading. The network
selection also can indirectly affect the energy saving of cellular
infrastructure by offloading the traffic to WiFi networks or ex-
ploiting wireless channel opportunism.

Transmit power control. High data rate can be achieved by
using high transmit power for a given target bit error rate (BER)
in general wireless networks. Recently, some works have
suggested control schemes of transmit power and/or data rate
(i.e., MCS level) with objectives of the energy minimization
or throughput maximization under given delay or BER con-
straints in WiFi networks [23]-[25]. Especially, Xu et al. [24]
suggested an energy-efficient data rate control algorithm using
the network queue information. For example, they increase the
transmit power when the average queue lengths increase so as
to stabilize the network queue. Also, Ismail et al. [26], [27]
suggested transmit power control algorithms of mobile devices
in heterogeneous networks for energy minimization with target
QoS (quality of service) of video when the mobile devices
are able to simultaneously transmit the video file through
multiple wireless networks (e.g., cellular and WiFi), called
multi-homing.

General energy—delay tradeoff framework. Assume that the
objective of the network devices is to minimize the processing
or networking power consumption while the total backlog of
the devices is stabilized. Many energy minimization problems
in the context of the data networks fall into this general frame-
work. Neely [28] suggested a general solution form of this
framework which called “Lyapunov drift-plus-penalty”. For
instance, the delayed network selection works [20], [21] used
the above solution form in terms of controlling the networking
speed to minimize the network interface power of a smartphone
for given delay constraints. Also, Yao et al. [29] explored a
trade-off between the networking energy and average transfer-
ring delay to minimize the power consumption of data centers
by controlling the network routing and the number of active
backend servers. Unfortunately, this framework intrinsically
cannot guarantee the strict delay constraints. Therefore, there
exist several studies trying to take account of the strict or
instantaneous delay constraints by dynamically controlling the
energy—delay tradeoff parameter or introducing delay sensi-
tivity functions for different delay features [20], [30].
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III. SYSTEM MODELS

A. Application and Traffic Arrival Models

We consider two types of delay-tolerant applications. One is
networking application (NA) which uses both processing and
networking resources and the other is non-networking applica-
tion (NNA) which uses only processing resources in a smart-
phone. For example, a smartphone user records two video clips
using a camera application. The one of recorded video clips is
transcoded and uploaded to a cloud server, e.g., Dropbox [11]
(NA), and the other video clip is just transcoded in the smart-
phone (NNA). Let a set of applications be K = {1,...,K}.
For simplicity, we consider only one NA and the other NNA.
However, it can be easily generalized to more applications. We
consider a time-slotted system indexed by ¢t = {0,1, ...} where
the interval is At. For each time slot ¢, workload arrival rates are
Ana(t) for NA and Anna (t) for NNA, respectively.

B. CPU and Network Models

We assume that a smartphone has one CPU core which han-
dles several applications running in the smartphone. Workloads
of each application demand different CPU processing resources.
We call this notion as processing density (in cycles/bit) yna for
NA, ynna for NNA which are defined as the average number of
CPU cycles required per bit when the application is processed
by the CPU [31]. Smartphones with DVFS capability adjust
CPU speed s(t) € {51, 52, - - - Smaz } (incycles/At) 2 every time
slot £ depending on the system policy [6].

We assume that a smartphone is able to use two wireless net-
work interfaces (i.e., cellular and WiFi) for data transfer. It is
possible to select wireless interfaces such as 3G3 or WiFi for
data transfer in typical smartphones [13], [14]. However, the
data transmission via cellular or WiFi networks is likely to be in-
termittently viable due to the mobility of smartphone users. We
denote the time varying network availability of the smartphone
at time slot ¢ by B(f) € {{C,W,N},{C,N},{W,N} {N}}
where C is cellular, 7 is WiFi and N is none of them. Note
that the smartphone is not able to simultaneously use the cel-
lular and WiFi networks, i.e., it does not support multi-homing
technology. Then, the smartphone is able to select a wireless in-
terface I(t) between cellular (C) and WiFi (W) or may not se-
lect any interface (N) every slot ¢, i.e., [(t) € B(t), depending
on the system condition and network availability.*

We also consider a selection of data rates corresponding to
Modulation and Coding Scheme (MCS) levels for the network
interface [(t).5 For a certain target bit error rate (BER), different
data rates require different signal-to-noise ratios (SNRs) [23],
which are determined by transmit powers and wireless channel
gain at slot £. Because the wireless channel is varying every slot,

2A set of available CPU speeds is determined by the Kernel in the operating
system of the smartphone.

31t can be applied to 4 G or LTE technology without any modification of our
system model.

4Time scale issue of the time slot ¢ will be addressed in Section V-B.

SEven though the current smartphone OSs [13], [14] do not support Appli-

cation Programming Interface (API) of the data rate selection, we think it is a
natural extension of the current network controls at the API levels.
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Fig. 1. Queueing model for CPU and network parts in a smartphone.

let a feasible transmission mode (i.e., a combination of data rate
and transmit power for a fixed BER target) be Z; ;) (¢) every slot
t for network interface {(¢}. Then, we select one transmission
mode index i(t) € Zy(t) every slot £. Because selecting the
transmit power results in selecting the data rate or MCS level,
we henceforth call this just as transmit power control. Once the
smartphone selects a network interface /(¢) and a transmit power
index i(t) at slot ¢, the achievable uplink throughput is denoted

by p(I(t),i(2),1).

C. Queueing Model

We consider a queueing model as illustrated in Fig. 1. The
queueing model is designed to isolate the performance of NNA
from that of NA. NNA should not be affected by network envi-
ronments because it does not use networking resources. How-
ever, if we design a queueing model so that packets for the
two kinds of applications are not segregated for processing, the
system cannot isolate the performance of NNA from that of NA
when the network queue becomes a bottleneck, and NNA work-
loads are located in the behind of NA workloads at the CPU
queue. In this situation, the NNA workloads cannot be sched-
uled even though the NNA does not use the networking re-
sources. This is the reason why workloads for the two kinds of
applications are distinguished and processed separately in our
queueing model.

For the queueing model, Q°(¢) denotes total CPU queue
lengths at slot ¢, Q%4 () and Q%na(t) denote CPU queue
lengths for the NA and NNA at slot £, respectively, i.e.,
Q(t) = Q%a(t) + Q%nalt), and Q™(¢) denotes network
queue lengths at slot ¢£. An application scheduling indicator of
the CPU processor at slot ¢ is denoted by 8(t) € {0,1}, e.g., if
(¢} is 0, the NNA is scheduled. We assume that a unit of the
queue lengths is a bit, thus the CPU speed s(¢) (in cycles/At)
should be divided by the processing density (cycles/bit) yna
or yNNa in the queueing model for a unit agreement. Then,
the queue lengths of all CPU and network queues are updated
as follows:

4
M—&—ANA@)} [bits] (1)

Qsalt+1) = [QCNA@) -
Qinalt+1)

- [Qmm) -

INA

1 - 0())s(?)

+
+ANNA(t):| [bits] (2)
YNNA

QUi+ 1) = [Q“()—ﬂ((t) (), 1)
ﬂ}r_[bits]. (3)

+6(t) min { Sa ), p—
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D. Power Model

In the domain of processor design, the CPU power model has
typically two different types which are introduced in [16]: static
speed scaling and gated-static speed scaling. Because our real
power measurement study in Section V-B reveals that contem-
porary smartphones consume some static power when the pro-
cessor is not busy, we assume the CPU power consumption of
smartphones is modeled by the static speed scaling as follows:

as(t)” + 4)

where «, 3 and x are constants associated with the smartphones,
and x is known as between 1-3 in typical network devices [17].

Usual smartphones have two power consuming parts in the
network interfaces: One is transmit power and the other is idle
power for both cellular and WiFi interfaces.® Because two net-
work interfaces use different association methods and transmit
powers to transfer data [32], the network power consumption
Pm(1(t),i(t),t) depends on the selected network interface
I(¢) and transmit power index i(t). These power consumption
models will be further addressed by the real measurements in
Section V.

Pe(s(1)) =

IV. ENERGY-EFFICIENT SPEEDCONTROL ALGORITHM

In this section, we formulate an optimization problem
considering energy minimization with queue stability for
delay-tolerant applications, and develop an energy-minimal
SpeedControl algorithm. At the end of this section, we demon-
strate the theoretical analysis of the proposed algorithm.

A. Problem Formulation

Our objective for the queueing model shown in Fig. 1 is to de-
velop energy-minimal joint application scheduling, CPU speed
adjustment, network selection, and transmit power control poli-
cies with queue stability for delay-tolerant applications. The
smartphone is able to serve all arrival workloads within the ca-
pacity region which is a set of all acceptable arrival rates with
guaranteeing the stability of CPU and network queues. We for-
mally state an optimization problem as follows:

min

P):
( ) (0,s,1,1)

<T15]EL % i(PC(S(t)) + P”(l(t)7i(t)7t))>
)

s.t. limsup — Z E{Q°(r) + Q™(7)} < o0 (6)

t—o0

where Q°(t) = Q%A(t) + Q%na(t) and (8,s,1,1) =
(0(t), s(t),1(t),i(t))5>,. The constraint (6) means that the
average CPU and network queue lengths should be finitely
maintained, i.e., all arrived workloads should be served within
a finite time [28].

B. Algorithm Design
We obtain a solution of our problem (P) under unknown fu-
ture sequences of wireless network states and workload arrivals

SA cellular network interface consumes tail energy after transmitting data for
a few seconds. We will deal with this tail energy issue in Section V-B.
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through invoking “Lyapunov drift-plus-penalty” method [28].
Making Single Objective. Our original objective is to minimize
CPU and network power consumptions with queue stability in
(P). We first define Lyapunov function and Lyapunov drift func-
tion as follows:

L) £ 100+ Q"0 + 5 Qa0 (D)
ML) £ E{L(+1) - LlQ() )
where Q(t) = {Qfua (t). Qfia (1), Q"(1)). The Lyapunov

function (7) is designed to fairly stabilize total NA queues
(Q%a () + Q™ () and NNA queues (Q%na (t)). This is a key
design principle to isolate the NNA performance from that of
NA in terms of delay. Under this Lyapunov function design,
if the network queues are accumulated due to the network
bottleneck, scheduling NA would not reduce the NA queues
(Q%A(t) + Q™ (t)), so the NNA would be always scheduled
to reduce the NNA queues (Qfya (t)). On the other hand, if
workloads are not accumulated in the network queues, the NA
and NNA would be fairly scheduled in terms of queue lengths.”
This is just a criterion to isolate the performance of the NNA
from that of NA as discussed in Section III.

Next, we define Lyapunov drift-plus-penalty function where
the penalty function is the sum of expected CPU and net-
work power consumptions during slot £(E{P*(s(¢))|Q(¢)} +
E{P™(I(t),i(t),?)|Q(t)}) as follows:

A(LE) + VELP(s(t)) + P"(U(1),i(1), 1)IQ®)} 9

where V is an energy—delay tradeoff parameter. Then, our single
objective is to minimize the function (9).

Deriving Upper Bound. Next, we assume that workload arrival
Ana(t) and Axna (), CPU speed s(t), and uplink throughput
w(l(t),i(t),t) for all available networks and transmit power in-
dices for all time slots are bounded as follows:

Ana(t) < AnAmazs  Anna(t) < ANNA max;
5(t) < Smaxs  p(l(),i(2),1) < fimax-

From the above bounds and queueing dynamics (1)—(3), the
Lyapunov drift-plus-penalty function (9) is bounded as the fol-
lowing Lemma 1.

Lemma 1: Under any possible control variables 8(¢) €
{0,1}, s(t) € {s1,82,-.-,8max}, () € B(t), and
i(t) € Ty (t), we have:

A(L(t)) + VE{P(s(t)) + P"(1(2),i(t), )1Q(¢) }
< B+ VE{P(s(?)) +P"(l(t) i(1),1)|Q(t)}
o(1)s(1)
. ANNA(t)> |Q(t)}

-E {QCNNA (
~e{ @t + @) (min {820 4 g,
y(l(t),i(t),t)} - ANA(t)> |Q(t)}

1/ Smax 2
5(7 e A :u‘max + ANA ,max + ANNA,max)'

(10)
where B =

7In fact, because the units of processing speed (in cycles/At) and traffic in the
queues (in bits) are different, processing density (in cycles/bit) of the application
should be also considered. In this case, however, we assume that processing
densities of the NA and NNA are the same for ease of presentation.
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Proof: Please refer to the Appendix. ]
Deriving Solution. Minimizing the left-hand side (LHS) of (10)
means that our original problem (P) is satisfied. We demonstrate
that the problem (P) has an optimal policy ©* at the following
Theorem 1.

Theorem 1: For any mean arrival workload E{Ana(#)} =
Ana and E{Axna(#)} = Anna within a capacity region,
ANa + Anna € A 8there exists a stationary randomized control
policy 7* that selects application scheduling #(¢), CPU speed
s(t), network interface () and transmit power index i(t) every
slot ¢ while satisfying the following:

E{ANA@}—E{M} an
YNA
E{Axna(t)} = [E{(l Q(QN bECK } 12)

E {M} CET 07,0} (3)
YNA
ELPE(s(6)™ )} + ELPR U i(t)™ 1))

P_(/\NA -+ >\NNA) + P"O\NA) (14)

where P¢(Ana + Anna) + P7(Ana) is a minimum value of
the sum of average CPU power and network power to process
ANa + Anna and transmit Aya.

Proof: Please refer to the Appendix. ]

Then, an optimal algorithm (OPT) which minimizes (9) is to
find control variables (8(¢), s(t), {(t), i(t)) which minimize the
LHS of (10) every slot, i.e., the optimal algorithm makes the
right-hand side (RHS) of (10) be the smallest one among the
values which obtain from all possible stationary randomized
control policies. However, because the RHS of (10) is tightly
coupled with all control variables, we design a simple and de-
coupled SpeedControl algorithm by making some approxima-
tions and assumptions as follows.

The RHS of (10) can be divided by three cases depending
on two conditions. (Case 1) Q™(£) > p,ax(t): The RHS of
(10) in this case can be easily decomposed into subproblems
to find 4(¢ ) = 0, s(t) and (I(2),i(¢)), respectively because
min{ 20220 4 Q™ (t), p(1(£), (1), £)} in the fourth line of (10)
always “becomes p(l(t),i(2),t). (Case 2) Q™(1) < pryax(t):
Since min{a(fﬂ)\l—s:ﬂ—l—Q”( ), u(1(t),i(t), 1)} does not always be-
come p(l(t),+(t),t), we make an approximation as follows:

Q" (t) =0, for Q"(t) < pmax(t)- (15)

Then, (Case 2) can be divided by two subcases as follows.
(Case 2-1) QNNA(t) > Qua®), : The RHS of (10) in this case

can be easily d}gggmposed imto subproblems to find 6(¢) = 0,
s(t) and (1(¢),i(t)), respectively. Because 8(t) is 0 and we as-

sume that Q™ (¢t) is 0, the network part does not transmit data.

8A denotes all mean NA and NNA arrival workloads which the smartphone
can transmit or process within a finite time.
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(Case 2-2) Q,YNNA ®) < ,YNA(t) : In order to decouple the RHS
NNA NA
of (10) into subproblems, we make an assumption as follows:

20 L), i), ). (16)

Then, the RHS of (10) can be decomposed into subproblems to
find 6(¢) = 1, s(t) and (I(¢), i(¢)), respectively.

Finally, the SpeedControl algorithm sequentially finds 8(%),
s(t), and (I(¢), i(¢)) for above three cases every slot ¢. Although
we make some approximations and assumptions to derive the
SpeedControl algorithm, this simple and decoupled algorithm
demonstrates the similar energy saving and average delay per-
formance with a complex optimal algorithm (OPT) in our sim-
ulation results (Section V-B).

C. SpeedControl Algorithm

The SpeedControl algorithm jointly controls application
scheduling, CPU speed, network interface selection, and
transmit power (6*(t),s*(t),1*(¢),i*(¢)) at each slot ¢ de-
scribed as follows.

SpeedControl Algorithm

For each time slot ¢,
L: inp]J-t :(QCNA (t)7 QCNNA (t)7 Qn(t)v B(t)7 Il(t) (t)7
w(l(t),i(t),t), P™(I(t),i(t),t) for alll(t) and i(t))
2: if Q™(t) > pemax(t) then
Schedule NNA (6*(¢) = 0)
4:  Select CPU speed s*(t) by

w

min {VPC(s(t)) -
s*(¢)
5:  Select network [*(¢) and transmit power index i*(t)
by
min
1 (£),i* (¢

(17)

VPR, i), 1)

—p(l(2), i), )(Qua(t) + Q" (1))}

else if Q™ (t) < fmax(t) then
if Ynalt) > QRwa(t) then
INA YNNA

Schedule NA (9*(2) = 1)
Select CPU speed s*(2) by

s < S(t) [+ n

min § VP(s(t)) — —= (QRa(t) + Q" ()

s*(t) YNA

10: Select I*(t) and i*(t) by

s*(t)

YNA

(18)

LR

(19)

l*(lgrililil(t) P (i(t),i(t),t) s.t.

11 elseif a0 <
INA YNNA

12: Schedule NNA (6*(t) = 0)

13: Select CPU speed s*(t) by (17)

14: Do not select network (I*(t) = N)

15:  end if

16: end if

17: output: (6*(¢), s*(¢),1*(¢), i*(¢))

< p(l(t),i(8),1)  (20)

Qunalt) then
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where piymayx (t) i the maximum uplink throughput among avail-
able networks at slot ¢.

The SpeedControl algorithm is divided by three cases de-
pending on two conditions as follows.
(Case 1) Q" (t) > pax(t): If the network queues become a
bottleneck due to the fact that the networking speed is slower
than processing speed, processing data at the CPU part does not
reduce total queue lengths, hence always the NNA should be
scheduled. Scheduling the NNA makes the average processing
speed of NA be reduced, so the processing speed becomes sim-
ilar with the average networking speed. Once the NNA is sched-
uled, the CPU speed is adjusted by the optimization problem
(17). The first term with V' of (17) can be interpreted as trying
to minimize CPU power consumption, and second term without
V' can be explained as trying to minimize NNA CPU queue.
An energy—delay tradeoff can be controlled by a single param-
eter V, e.g., as V becomes larger, the energy consumption gets
lower by trading longer delay. After the CPU speed is selected,
the network interface and transmit power are selected by the op-
timization problem (18). The controls of network part is similar
with that of CPU part. The first term of (18) can be interpreted
as trying to minimize the network power consumption, and the
second term can be explained as trying to minimize total NA
queucs (Q5 (1) + Q™ (1)). c )
(Case 2) Q1) < po(t) and Lnal®) > Q;NA“)  Be-
cause the network queues do not become a bottleneck from the
fact that the networking speed is not slower than the processing
speed, the NA and NNA should be fairly selected in terms of
queue lengths. Thus, the application whose CPU queue lengths
are longer, i.e., more urgent application, is selected when the
processing densities of two applications are the same (yna =
yNNA )- Consequently, the NA is selected in this case. Once the
NA is scheduled, the CPU speed is adjusted by the optimiza-
tion problem (19). After the CPU speed is selected, the network
interface and transmit power are controlled by the optimization
problem (20). The meaning of (20) is that the networking speed
should be analogously controlled with the processing speed in
case that the network queues do notcbecome a b(c)ttleneck.
(Case 3) Q™ (t) < py.x(f) and @ra® < QNNA(t): In this
case, the NNA is selected due to the similar reasons as (Case 2).
Because the NA is not scheduled, the network part does not
transmit data in order to adjust the networking speed with the
processing speed of NA.

D. Theoretical Analysis

The sum of NA and NNA queue lengths and the sum of
average CPU and network power consumptions of an optimal
algorithm (OPT) can be upper bounded by the following
Theorem 2.

Theorem 2: Lett = {0,1,...T — 1}. Suppose there exist
€ > 0ande” > 0suchthat Axa +2¢’ € Ana and Anna +€” €
Anna, then under the optimal algorithm (OPT), we have:

T-1

1 B+ VP
limsup — > E{Q°(t) + Q" ()} < BrVPe
T—oc T t=0 ¢
21)
) _ B
peOPT 4 prOPT o« prie o) 4 2 (22)

Vv
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where Q°(t) = Qga(t) + QRna(t), e = 2¢ =€, P*(¢,¢) =
P (¢) + P (€) denotes the optimal lower bound of CPU and
network power consumption.
Proof: Please refer to Appendix. ]
The result of Theorem 2 can describe the relationship of
energy—delay tradeoff. As the energy—delay tradeoff parameter
V', which can be controlled by user's preference, becomes
smaller, the sum of average queue lengths (NA and NNA) gets
smaller whereas the average power consumption gets larger.
On the other hand, as V' becomes larger, the average CPU and
network power consumptions get smaller whereas the sum of
average queue lengths gets larger. We verify these performance
bounds at the simulation results in Section V-B.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
algorithm through measurement, trace-driven simulations, and
experiments.

A. Real Measurements and Traces

Real CPU Power Measurement. We measure and analyze the
CPU power consumptions of five popular android smartphones
for different CPU speeds. The five smartphones have different
Kernels and OSs, so the CPU clock frequency-voltage matching
tables of five smartphones are different, respectively. For ex-
ample, Nexus S has six levels of CPU clock speeds, and each
CPU speed matches with a specific voltage (100 MHz—975 mV,
200 MHz-975 mV, 400 MHz-1025 mV, 800 MHz-1250 mV,
1000 MHz—1450 mV, 1440 MHz—-1500 mV).

We connect Monsoon power monitor [33] to the five smart-
phones and measure the power consumption. Because the power
consumption of a CPU module cannot be directly measured, we
turn off the other components such as WiFi, cellular, Bluetooth,
GPS modules and kill the running tasks using well known task
killer application [34] except for a video transcoding applica-
tion® [35] for 100% utilization of CPU.

Fig. 2 depicts the measured CPU power consumptions as
a function of CPU speeds for five different smartphones. The
points (star, triangle, circle, and square) denote the real power
measurement values for different discrete CPU speed levels.
The measured discrete power consumptions are well modeled
by a cubic polynomial scaling of speed to power for all smart-
phones. Interestingly, it has different polynomial with that of
typical laptop processor or TCP offload engine [16] where the
polynomial is closer to the quadratic. From these results, we de-
sign a CPU power consumption model as a function of the CPU
speeds as follows:

Pe(s(t)) = as(t)® + 5 (23)

where 3(t) denotes CPU speed, ¢ denotes time slot whose in-
terval is the minimum static CPU speed period, « and 3 denote
constant values which are different from each smartphone.

Real Network Power Measurement. We measure the power
consumption of 3G and WiFi network interfaces using Mon-
soon power monitor [33] for two different android smartphones,
respectively. For network interface measurement, we turn off

In our measurement, all smartphones have 100% utilization for all CPU
speed levels when running video trascoding application. Also, because we run
one application, only one CPU core can be operated in spite of dual core CPU.
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Fig. 2. CPU power consumption as a function of CPU speed.

running applications in the smartphone except for an application
which is made by us for transmitting dummy data to a server. We
also develop an application which measures uplink throughput
in the server. Then, we measure the power consumption of the
smartphone using Monsoon power monitor and measure the up-
link throughput in the server while the smartphone transmits 2
MByte (WiFi) and 50 KByte (3G) of dummy data to the server.
The measured network interface power consumption of the
two smartphones are shown in Table II, which provides the
following findings: (i) the transmit powers of 3G and WiFi in-
terfaces are similar in both smartphones, yet (i;) WiFi transmit
power in W/bit is much smaller than that of 3G. This implies
that the WiFi networks are more energy efficient than 3G
networks for transmitting the same amount of data. (iii) the av-
erage transmit power consumption in W/bit of WiFi and 3G for
two devices are comparable with CPU power consumption in
W/bit of two devices (CPU power in W/bit assuming that CPU
speed is 1 GHz and processing density is 1000 cycles/bit!0:
816.5 x 10~2 W/bit (Nexus S), 688.1 x 10~% W/bit (Galaxy
Nexus)). It supports the fact that the power managements of
CPU and network interfaces are equally important.
Real Traces. We collect workload arrivals, processing densities
of two kinds of applications (NAs and NNAs) and uplink
throughputs of 3G and WiFi networks. First, we use real
YouTube video data size distribution from [36] to generate
workload arrival traces of the two kinds of applications. Second,
we run a video transcoding application [35] in a smartphone for
several video clips and measure their completion times, respec-
tively. Then, we compute processing densities by dividing the
processing quantity (in cycles) with the size of a video clip (in
bits). The range of measured processing densities is between
200 cycles/bit to 1200 cycles/bit for different video formats and
clips. Third, we measure the 3G and WiFi uplink throughputs
and WiFi connectivities of five smartphones for two weeks in
metropolitan areas (Seoul and Daegu) of South Korea. Using
our uplink measurement application, the smartphones transmit
dummy traffic to the 3G and WiFi networks every 20 seconds,
respectively, and records the WiFi connectivity logs. Then,

10This value is calculated based on the real measurements of CPU utilization
and processing time of the application.
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a server application measures the uplink throughput of all
smartphones. The measured average uplink throughputs for 3G
and WiFi are 0.76 Mbps and 3.01 Mbps, respectively, and the
average WiFi temporal coverage is 63% in daytime (9:00 AM
to 9:00 PM).

B. Trace-Driven Simulation

In this subsection, we verify our SpeedControl algorithm by

trace-driven simulations under various environments.
Setup. We consider a scenario that a smartphone runs two
applications: (i) In networking application (NA), a video clip
generated in the smartphone is transcoded and transmitted to
the cloud server. (ii) In non-networking application (NNA), the
other video clip generated in the smartphone is just transcoded.
During 1 second, the video clips where the sizes are Ana (t) and
Anna (%), are independently generated with 0.8% probability.
Also, the smartphone gets around in some places which have
coverages of WiFi and 3G networks. Assume that the WiFi
networks are intermittently available, but the 3G networks are
always available.!! Among available networks, the smartphone
can select one network interface for transmitting data or not.
We assume that the WiFi interface of the smartphone is able to
control transmit power and MCS level (i.e., data rate) for 10~°
BER target. So, we use data rate levels of 802.11a/g standards!?
and required SNR table for 10 ~® BER target in [24]. We use the
measured uplink throughput and WiFi connectivity distribution
in our simulation.

For the power consumption profiles, we use one of the CPU
power-speed sets from Fig. 2, and use the maximum transmit
and idle powers for the 3G and WiFi interfaces from Table 1.
The control intervals are 1 second for the application sched-
uling, CPU speed adjustment, and transmit power control, and
20 seconds for the network selection. This is a reasonable set-
ting because the associated networks cannot be changed as fast
as the CPU speed adjustment due to the vertical handover delay.
For the uplink throughput estimation in the simulations,!3 we as-
sume that the current achievable uplink throughput is the same
as that of previous time slot when the same transmit power is
used. Then, by using this (transmit power, uplink throughput)
combination, we make new feasible (transmit power, data rate)
combination set. If the smartphone did not transmit data through
the same network at the previous time slot, it uses the average
(transmit power, uplink throughput) combination of the network
as a current value.

Performance metrics are the average CPU and/or network
energy consumptions per video clip and the average delay of
the two kinds of applications per video clip.14#We compare
DVFS + SALSA and Max + SALSA with our SpeedControl

1TWe have adopted 3G as a representative of the cellular technology because
of ease of availability. The same experiments for our algorithm without any
modification can be carried out for other cellular technologies, e.g., 4 G or LTE.

12A recent 802.11n standard [37] has more MCS indices due to more mod-
ulations, coding rates and bandwidths, so the impact of transmit power control
on the energy saving would increase.

13We also use this estimation method in experiment

14We consider the average delay instead of the average queue lengths in
the most of simulation results for practical analysis. By Little's law [38], the
avearage delay can be interpreted as the average queue lengths divided by the
average arrival rate.
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TABLE 1
NETWORK POWER CONSUMPTIONS FOR TWO SMARTPHONES
Nexus S
. . uplink average tx. power
idle(mWw) transmit(mW) throughput(Mbps) in W/bit
WiFi 230 702+72.5 1.66-3.12 308.6 x 109
3G 213 1217+185 0.69-0.85 1700 x 10~°
Galaxy Nexus
. . uplink average tx. power
idle(mW) transmit(mW) throughput(Mbps) in W/bit
WiFi 99 875422 6.36-6.87 134 x 10~ °
3G 82 964+210 0.354-0.742 1951 x 10~°

algorithm. DVFS + SALSA is conventional DVFS!5 with
delayed network selection [20], and Max+SALSA uses always
maximum CPU speed with delayed network selection.
Observations. From the simulation results, we obtain inter-
esting observations as follows.

Relation with the energy—delay tradeoff parameter V.
Fig. 3 depicts the average power consumption and queue
lengths as a function of V', which can be controlled by user's
preference. As described in Section IV-D and depicted in
Fig. 3, the bound of average sum of NA and NNA queue
lengths is linearly proportional to V' in (21), and the bound
of average sum of CPU and network power consumptions is
inversely proportional to V' in (22). However, because V' has
no physical meaning, from now on, we demonstrate the direct
relations between the average power consumption and delay
performance.

Energy—delay tradeoff. Fig. 5 depicts the energy—delay
tradeoff for several algorithms. (i) It is worthy of notice that
most of CPU energy saving and total energy saving (52% CPU,
51% total) can be obtained by trading only 10 minutes delay.
This is because the CPU power consumption is modeled by a
cubic polynomial scaling of CPU speed such as (23). Therefore,
by smoothing the CPU speed along with slot ¢, CPU power can
be saved. However, because smoothing the CPU speed makes
the system be insensitive to the queue variation, average delay
would be longer. Network power consumption can be saved
until 50% by trading 10 minutes delay. This power saving
comes from that the smartphone is reluctant to transmit data
through 3G (or bad channel state and low throughput) which
is energy-inefficient network than WiFi; yet it would wait for
WiFi networks (or good channel state and high throughput).
Although waiting for WiFi networks is good for energy saving,
longer waiting than a certain delay constraint, e.g., 15 minutes,
can hardly make the smartphone save more energy. (7i) Speed-
Control (SC) saves 52%, 48% (in CPU), 42%, 43% (in total)
energy for 10 minutes average delay than Max + SALSA and
DVFS + SALSA, respectively. The power saving gains of
SpeedControl come from that the algorithm pushes NA work-
loads from CPU side to network side only when the network
side requires the workloads. This implies that joint considera-
tion of application scheduling, CPU speed, network selection
and transmit power control is imperative for optimizing CPU
and network power in a smartphone. (iiij) SpeedControl well
catches up with the performance of the optimal algorithm even
though SpeedControl is much low complex algorithm than the
optimal algorithm.

151n this algorithm, the CPU speed is set to maximum when CPU workloads
are greater than a threshold, and linearly decrease when the CPU workloads are
less than the threshold which can be manually controllable [18].
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Fig. 4. Impact of time scale difference.

Impact of no transmission option and transmit power con-
trol. Fig. 6 demonstrates the impact of no transmission option
and transmit power control on the energy—delay performance.
(i) As V becomes larger, i.e., more average delay is allowed,
SpeedControl (SC) has more energy saving gain than SpeedCon-
trol without no transmission option (i.e., the smartphone is able
to select only 3G or WiFi networks, SC w/o NoTx) and Speed-
Control without transmit power control (i.e., the smartphone
always uses the maximum transmit power, SC w/o TPC). This is
because that no transmission option enables the device to wait for
WiFi networks which are more energy-efficient networks than
3G, and the transmit power control enables the device to exploit
opportunism of time-varying wireless channel condition, e.g.,
the transmit power can be reduced when the wireless channel
condition is bad. (7i) SpeedControl saves 23% and 17% of total
energy consumptions when compared with SC w/o NoTx and
SC w/o TPC by trading 10 minutes delay. The reason why the
impact of energy saving gain in case of the no transmission
option is much higher than that of the transmit power control is
that the throughput gap between 3G and WiFi is greater than that
of the wireless channel variation in the WiFi networks.

Impact of time scale difference. We verify the impact of the
time scale difference between CPU speed control (or transmit
power control) and network selection. Fig. 4 depicts the en-
ergy—delay tradeoff of SpeedControl for several time scales of
the network selection, i.e., the network interface is selected every
1 second, 10 seconds and 20 seconds. This figure demonstrates
that the average energy consumption and delay performance
of SpeedControl for different network selection time scales are
almost the same.1¢ This means that practically selecting network
interface every 20 seconds scarcely affects the performance
degradation.

Impact of application scheduling. To verify that SpeedCon-
trol isolates the performance of the NA from that of NNA in
terms of delay, we run the simulation in a network bottleneck
case (i.e., WiFi temporal coverage: 0%, average network

16Because the estimated throughput is not exactly same with real achievable
throughput, SC(20s) may have a chance to achieve better performance than
others.
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throughput: 0.76 Mbps). For comparison, we consider an algo-
rithm without application scheduling control, called SC-NoAS.
This algorithm schedules the application by first in first out
(FIFO) manner, but the CPU speed adjustment and network
selection!” are operated like SpeedControl.

17Because the WiFi temporal coverage is zero in this simulation, we did not
consider the transmit power control.
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Fig. 7(a) and (b) depict delay performance of NNA and

energy—delay tradeoff of SC-NoAS and SpeedControl when
the network queues become a bottleneck. In the simulation for
Fig. 7(a), the arrival rate of NNA is the same (0.8 Mbps), but
the arrival rate of NA increases up to twofold. Fig. 7(a) demon-
strates that SpeedControl guarantees the average delay of NNA
when the arrival rate of NA increases, whereas the SC-NoAS
increases average delay of NNA even though the arrival rate of
NNA does not increase. This implies that SpeedControl makes
NNA do not be influenced by the network environment, which
is also related with a design issue of SpeedControl mentioned
in Section IV-B. As a result, SpeedControl achieves better
performance than SC-NoAS as shown in Fig. 7(b).
Impact of processing density, arrival rate and WiFi tem-
poral coverage. Fig. 8 depicts total (CPU + network) energy
consumptions of existing algorithms (DVFS 4+ SALSA, Max +
SALSA), normalized by total energy consumptions of Speed-
Control as a function of the sum of average NA and NNA delay
per video clip. For this simulation, we generate WiFi temporal
coverage traces for different WiFi coverages using measured
WiFi temporal coverage distribution and uplink throughput.

(i) As the processing density of NA becomes smaller, and

the arrival rate of NA gets higher, SpeedControl obtains more
energy saving gain for more than 5 minutes delay. The gain
from lower processing density of NA comes from that Speed-
Control more quickly responds to the needs of network side
than higher processing density case. The gain from higher ar-
rival rates of NA comes from that SpeedControl knows when
the network side requires the workloads to transmit whereas
DVFS + SALSA and Max + SALSA do not know what hap-
pens in the network side. (ii) As the arrival rates of NNA become
smaller, SpeedControl incurs more energy saving gain. This im-
plies that the NA gives more energy saving impact on the smart-
phone than NNA due to that the NA uses both processing and
networking resources whereas the NNA uses only processing
resources. (iii) As the WiFi temporal coverage becomes wider,
SpeedControl achieves more energy saving for more than 5 min-
utes delay. This is due to that the wider WiFi coverage enables
the smartphone users to exploit more energy-efficient networks,
i.e., WiFi networks; thus, the average networking power is re-
duced, which means that the CPU power consumption has a
relatively bigger influence on total energy consumptions. Be-
cause our SpeedControl algorithm obtains relatively higher en-
ergy saving gain in the CPU part than network part as shown in
Fig. 5, a total energy savings of SpeedControl increases when
compared with the other algorithms as the WiFi temporal cov-
erage extends.
Practical issues for energy consumption. We deal with two
practical issues for energy consumption of wireless interfaces.
First, 3G interface consumes tail energy for a few seconds after
completing data transmission in practice [39]. To confirm this,
we run the simulation to explore the impact of tail energy under
the various V's and normalized file sizes where the average ref-
erence file size is 6.249 MBytes. As shown in Fig. 9, the smart-
phone consumes a considerable tail energy (maximum 26% of
total networking energy) depending on the V' and normalized
file size. We refer readers to [21], [39] for an optimization of
the tail energy.
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Second, to confirm how much WiFi on/off delays affect the
delay performance of the NA and NNA, we measure the WiFi
on/off delays and WiFi contact traces. The measured average
WiFi on delay is 1.5-2 seconds and off delay is 0.5 seconds.
Furthermore, our measurement results of WiFi contact traces
and [22] demonstrate that the average WiFi inter-contact time is
about 2 hours, and the energy efficiency of WiFi is higher than
that of 3G. These features make the smartphone infrequently
change the network interface, thus the interval of network inter-
face transition would be much longer as compared to the WiFi
on/off delays. From these observations, the WiFi on/off delays
scarcely exert influence on the delay performance of SpeedCon-
trol algorithm in the real mobile environment.

C. Experiment

Setup. We develop a prototype of SpeedControl application
which adopts our SpeedControl algorithm using Android soft-
ware development kit (SDK) based on the open source code of
NSTools application [40] which enables a smartphone to con-
trol CPU clock manually. The SpeedControl application deter-
mines the CPU speed and network selection (between no trans-
mission and WiFi) based on the CPU and network queues and
the estimation of current uplink throughput. For estimation of
the uplink throughput, our private server transmits acknowl-
edgement (ACK), which contains the uplink throughput infor-
mation, to device every 5 seconds. Then, the smartphone con-
siders received ACK as the current throughput. If the device
does not transmit data in previous time slot, the average uplink
throughput is considered as the current throughput. For experi-
ments, we prepare rooted smartphone!8 (Nexus S) and Monsoon
power monitor [33].

The experimental smartphone runs two applications: (i)
video transcoding application, (i) prototype of our Speed-
Control application which selects the CPU speed and network
interface and then transmit the transcoded data to our server,
yet they can be seen as one networking application. We assume
that the trascoding speed is the same as CPU speed. Then,
the transcoded data is transmitted from the network queues
to our private server. We consider a situation that 5 video
clips (21 MByte per one clip) are arrived at the specific times,
respectively. Also, the smartphone is associated with one WiFi
AP.19 and connected to Monsoon power monitor to measure
the energy consumption. As performance metrics, we measure
(i) battery level by the application (visualized as % or bar in
typical smartphones) and real power using Monsoon power
monitor and (7i) the average delay of video clips when four
video clips are fully transmitted.

Observation. We obtain three observations from exper-
imental results of the SpeedControl, Max + SALSA
and DVFS + SALSA algorithms. (i) (Fig. 10(a)) The
DVFS + SALSA and Max + SALSA consume about 70% and
80% more energy than the SpeedControl algorithm with the
same delay (about 11 minutes) in real power measurement for
transmitting 4 video clips. (ii) (Fig. 10(b)) Our SpeedControl
consumes 50% and 40% less battery than Max + SALSA and

18To manually control CPU clock frequencies, the smartphone SO attains
privileged control within the subsystem of Android.

19This WiFi AP is a private AP for only one experimental smartphone.
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Fig. 8. Normalized energy consumptions for various WiFi temporal coverages: (a)—(c) are the results under the same arrival rate (NA : NNA = 1: 1), (d)—(e)
are the results under the same processing density (ywa : Ynna = 300 cycles/bit:1200 cycles/bit). (a) WiFi temporal coverage: 35%. (b) WiFi temporal coverage:
50%. (c) WiFi temporal coverage: 65%. (d) WiFi temporal coverage: 35%. (¢) WiFi temporal coverage: 50%. (f) WiFi temporal coverage: 65%.
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Fig. 9. Proportion of tail energy (tail energy/total networking energy): WiFi
temporal coverage—35%, (Yxa, Ynna) = (300, 1200) cycles/bit.

DVFS + SALSA by trading similar delay. (iiij) Smartphone
users who install our SpeedControl application save 10% of
battery level (spend 10% of battery) for uploading 4 video clips
(total 84 MBytes) by trading about 3 minutes more delay when
the starting battery level is 70%.

VI. CONCLUSION

In this paper, we investigated key processing and networking
features of contemporary smartphones in terms of tradeoff be-
tween energy consumption and application delay. Based on this

& 2 20
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Avg. NA delay / video clip [min] 0
() )

Fig. 10. Experimental results for SpeedControl, Max+SALSA and DVFS+
SALSA. (a) Energy—delay tradeoff. (b) Reduced battery level.

study, we suggest a SpeedControl algorithm, which jointly op-
timizes CPU speed, wireless interface selection and transmit
power so as to answer how much energy can be saved further
by the joint optimization when applications can tolerate a cer-
tain delay. SpeedControl isolates the performance of non-net-
working applications from that of networking applications as
well as obtains high energy saving by trading small delay. Fi-
nally, through extensive simulations and experiment studies in-
cluding meaningful real measurement results such as smart-
phone power consumption or network states, we made several
important observations which provide us with a message that
joint optimization of CPU and network speed would be imper-
ative, especially in future network trend where the more en-
ergy-efficient networks are deployed. Furthermore, the joint op-
timization of processing speed and networking speed for energy
minimization might be applied for emerging multi-homed ter-
minals and real-time video/multimedia applications.
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APPENDIX A

A. Proof of Lemma 1

Proof: From the queueing models of networking applica-
tion (NA),

Qualt+ 1)+ Q" +1)

= [Qfa () +Q™(1) — 1) + Ana ()]
where ¢/ (t) = min{u(1(¢),4(t),7), Q" () + %} since the
actual service quantity of network part is bounded by actual

queue length at time slot ¢. By taking square on the (24) and
using the fact that ([X]7)? < X2, we have

(Qat+1) + Q" +1))?

24

< (Qfa(t) +Q"(8) — W'(t) + Ana(2))?
< (Qfa(t) + Q™) — 2(w'(t) — Ana())
X (QCNA(t) + Qn(t)) + Mmax + ANA max* (25)
Then, by arranging (25), we have
(QRalt+1) + Q™1 +1))” — (Qfa () + Q1))
< 2( "(t) — Ana(t)) (QRa(t) +Q"(2))
+ Mmax + ANA max* (26)

Similarly, we obtain the following by repeating for non-net-
working application (NNA):

Qfnalt + 1) — Qina(t)?
< -2 (w - ANNA(t)> Qina(?)

YNNA

2
+ smax
VNNA

+ ANNA max* (27)

By summing over (26), (27) and CPU and network power con-
sumption, we obtain the upper bound of following Lyapunov
drift plus penalty function.

A(L(R)) + VE{P(s(1)) + P"(1(1),1(2),1)|Q(1)}
< B+ VE{P(s(t)) + P"(13),i(t), )| Q(H)}

)
) )

-~ { (min { MO+ g}
~ AxalD) (Qa

1),i(t), 1),
)(+Q"( ) Q)}

1 s(t c
e{ (S22 o)) atmatla
YNNA
(28)
Where B = _(7")“ + Mmax + ANA max —+ ‘4%NA.max)' ThlS
completes the proof [ |

B. Proof of Theorem 1

Proof: Necessary condition is trivial. Therefore, we will
prove the sufficient condition for (11)—(14).
Proof of (11) and (12) Let C = Cna + Cnna be the convex
hull of the service rates from CPU queue and C' € C. Then, by
Caratheodory's theorem [41], C is decomposed into a convex
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combination of service rate corresponding to all combinations
of control parameters s(t) € {s1,..., Smax} and 8(t) € {0,1}

as follows:

C — p(ol,() 1) _|_ +p(smaX:9 1)Sn’lﬂ

YNA YNA
+p(51.9:0) +- +p(5max,9 0) Smax Smax
YNNA YNNA

B(t)s(t 1-8(t t
:[E{ ()S()}—HE{( ())5()}_ (29)
YNA TNNA

Since the probability vector (p(*1:#=1) . p(smax:6=0)) can be
represented by {s(t), 8(2) }52, sequences by a law of large num-
bers, there exist randomized control policies which support any
arrival rate Aya + Anna Within capacity region. It means that
there exist randomized {s(¢), 8(¢)} control policies every time
slot £ which satisfies (11) and (12).

Proof of (13). Let g € G be the wireless channel state of net-
works such as cellular or WiFi. Also, letC, N4 be the convex hull
of the service rate from network queue when the channel state is
gand (C}*,...CJA ) e CNA_ Then, by Caratheodory's The-
orem [41], CN* is decomposed into a convex combination of
service rate corresponding to all combinations of control pa-
rameters () € {l1,...lmax}, #(t) € {é1,...,imax} and the
channel states g € {g1,-- ., gmax} as follows:

CNA = pélllvil):u(llv ila t) T
+ p(ln]a?t 1imHX),u(lmaX7 Tmax, t)

= mE{u(l(t), i(t), £)|g(t) = g}.

9€G

(30)

Then, intuitively the time average of the u(1(t),i(¢), ) process
can be expressed as a sum over the steady-state probabilities as
follows:

tQ&tEIﬂ
= Z maE{pe(l(

i(1),t)|g(t) = g}
geG

= E{p((®),i(t), 1)} 31

where 7, is the steady-state probability of g. Since the prob-
ability vector (pla-t), ... plmeximas)y can be represented
by {I(¢).4(t)}:2, sequence by a law of large number, there
exist randomized control policies which support any arrival
rate Axa Wwithin capacity region. It means that there exist
randomized {!(¢), i(t)} control policies every time slot ¢ which
satisfies (13).

Proof of (14). Among all control sequences (s(t),6(¢),
1(8),4(£)s2, to satisfy (11), (12), and (13), we can find an
optimal sequence #* to minimize the sum of average CPU
power and network power, and it satisfies (14). This completes
the proof. [ |

C. Proof of Theorem 2

Proof: First, we prove average queue bound (21). Since
Ana + 26 € Ana and Axna + ¢ € Anna, following re-



KWAK et al.: PROCESSOR-NETWORK SPEED SCALING FOR ENERGY-DELAY TRADEOFF IN SMARTPHONE APPLICATIONS

lationships can be shown using Theorem 1 that there exists a
stationary and randomized policy 7™ .

E{P™ (1)} = P*(2¢ 1 ¢') (32)
E(na(y —£ O 4o )
INA
IE{ANNA(t)} —E (1 — (9(t)7r )S(t)ﬂ' — €
YNNA
(34)
o)y s(t)™ P

=E{u(@®" ,i(t)" 1)} —€ (39)

where P*(2¢',¢") = P*(Ana+2€¢, Anna+€”)+P™ (Ana +
2¢') is the optimal average sum of CPU and network power for
the average arrival rate (Axa + 2¢/, Axna + €'). By applying
the above equations (32)—(35) in Lemma 1, we have

A(L()) + VE{POT (s(2)) + POV (1), i(t), )| Q(1)}
< B+ VP2, €") - E{2¢ (Qxa(t) + Q7(1) [Q(1)}

—E{"Qina (1) Q(1)}- (36)
By taking expectations on both sides of (36),20 we have
E{L(t+1) — L()} + 2¢'E {(Qxa(t) + Q" (1))}
+e"E{Quna ()} < B+ VP*(2,€"). (37)

Without loss of generality, by taking 2¢/ = €/’ = € and dividing
both sides of (37) with € and summing over ¢t = {0,1,...,T
— 1}, we have

E{L(T) — LO)} + 3 E {Q5a ()

Faalh) + @) < BHITLET

By dividing both sides of (38) with 7" and using the fact that
L(t) > 0 and taking as T — oo, this completes the proof of
NA and NNA queue bounds (21).

Next, we prove average power bound (22). By applying

e(Qa(t) + Qinalt) + Q™(t)) > 0 on (36), we obtain
following inequality:

(3%

A(L(#)) + VE{POPT (1) + PmOPT (i)}

< B+ VP (e,e) (39)

where P4OFT(t) and P7©FT(¢) are CPU and network power
consumption when the optimal algorithm (OPT)?2! is adopted.
By summing (39) over¢t = {0,1,...T — 1} and using the fact
that L(t) > 0, Q% (0) = 0, Q%A (0) = 0,Q7(0) = 0, and
dividing 7', we have

T-1
1 T n B *
T §0 E{P™OPT (1) + P™OFT(1)} < v+P (e,€). (40)
t=

20Then, we can use the law of iterated expectation.

210PT is to exhaustively find (8(¢), s(t), [(¥), i(¢)) which minimize the RHS
of (10).
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Then, taking as 7' — oo and using the Lebesgue's dominated
convergence theorem, this completes the proof of average
power bound (22). ]
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