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Abstract—1Traffic measurements provide critical in-
put for a wide range of network management applica-
tions, including traffic engineering, accounting, and se-
curity analysis. Existing measurement tools collect traf-
fic statistics based on some pre-determined, inflexible
concept of “flows”. They do not have sufficient built-in
intelligence to understand the application requirements
or adapt to the traffic conditions. Consequently, they
have limited scalability with respect to the number of
flows and the heterogeneity of monitoring applications.

We present ProgME, a Programmable MEasurement
architecture based on a novel concept of flowset – ar-
bitrary set of flows defined according to application re-
quirements and/or traffic conditions. Through a simple
flowset composition language, ProgME can incorporate
application requirements, adapt itself to circumvent
the scalability challenges posed by the large number
of flows, and achieve a better application-perceived
accuracy. The modular design of ProgME enables it to
exploit the surging popularity of multi-core processors
to cope with 7 Gbps line rate. ProgME can analyze and
adapt to traffic statistics in real-time. Using sequential
hypothesis test, ProgME can achieve fast and scalable
heavy hitter identification.

I. Introduction

Accurate measurement of network traffic is a keystone
of a wide range of network management tasks, e.g., traffic
engineering, accounting, network monitoring, and anomaly
detection. A measurement tool, be it a dedicated hardware
or software running on routers or firewalls, collects statis-
tics of network traffic. Management applications use these
statistics to make network control decisions, such as re-
routing traffic, charging customers, or raising alarms to
administrators. The insights gained from traffic measure-
ment are invaluable to administrators in making informed
decisions on network planning or operations.

Fundamentally, traffic measurement involves counting
the number of packets (or bytes) that satisfy some criteria
over a particular period of time. Figure 1 provides a
high-level conceptual diagram of traditional measurement
architectures that typically try to find a matching flow
for every sampled packet and increases the corresponding
counter. A flow can be defined by 5-tuples in the IP head-
ers. Example systems that adopt this approach include
NeTraMet [2], FlowScan [3], and sFlow [4]. Such per-flow
traffic statistics might be, upon a triggering event like the
expiration of a timer or passing of a threshold, delivered to

1An earlier version of this paper appeared on [1].

Figure 1: Traditional Measurement Architecture.

Figure 2: Programmable Measurement Architecture.

a centralized storage location. A management application,
be it a network manager or an anomaly detection tool, can
then perform post-processing on the per-flow statistics to
retrieve useful information. For example, to answer user
queries like “How much traffic goes to a particular net-
work?”, one can perform selective aggregation to count all
the flows belonging to this query. Monitoring applications,
e.g.,, heavy hitter identification, can search through the
per-flow traffic statistics to find the elephant flows2.

Although the traditional measurement architecture has
had some success in offering insights about network traffic,
its scalability is limited in practice for various reasons.
First, the traditional architecture collects statistics based
on an inflexible definition of flow. In today’s high-speed
networks, especially the core networks, the number of flows
can easily reach millions. Keeping per-flow traffic profiles
is challenging for memory and processor [5]. Even if one
assumes that per-flow traffic profiles could be managed
locally, delivering it to a remote server and storing it
over a prolonged period of time incurs significant network
and storage overhead. Second, the traditional architecture
requires a post-processing approach. Measurement tools
have little knowledge about the actual requirement of the
management applications and focus only on providing suf-
ficient statistics. It is up to the management applications
to process per-flow traffic statistics and extract meaning-
ful information. This disconnection between measurement

2Elephant flows are defined as the largest n flows in terms of
number of packets or bytes generated.
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tools and management applications forces the measure-
ment tools to collect all the statistics that might be useful
and at the finest granularity to meet the requirement on
accuracy. Third, the traditional architecture cannot adapt
itself to changing network conditions. It is difficult for a
measurement tool engineered to monitor a few large flows
(elephants) to re-adapt itself to monitor large number of
small flows (mice), e.g., in the case of Distributed Denial-
of-Service attack.

This paper calls for a departure from the tradi-
tional architecture using per-flow traffic profiles and the
post-processing approach. We present a Programmable
MEasurement architecture (ProgME ) that can adapt to
application requirements and traffic conditions in real
time. Figure 2 shows the major components of ProgME.
Our first proposal is to use a versatile definition of flowset
– arbitrary set of flows – as the base of traffic statistics
collection. In other words, ProgME keeps one counter per
flowset. Compared to per-flow traffic statistics, per-flowset
statistics enables one to achieve multiple resolutions within
a traffic profile. Since flowsets can be defined arbitrarily,
they do not necessarily map to the same number of unique
flows or traffic volume. Therefore, one can track higher
resolution statistics to maintain the desired accuracy for a
sub-population of network traffic, while collecting coarse-
grained aggregate statistics for the remaining traffic (e.g.,
through a flowset that catches uninteresting traffic) to
reduce total number of counters required. Furthermore,
since a flowset can contain arbitrary set of flows, one
can construct flowsets that directly reflect the interest
of management applications. For example, one can use
a single counter to track packets from an invalid source
IP address instead of keeping a large number of per-flow
counters and aggregating them later.

The second key component of ProgME is a program
engine that can dynamically (re)-program the definitions
of flowsets based on user queries. By enabling the man-
agement applications to program the measurement tool,
one can pre-process application requirements so that the
tool only collects statistics that are directly useful to
applications and at a desired granularity, thus significantly
improving its scalability and performance. Note that we
do not claim that collecting statistics according to user
requirement is the right solution for all measurement tasks.
ProgME can be most beneficial if users know their require-
ments beforehand. However, if one fails to envision the
usefulness of certain traffic metrics and does not measure
them directly in the first place, a posteriori analysis on
aggregate data might not generate accurate estimates of
these metrics.

ProgME is intended as an on-line measurement module
and offers the flexibility to support adaptive measurement
algorithms. To match the requirement of high-speed links,
ProgME features a modular system design that can ef-
fectively exploit the surging availability of multi-core pro-
cessors to reach approximately 7 Gbps without sampling.
Its program engine can merge or partition flowsets and
re-allocate the counters dynamically based on past traffic

statistics to increase tracking accuracy and measurement
efficiency. We believe ProgME can be deployed on both
dedicated measurement devices and backbone routers –
although the latter would require some adaption of the
algorithm at the hardware level. This paper focus on
ProgME as a single box solution, therefore distributed
traffic measurement and analysis is beyond the scope of
this paper.

The contributions of this paper are as follows:

• We propose a versatile flowset definition as the base
unit of network measurement. We present a Flowset
Composition Language (FCL) for defining flowsets
consisting arbitrary set of flows and a binary decision
diagram (BDD)-based data structure for efficient set
operations and packet matching (Section II).

• We show that the flexibility offered by our flowset
definition is helpful in broad categories of network
measurement, including answering user queries (Sec-
tion III) and identifying heavy hitters (Section IV).

• We propose a scalable Flowset-based Query Answer-
ing Engine (FQAE) in (Section III) to support arbi-
trary user queries. Used in conjunction with sampling,
FQAE can achieve the same accuracy for any given set
of queries compared to an ideal flow-based measure-
ment approach, while achieving orders of magnitude
cost reduction in terms of memory requirements.

• We propose a Multi-Resolution Tiling (MRT) al-
gorithm, which dynamically re-program the flowset
measurement to zoom in on heavy hitters (Sec-
tion IV). It can identify heavy hitters under tight
memory budget by re-defining flowsets and re-
allocating the associated counters. MRT analyzes the
traffic and the statistics collected sequentially and can
be deployed on-line.

We describe our design rationales and the three major
components of ProgME: Flowset Composition Language
(FCL) in Section II, Flowset-based Query Answering En-
gine (FQAE) in Section III, and Multi-Resolution Tiling
(MRT) algorithm in Section IV, respectively. Section V
presents the performance evaluation results of the ProgME
framework. We discuss related work in Section VI and
conclude the paper in Section VII.

II. Arbitrary Flowset

Table I summarizes the notations used in this paper.

Symbol Explanation

f A flow
H Set of fields that defines “flow”
F A flowset
Fw The weight of a flowset F
Fc The counter associated with F

P
A packet enumerator,
either a trace file or live traffic

Q A list of user queries
U The universal set of flows

Table I: Notations.

Traditionally, network statistics are collected based on
the concept of flows. A flow f refers to a set of packets
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that have the same n-tuple value in their header fields.
Let H : {H1, H2, · · · , Hn} denote the header fields used
in the flow definition. Typical definitions of flow include
the 5-tuple of H : {prt, sip, spt, dip, dpt} or the 2-tuple
of H : {sip, dip} in which prt is the protocol field, sip
and dip are the source and destination IP address and spt
and dpt are the source and destination port, respectively.
Other header fields, e.g., Type-of-Service (TOS), could be
used as well. A flow is often used as the base unit for
traffic measurement. With a n-tuple definition, a flow can
be regarded as a point in the n-dimension space with each
field as a dimension.

In the context of packet classification (including rout-
ing and packet filtering), it is often necessary to des-
ignate an action (e.g., route to a certain interface, fil-
tering the packet) to a set of flows. The status quo
is the concept of superflow, which takes a similar form
of the definition of flow except each field is extended
to a range of values. In the general 5-tuple superflow
H ′ : {prtr, sipr, sptr, dipr, dptr} definition, sipr and dipr
are CIDR address blocks and prtr, sptr, and dptr could be
value intervals. The semantics of superflow is not flexible
enough — it is restricted by the well-defined structure and
can only describe a regular-cut set of flows, where each field
contains a contiguous range of values. Therefore, sipr and
dipr should contain IP addresses that form a valid CIDR
block with contiguous IP addresses, while sptr and dptr
should contain continuous interval of integer values. For
example, if one is to visualize a 2-tuple superflow defined
by sipr, sptr on a 2-dimension space, superflow can only
carve out rectangles of various size [6], as shown by the
solid and dotted boxes in Figure 3.

We define a flowset to be a set of arbitrary flows. A
flowset is not limited by the structure of superflow and
can take any shape, even being segmented in the space
(as one shall see shortly). A flow can be considered a
special case of flowset containing only one member. To the
best of our knowledge, there are no existing languages for
specifying such a versatile flowset other than an inefficient
enumeration of superflows.

In the following part of this section, we first present a
flowset composition language (FCL), which enables user
to specify an arbitrary set of flows as a single entity
(Section II-A). Section II-B clarifies related definitions
and Section II-C introduce a canonical representation of
flowset using binary decision diagram (BDD). Coupled
with the underlying BDD representation of flowsets, FCL
allows users to specify their requirement on aggregated
traffic statistics and enables measurement tools to pre-
process user requirements.

A. Flowset Composition Language (FCL)

We present a simple Flowset Composition Language
(FCL) using set algebra to enable specification of arbitrary
flowset (Table II). The primitive of FCL (pr) is the 5-tuple
superflow definition, which by itself is a flowset that defines
a regular-cut set of flows. One can use other primitives

e = e op e | (e) |¬e| pr
op ::= ∩ | ∪ | \
pr ::= < prt, sip, spt, dip, dpt >

Table II: Grammar of Flowset Composition Language.

F1: Traffic from private IP
F1 = r1 ∪ r2 ∪ r3, where
r1 =< ∗, 10./8, ∗, ∗, ∗ >
r2 =< ∗, 172.16./12, ∗, ∗, ∗ >
r3 =< ∗, 192.168./16, ∗, ∗, ∗ >
F2: FTP not from 10.1./16
F2 = (x1 ∪ x2) ∩ ¬x3, where
x1 =< ∗, ∗, ∗, ∗, 20 >
x2 =< ∗, ∗, ∗, ∗, 21 >
x3 =< ∗, 10.1./16, ∗, ∗, ∗ >

Table III: Sample Flowsets.

as long as it specifies a set of flows. We choose the 5-
tuple definition because of its wide usage in the context of
firewall configuration and policy-based routing.

The FCL grammar defines several standard binary set
operators (op), e.g.,, intersection (

⋂
), union (

⋃
), and

relative complement (\), and unary operators like absolute
complement (¬). The expression of a flowset (e) can just
be a primitive itself (pr). One can apply one of binary
operators to two flowsets (e op e) and assign the result
to another flowset. One can also apply one of the unary
operators to one flowset and assign the result to another
flowset. Note that this grammar is recursive and one can
use the parentheses operator, (), to change the precedence.
These operations are sufficient to build a flowset with arbi-
trary set of flows. In addition, one can, using the operators
provided, build more complicated logical operations, e.g.,
NAND or NOR. All the laws associated with set algebra,
including the commutative, associative, distributive, iden-
tity, and complement laws, apply to flowset as well.

Table III presents two examples of such flowsets that
might be of practical interest to the administrators.
Flowset F1 presents all flows originated from private ad-
dress space. In practice, administrators are interested in
tracking these flows because packets with unroutable IP
address are not legitimate and are often used by attackers
and spammers. Flowset F2 presents incoming FTP traffic
(port 21/22) except those from an internal network. F1

and F2 are depicted in Figure 3 in dashed- and solid-line
rectangles, respectively. Notice that a flowset, as a single
entity, can cover disconnected and irregular parts in the
universal set.

B. Definitions

Since flowset is a type of set, concepts and definitions
in set theory apply here. In the following, we highlight the
definitions that are useful for our discussions.

• The universal flowset U contains all the possible
flows, and the empty flowset ∅ contains no flow. Two
flowsets A and B are said to be disjoint if their
intersection is empty, i.e., A

⋂
B = ∅.

• We denote the cardinality of flowset F as |F |, which
is a measure of the “number of possible flows of the
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Figure 3: Visualization of Table III. Figure 4: Disjoint Flowsets of Figure 3.

flowset”. Note that |F | can be larger than the actual
number of active flows one observes in a particular
traffic instance, which we denoted as |F |′.

• We denote |Hi| as the total number of possible val-
ues of field Hi. Therefore, |Hsip| = |Hdip| = 232,
|Hspt| = |Hdpt| = 216, |Hprt| = 28. The total number
of possible flows, which is also the cardinality of U, is∏n

i=1 |Hi|.
• A set of flowsets F : {F1, F2, · · · , Fn} is said to be a

partition of a flowset X iff (Eq. 1) none of the flowset
in F is empty, (Eq. 2) flowsets in F are pair-wise
disjoint, and (Eq. 3) the union of all flowsets in F
equals to X. In particular, F is complete if it is a
partition of U.

Fi 6= ∅ ∀ 1 ≤ i ≤ n (1)

Fi

⋂
Fj = ∅ ∀ 1 ≤ i 6= j ≤ n (2)

n⋃
i=1

Fi = X (3)

• We denote Fc as the counter associated with a flowset
F . The counter is updated when a matching packet is
observed and can take any unit, e.g., packets or bytes.
We also denote Fw the actual weight of F , and F ′w the
measured weight of a flowset F . Measuring Fc and F ′w
are equivalent if one keeps a counter for all packets.

C. Underlying Data Structure

The string representation of flowset is not ideal for
complicated set operations. Following the approach used
to encode firewall rules and access lists in recent studies [7,
8], we use binary decision diagram (BDD) [9] as the
underlying data structure for flowset (referred to as flowset
label hereafter). BDD is an efficient data structure that
is widely used in formal verification and simplification of
digital circuits. A BDD is a directed acyclic graph that
can compactly and canonically represent a set of boolean
expressions. In a BDD graph, the non-terminal vertices
represent the variables of the boolean function, and the
two terminal vertices represent the boolean values 0 (True)
and 1 (False).

In ProgME, we map every bit field of packet header to
a BDD variable. For example, we encode the source IP
block 128.0.0.0/4 as sip(s1s

′
2s
′
3s
′
4), whose corresponding

BDD is shown in Figure 5a. Similarly, the BDD for source

(a) (b) (c)

Figure 5: BDD Encoding.

IP 192.0.0.0/4 is depicted in Figure 5b. Note that only the
first 4 bits are used and the 24 masked bits are omitted in
the BDD. Performing set operations such as intersection,
union, not, and implication using BDDs is straightforward.
Figure 5c depicts the union of Figure 5a and Figure 5b. To
determine if a packet matches a flowset, one can extract
corresponding bit value from packet header and traverse
through the BDD once until reaching either the “true”
or “false” node. For example, a packet with source IP
“200.0.0.1”can be quickly identified to be not in the flowset
depicted in Figure 5c since traversing with s1 = 1 and
s3 = 1 leads to false.

The BDD representation of flowset has the following
properties.

• The number of BDD variables used, V , is a constant
defined by the size of the defining variables. For the
5-tuple superflow predicate, it is 104 (8 bits protocol,
2x32 bits source and destination IP address and 2x16
bits source and destination port).

• The number of BDD nodes used to describe a 5-tuple
flow (Nf ) is 104 as every bit variables is used.

• The number of BDD nodes used to describe a 5-tuple
superflow (Ns) has an upper-bound of 104. This is
because BDD ignores the unused bit variables, e.g.,
the masked bits in CIDR IP address block.

• Since a flowset is formed by set operation among a
number of N superflows, the number of BDD nodes
used to describe any flowset has an upper-bound that
is determined by the total number nodes used to
define each flow. The actual number of nodes can
be smaller since BDD keeps the canonical form. The
depth of the flowset has an upper-bound equavilent
to the longest of the defining superflow.



5

III. Flowset-based Query Answering Engine
(FQAE)

Figure 6: Flowset-based Query Answering Engine.

A major task of traffic measurement is to answer user
queries about the characteristics of certain traffic aggre-
gates. These traffic aggregates can have very different
granularities. For example, one might query for the FTP
traffic to certain hosts (fine granularity) or a particular
ingress-egress pair of the network (coarse granularity).
As discussed in Section I, current measurement systems
collect fine-grained per-flow traffic statistics and rely on
individual applications to perform post-processing to ex-
tract the desired information. This approach is not scalable
since modern networks could observe millions of flows.

We make the observation that the total number of
potential user queries can be far smaller than the num-
ber of flows it observes. If the measurement system has
sufficient knowledge about the queries, it only needs to
maintain aggregated state information that pertains to the
queries, thereby avoiding the expensive per-flow states. In
the following section, we present the Flowset-based Query
Answering Engine (FQAE) that is capable of answering
any user queries on traffic aggregates while maintaining a
minimum number of counters. FQAE contains two fun-
damental blocks – a measurement engine that collects
per-flowset traffic statistics and a program engine that
takes a list of user queries (Q) as input and controls what
to measure. The user queries are written using FCL as
illustrated in Table III.

To collect per-flowset traffic statistics, one needs to
increase the counter associated with a flowset upon ob-
serving a matching packet. This is similar to the classic
packet classification problem, but has the following dis-
tinct differences. In packet classification, the goal is to
find the best matching rule. Multiple rules can match a
given packet, but a conflict resolution mechanism, e.g.,
longest-match-first in routing or first-match-first in packet
filtering, can be used to determine the best matching rule.
Once the best-matching rule is found, other rules can be
safely ignored. In our case, one packet might need to be
counted for multiple matching flowsets since queries might
have non-empty intersections.

One naive approach is to match a packet against all
queries one-by-one. This is inefficient when the number of
queries is large. As illustrated in Figure 6, our approach

Algorithm 1: D ← Disentangle(Q).

input : A list of queries Q (|Q| = n > 0)
output: A list of disjoint flowsets D

D.append(U);1

foreach x in Q do2

for p in D do3

if x <> p then // identical4

break ;5

else if x ⊂ p then // subset6

D.append(p \ x) ;7

D.replace(p, x);8

break ;9

else if x ⊃ p then // superset10

x← x \ p ;11

else if p
⋂
x 6= ∅ then // overlap12

D.append(p \ x) ;13

D.replace(p, x
⋂
p) ;14

x← x \ p ;15

else continue ; // disjoint16

D.append(x) ;17

is to first disentangle the user queries to disjoint sub-
queries such that each packet matches exactly one sub-
queries (details in Section III-A). Consequently, we only
need to find the only matching sub-query and increment
its counter. We follow the similar approach as in EGT-
PC [10] to achieve this goal (details in Section III-B).
One can certainly imagine using other packet classification
techniques to assist in identifying the matching sub-query.
However, the tradeoffs in memory and speed need to
carefully explored. Please refer to [11] for a comparison
of some packet classification algorithms.

A. Disentangling User Queries

Algorithm 1 generates disjoint sub-queries (D) from a
list of user queries (Q). It works by adding the flowsets in
Q to D in sequence. For every flowset in Q, we compare
it with flowsets in D in sequence. A pair of flowsets must
satisfy one of the following relationship: identical (line 3),
subset (line 6), superset (line 10), overlap (line 12), and
disjoint (line 16). Therefore, one can use set operations to
separate the overlapped flowsets. Note that Algorithm 1
initiates D with one flowset – the universe (U). As user
queries might not cover the universe, this step ensures the
resulting D is complete (a partition of U). Consequently,
every packet will match exactly one flowset in D.

Figure 4 illustrates the effect of running Algorithm 1
on the two queries in Table III (shown in Figure 3). The
two flowsets defining the original queries have non-empty
intersection. They divide the universe into four disjoint
flowsets. Note that all operations in Algorithm 1 are per-
formed using the underlying BDD-based data structure.
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Figure 7: HashReduce Algorithm.

B. Reducing Matching Candidates

Since the disjoint sub-queries D is a partition of the
universe U, every packet is guaranteed to match exactly
one flowset. However, the naive approach — comparing a
packet against each flowset until a match is found — is
still not an efficient solution when the number of flowsets
in D is large.

FQAE introduces a hash table based mechanism called
HashReduce to reduce the number of comparisons required
to find the matching flowset (step 2 in Figure 6). We use
a hash function that simply extracts several bits from
the header fields. For every possible hash value H, we
build a BDD Hbdd, which describes a flowset containing all
flows with this particular value in the header. The table
of matching candidates can then be built by finding all
flowsets in D that has non-empty intersection with Hbdd.
Consider Figure 7 as an example that uses the first bit from
source IP and the first bit of destination IP field. The hash
function, by extracting two bits, divides the universe into
four quadrants, each intersects with a few flowsets in D.

The HashReduce mechanism follows the similar spirit
as EGT-PC [10], which uses one or two header fields
to find candidate matching rules in n-tuple packet filter.
Furthermore, it presents a tradeoff between memory and
lookup speed that can be fully customized. Using more
bits in the hash function incurs more memory overhead
but can reduce the number of candidates in table entries.

C. Traffic-aware Optimization

During the measurement process, FQAE performs Traf-
ficSort (step 3 in Figure 6), which sorts the table of
matching candidates based the packet counters of match-
ing candidates. Consequently, candidates matching more
packets will appear earlier in the process, thereby reducing
computation overhead. Note that this seemingly simple
optimization is possible only because FQAE make flowsets
fully disjoint. If flowsets have non-empty intersections,
finding the optimal order is NP-complete, and one will
have to resolve to heuristics, as some have attempted in
the context of packet filtering [12, 13].

D. Collecting and Reporting Statistics

Collecting traffic statistics is a simple two-step process.
Upon receiving a packet, FQAE first uses the same hash
function to extract the bits from the packet header and
looks up the table of matching candidates for a list of

(a) Packet-based (b) Row-based

Figure 8: Parallel Versions of ProgME

candidate flowsets. Then, FQAE compares the packet to
the flowset sequentially until a matching flowset is found.
Based on the statistics collected for each sub-queries,
answering user queries requires a simple aggregation. Note
that the fundamental difference here, as compared to per-
flow statistics, is that sub-queries are generated according
to user queries and we expect the number to be signifi-
cantly smaller than the number of flows in traffic.

E. Implementation

The speed of FQAE, in terms of how many packets it
can process within one second, is an important metric for
evaluating the feasibility of deploying ProgME in high-
speed networks. The interpretation of FCL and query
disentanglement are performed when user queries arrive.
FQAE needs to perform the following two operations
at per-packet level in order to match the packet to its
corresponding flowset: (1) HashReduce, a hash function to
identify a list of matching candidates. This step basically
extracts several relevant bits from the packet header. (2)
If there are n matching candidates, check the packets se-
quentially against the candidates until a matching flowset
is identified. This requires n − 1 matching operations in
the worst case.

To achieve best performance, the actual implementation
of FQAE must adapt to the underlying platform. In the
following, we explore several implementation strategies of
FQAE. Our first implementation (mFQAE) is a generic
implementation that works on any linux-based PC plat-
form. mFQAE is a monolithic program that runs on a
single CPU.

The recent trend in CPU development is moving to-
wards multi-core processors instead of increasing clock
speed. However, recent work on traffic measurement are
yet to exploit parallelism with these multi-core processors
to increase the processing speed.

One naive approach for exploiting multi-processor is
packet-level parallelism (pFQAE, as illustrated in Fig-
ure 8a), in which one instantiates a thread for every packet.
This approach basically relies on the underlying operating
systems to create a ProgME instance for each packet,
thereby distributing the load over multiple processors.
However, our measurement suggests that this approach
results in a system with worse performance than that of
the original single-thread mFQAE. The reason is that
even though thread is lightweight, they still incur overhead



7

when they are created. In our scenario, thread creation in-
curs more overhead than matching one packet in ProgME.
Therefore, doing packet-level parallelism is not feasible.

Our second approach is row-level parallelism (rFQAE),
which is based on the worker thread pool pattern. In
this version (Figure 8b), the main thread running the
HashReduce routine will hash packets into their respective
row, where they are queued in a per-row buffer. For each
row, a worker thread is instantiated to process packets in
its buffer. When the number of independent sub-queries
are large for each row, this row-level parallelism enables
the main process to quickly distribute the computation
load to other processors available to the system. We eval-
uated both mFQAE and rFQAE later in our experiments
(Section V-D) and found rFQAE can effectively exploit
the multi-core processors to improve performance.

IV. Heavy Hitter Identification

Heavy hitters, or elephants, are the largest-n flows in
terms of weight in network traffic. Alternatively, one can
define heavy hitters as flows with a weight larger than
a threshold θ. These two notions are equivalent if the
threshold θ equals the weight of the nth largest flow. In
this paper, we use the latter definition unless mentioned
otherwise. We further assume the weight of a flow f ,
fw, is defined relatively as a percentage of total traffic.
Identification of heavy hitters are of particular interest
to network management. For example, traffic engineering
often focus on re-routing the few heavy hitters instead of
worrying about the large number of mice [5].

Identifying heavy hitter is trivial if one maintains a
counter for every single flow. However, this naive approach
is not memory-efficient and does not scale to large num-
ber of flows. We propose Multi-Resolution Tiling (MRT),
which exploits the versatility of FQAE and offers scalable
heavy hitter identification. Our key idea is that one can,
by observing a flowset, infer the characteristics of its sub-
sets or objects (the flows). Therefore, one can selectively
zoom into flowsets that might contain heavy hitters while
ignoring others.

A. Multi-Resolution Tiling (MRT)

Algorithm 2 presents the multi-resolution tiling (MRT)
algorithm for identifying elephants. MRT starts from a
range R, which is provided through user specification as a
flowset. This enables one to only identify elephants within
a certain flowset, e.g., elephants that are TCP flows. If no
user specified R is given, MRT starts its search set to U.

At each iteration, MRT calls upon FQAE to match
a list of S packets from P . For every flowset F in D,
MRT performs sequential hypothesis test (Section IV-B)
to determine if the weight of F (Fw) is larger than θ, the
threshold that defines an elephant. MRT uses the following
logical inference rule (Eq. 4) to determine if a flowset can
be ruled out in considering its possibility of having any
elephants. The rule states: if the weight of a flowset F ,
which is the sum of the weight of all flows in it, is smaller

Algorithm 2: Multi-Resolution Tiling.

input : P : a packet enumerator
input : R: a flowset defines the search range
output: Eleph: A list of identified elephants

eleph← {};1

mice← {} ;2

D ← Partition (R) ;3

repeat4

FQAE (D, P , S) ;5

for F in D do6

if Fw < θ then // no elephants7

mice.append (F );8

else if |F | = 1 then // elephant9

eleph.append (F ) ;10

else if Fw >= θ then11

D.replace (F , Partition (F )) ;12

D.replace (mice, union (mice));13

until ElephantsFound ;14

than θ, then none of the flow f in F can possibly be an
elephant.

Fw < θ ⇒ fw < θ ∀ f ∈ F (4)

If it is impossible for a flowset to contain any elephant,
we exclude all flows in F from further consideration.
Otherwise, we partition F into multiple disjoint flowsets
and start another iteration. The partition algorithm will
be discussed in great detail in Section IV-C. In essence,
MRT keeps on filtering out flowsets that cannot contain
elephants while zooming in on those that might. This
iteration terminates when all the elephants are identified.
For identifying threshold-θ elephants, this happens when
all the flowsets with a weight larger than θ contain only
one flow. For identifying largest-n elephants, this happens
when the largest n flowsets contain only one flow.

B. Sequential Hypothesis Testing

In Algorithm 2, it is crucial to determine quickly if the
weight of a flowset is larger than θ (Fw > θ). We propose
to use sequential analysis, more specifically sequential
probability ratio test (SPRT) proposed by Wald [14], to
achieve this. SPRT has been used successfully by Jung et
al. [15] for port scan detection. Instead of using a fixed
sample size to determine the correctness of a hypothesis,
sequential analysis allows one to determine dynamically
whether further observation is required based on the cur-
rent observation.

Let H0 be the null hypothesis and H1 be the single
alternative. An ideal test procedure should satisfy user re-
quirement on false positive rate (α) and false negative rate
(β) while requiring the minimum number of observations.
SPRT, for all practical purposes, can be regarded as such
an optimum sequential test procedure.

Let us denote the result of ith observation as Xi and
the result of a series of n observations as a vector X :<
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X1, X2, · · · , Xn >. SPRT hinges on finding Λ(X) — the
probability ratio that this entire observation is produced
when H1 is true as compared to the case when H0 is true.

Λ(X) =
P{X|H1}
P{X|H0}

(5)

As described in Eq. 6, we compare Λ(X) against two
positive number A and B, where A and B are deter-

mined by the user prescribed strength (α, β) (A ≤ 1− β
α

,

B ≥ β

1− α
, A > B). If Λ(X) is greater than A (smaller

than B), we consider that there are strong enough statis-
tical evidence to accept (reject) the null hypothesis and
the test terminates. Otherwise, we continue with more
observations.

Intuitively, Λ(X) is an indicator of the likelihood
whether H0 or H1 is true.

decision =


reject H0 (accept H1) if Λ(X) > A

accept H0 (reject H1) if Λ(X) < B

continue observation Otherwise

(6)

In order to determine if MRT should zoom into a partic-
ular flowset F , we need to determine if the weight of F is
larger than θ. Therefore, our null hypothesis H0 is Fw < θ
and the alternative hypothesis H1 is Fw ≥ θ (Eq. 7). Since
these two hypotheses are composite hypotheses, the actual
hypothesis we used for testing is H ′0 and H ′1 in Eq. 8. Note
that θ− (θ− < θ) is chosen such that false positive rate
is smaller than or equal to α. Similarly, θ+ (θ+ > θ) is
selected such that false negative rate is smaller than or
equal to β:

H0 : Fw < θ and H1 : Fw ≥ θ (7)

H ′0 : Fw = θ− and H ′1 : Fw = θ+ (8)

For the ith packet (pi) observed, we use Xi to indicate
if it is a member of F :{

Xi = 1 if pi ∈ F

Xi = 0 if pi /∈ F
(9)

Therefore, Xi is a Bernoulli random variable with param-
eter Fw.

P{Xi = 1|H ′1} = θ+ P{Xi = 1|H ′0} = θ−

P{Xi = 0|H ′1} = 1− θ+ P{Xi = 0|H ′0} = 1− θ−
(10)

With n packets, one observes a vector of random variable
X :< X1, X2, · · · , Xn >. If these n packets are randomly
sampled, then Xi are all independently and identically
distributed (i.i.d). Therefore, Λ(X) can be found as the
product of the probability ratio of every single observation
(Eq. 11). Eq. 12 defines Λ(X) in log space, which is
easier for computation, especially if Λ(X) is incrementally
updated.

(a) C = 4 (b) C = 16 (c) C = 19

(d) G = 2 (e) G = 16 (f) G = 64

Figure 9: Partition Strategies.

Λ(X) =

n∏
i=1

Λ(Xi) =

n∏
i=1

P{Xi|H1}
P{Xi|H0}

(11)

log Λ(X) =

n∑
i=1

log Λ(Xi) (12)

Let us denote the scenario that m among the n observed
packets belongs to F as Xm

n . The probability of observing
Xm

n when H1 or H0 is true can be found as:

P{Xm
n |H ′1} = (θ+)m(1− θ+)n−m (13)

P{Xm
n |H ′0} = (θ−)m(1− θ−)n−m (14)

One can determine the probability ratio of Xm
n as:

log Λ(Xm
n ) = m log

θ+

θ−
+ (n−m)log

1− θ+

1− θ−
(15)

Eq. 15 requires the knowledge of n and m. Our FQAE
routine counts the number of packets matched by each
partition (m). n is simply the total number of packets ob-
served so far. The value of log Λ(X) can then be compared
with logA and logB as described in Eq. 6.

C. Partition Strategies

After determining that a flowset F might contain ele-
phants, we need to partition F so that MRT can zoom
into this flowset. The total number of possible partitions
for a set F with n elements can be found recursively using
Bell number with Bn+1 =

∑n
k=0

(
n
k

)
Bk and B0 = B1 = 1.

This number can be huge, even when the cardinality of
F (|F |) is only marginally large, say 10. Therefore, it
is impractical to explore every possible partition of F .
Choosing a particular partition presents a tradeoff between
memory consumption and speed in identifying elephants.
We define the memory cost factor C as the number of
subsets generated and the identification gain factor G as
the cardinality of original flowset over the total cardinality
of remaining flowsets that might contain elephants.

One natural strategy is to partition F into equal size
subsets. Figure 9a and Figure 9b present two approaches
with different memory cost factor and Figure 9d and Fig-
ure 9e present their respective results after one iteration.
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{sip} {dip} {sip, dip}
#1 53,191 214,411 336,463
#2 52,762 127,543 293,519

Table IV: Number of Flows in 5-minute Traces.

With a large memory cost factor, one can partition the
flowsets into more smaller subsets. Consequently, it can
exclude more flowsets in a single iteration and achieves a
larger gain factor. Therefore, the optimal strategy is to use
the largest memory cost factor as long as it satisfies the
memory constraint. The number of iterations (N) required
to identify the elephants is:

N = logC |U| (16)

Without a priori knowledge about the elephants, equal-
size partition is the optimal strategy. In reality, how-
ever, administrators do have knowledge to make educated
guesses, which might further improve the speed of heavy
hitter identification. For example, one probably expect the
protocol field of elephants to be TCP or UDP in most
networks. For a particular network, certain IP addresses,
e.g., Web/FTP server and certain port numbers e.g., port
21 or 80, are more likely to appear in elephants.

Using ProgME, it is easy to exploit user knowledge to
improve identification of elephants. Our approach is to use
preferential partitioning, which allow users to predefine
flowsets with an amplified memory cost factor C ′. This is
illustrated in Figure 9c. The lower left quadrant is assigned
a larger memory cost factor and is therefore partitioned
into smaller subsets. Consequently, even though the mem-
ory consumption of the strategy in Figure 9c is lower than
the strategy in Figure 9b, the identification gain is larger.

The effectiveness of preferential partitioning relies heav-
ily on the users making correct guesses. We believe this is
a reasonable assumption for administrators that monitor
network behavior on a daily basis.

V. Evaluation & Discussion

In this section, we evaluate the proposed ProgME
framework, which has two major components — the pro-
grammable engine (FQAE) and the adaptive controller
(MRT). We first look at the scalability and accuracy of
FQAE and use two application scenarios to discuss the
potential usage of FQAE in traffic engineering and security
monitoring. We then discuss the memory cost and speed
of MRT in identifying heavy hitters.

A. Scalability of FQAE

FQAE has a significant advantage in terms of scalability
because it keeps per-flowset counters instead of per-flow
counters. We perform empirical evaluation on the scala-
bility of FQAE by comparing the number of counters one
has to keep for flow-based and flowset-based measurement.

To understand the typical number of flows one should
expect on high speed links, we look at the packet traces
collected at OC-48 links by CAIDA [16] on April 24, 2003.

Configs
# flowsets

Log-Only (Orig/Disj ) All (Orig/Disj)
#1 19/22 40/55
#2 0/0 35/38
#3 0/0 800/845

Table V: Size of Queries.

We choose to look at the 5-minute traces since 5-minute is
a typical statistics report interval. As shown in Table IV,
these trace files have a large number of flows (in the order
of 105 − 106) even when using simple flow definitions like
source or destination IP address. If we use the two-tuple
{sip, dip} flow definition, the number of flows are even
larger. We only present results from two traces. Other
traces also have similarly large number of flows.

Since we have yet to see production usage of FQAE, we
emulate the scenario of network administrator querying
live traffic based on the production firewall configurations
obtained from a tier-1 ISP and several campus networks.
We use two approaches to emulate potential flowsets
from these firewalls. In the first approach, we consider
each “LOG” rule in the configuration file as a query
for statistics. In the second approach, we consider every
filtering rule as a query. Table V presents the number
of user queries based on several firewall configurations.
One can observe that the number of queries or disjoint
sub-queries are significantly smaller than the number of
flows one would observe from traffic traces. Note that such
emulation does not fully utilize the capability of FQAE
to reduce counters as we make a conservative assumption
that every rule corresponds to a query.

One might argue that the number of independent
flowsets generated by n user queries (denoted as m) can
also be large. This is a legitimate concern since m = 2n

in the worst case when every new flowset overlaps with all
existing flowsets (Algorithm 1, line 12). However, we argue
that the number of flowsets cannot be larger than the
number of active flows. One can ensure that every flowset
contains at least one active flow by aggregating flowsets
with no active flows into one large flowset. Furthermore,
our study on filter rules show that only a small portion
of the rules overlaps with other rules. Consequently, the
number of disjoint sub-queries (m) is only moderately
larger than the number of queries (n) instead of being
close to 2m. This is also consistent with earlier study on
firewall and router configurations. For a scenario of 300
queries with every 3 rules overlapping with each other, the
number of disjoint flowsets one has to maintain counter for
is just 700, which is significantly smaller than the number
of flows on most high-speed links.

The reduced number of counters has multiple implica-
tions to the measurement architecture. First, it makes it
possible to store the counters in the faster registers or
SRAM. This is crucial for high-speed network devices.
Second, it reduces the volume of data to be exported.
Currently, Cisco NetFlow imposes a minimum five minutes
interval between subsequent exports so that the mea-
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Figure 10: Memory Cost of Flowsets.

surement data, probably coming from multiple vantage
points in the network, will not overload the network. With
the reduced number of counters, one can monitor the
network at a higher temporal resolution and thus be more
responsive to any anomalous events.

B. Memory Cost of Flowsets

Although FQAE can reduce the number of counters,
a legitimate concern is that how much memory one has
to spend for maintaining the underlying data structure
of flowsets. To understand the memory cost associated
with a flowset, we first look at a practical scenario of
building a flowset representing all the bogon IP addresses
in Figure 10a. We add each CIDR block in the current
bogon list [17] one-by-one using the “union” operation and
plot the corresponding number of BDD nodes required to
represent this flowset (“FQAE”). For comparison, we plot
the cardinality of the flowset and observe that the cardi-
nality of the flowset increase significantly faster than the
number of BDD nodes used to describe it. Furthermore,
we plot the total number of BDD nodes used to describe
each CIDR block. Without using FCL, a list representation
of all the CIDR blocks (“BDD w/o FCL”) will require
more than five times the memory. Note that the last bogon
entry is 224.0.0.0/3, which could match 229 unique source
IP address, thus resulting in the sharp increase in the
cardinality of the flowset at the right end. However, its
BDD representation requires only three nodes. In the case
of using FCL to construct the flowset, only one additional
node is required.

(a) Flows (b) Unbiased (c) Biased

Figure 11: Flow-based Estimation.

Figure 10b looks at the number of BDD nodes associated
with randomly generated flowsets. On the X-axis, we vary
the number of primitives used to define a flowset. Each
primitive is defined by two-tuple {sip, dip} with both mask
lengths varying between 7 and 26. We randomly choose
set operators (∩, ∪, \) to join the primitives so that
the resulted flowset is non-empty. One can observe that
the maximum number of nodes used to describe a flowset
grows linearly with the number of primitives. This is
consistent with our discussion in Section II-C and happens
when the BDD representations of the primitives do not
share common path. However, the average number of BDD
nodes for a flowset grows significantly slower and is sub-
linear to the number of primitives. Note that the memory
required to define a flowset depends only on the primitives
and the set operators and is independent of the traffic
pattern it measures.

One might notice that we used the number of BDD
nodes instead of the more direct bytes to evaluate memory
consumption. This is because there are many BDD pack-
ages with node size varying between 8 and 36 bytes. Our
current implementation is based on BuDDy [18], which
uses 20 bytes per node. We believe that porting ProgME
to another BDD package is easy and will not require
any change to its algorithms. Please refer to [19] for a
comprehensive survey on various BDD packages.

C. Accuracy of FQAE

The accuracy of measurement is of paramount concern
for every management application. Existing flow-based
measurement tools use average per-flow error as the pri-
mary measure of accuracy. Facing the challenge posed by
the large number of flows, some recent research propose
to keep counters preferentially for large or long-lived flows
while excluding mice from occupying counters (more de-
tails in Section VI). Such techniques effectively produce
biased flow statistics that results in smaller average error
than unbiased random sampling. Note that unbiased ran-
dom sampling naturally favor large flows because small
flows have higher chances of not being sampled. Ideal
unbiased per-flow statistics is only possible when every
packet is counted. Please refer to [5] for comparison of
different techniques in terms of average error achieved.

For a management application, lower average error does
not always translate to higher accuracy for the answers
to their queries, which directly affects their decisions
and is more important. Consider the scenario depicted in
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Figure 11. The original traffic has some elephants and mice
(Figure 11a). Figure 11b presents the ideal measurement
results for the four queries on each quadrant if every single
flow is recorded. Ignoring mice cause limited errors on
queries dominated by elephants. However, for queries in-
volving mostly mice (the top left quadrant in Figure 11c),
the error can be very high.

Queries dominated by mice do have practical impor-
tance in network planning and monitoring. Typical ex-
amples are ICMP, DNS, and routing traffic. Although
the absolute volume of these traffic might be small, their
relative volume variation could be a useful indicator for
administrators. Biased statistics that ignores these traffic
is not suitable for monitoring mice-dominated traffic. More
importantly, biased statistics makes it possible for attack-
ers to evade the detection of volume-based monitoring
tools. An attacker can generate a large number of flows,
each with a different spoofed source IP address and small
number of packets. Since these individually small flows
are likely to be ignored by both biased and unbiased per-
flow measurement, post-processing of statistics collected
via traditional methods might fail to detect these attacks.

If there were no memory limitation and statistics could
be maintained for every flow, per-flow statistics could
achieve high per-query accuracy under any traffic condi-
tion. FQAE achieves the same effect by counting for each
query directly. The analytical proof is skipped in this paper
due to space limitation. Intuitively, If every single flow is
recorded, it does not matter whether post-aggregation or
pre-aggregation is used.

D. Speed of FQAE

In this section, we evaluate the speed of FQAE, which
can help determine (1) if ProgME can handle modern link
speeds, and (2) what can we do in cases when ProgME
cannot match a link speed, e.g., change to faster processor
or use sampling for load shedding. We run randomly
generated queries on the OC-48 traces from CAIDA [16] to
determine the average processing speed. All experiments
are performed on a Dell computer with two quad-core Intel
Xeon processor running at 2.00GHz.

From Figure 12, one can observe that the monolithic
version of FQAE (mFQAE) achieves processing speed
between 3 to 10 Gbps depending on the number of queries

# Counters Accuracy

Per-Flow 106 High
Elephants 103 Good
Superflow 1.7× 105 High

FQAE 1 High

Table VI: Comparison on Deriving Traffic Demand.

to the systems. When there are more queries, FQAE is
slower since it might need to match a packet through
more queries. One might also notice that FQAE almost
reaches a constant speed when there are more than 300
queries. This is because most packets have been matched
by queries in the front part of each row (cf. TrafficSort
in Section III-C). Additional queries at the end of each
row only match a small number of packets, although they
require more processing.

One can also find that the parallel version of FQAE
(rFQAE) can effectively exploit the additional processing
power to improve its speed. By enabling two CPUs, the
processing speed almost doubles that of mFQAE. With
all 8 CPUs enabled, rFQAE reaches about 7 Gbps speed.

E. Case Studies on FQAE

In this section, we present two case studies illustrating
how administrators can use FQAE to accomplish their
measurement goals. To use FQAE, one need to use FCL to
specify the measurement queries. These two case studies
show that it is not easy to produce the flowset definitions
defining practical measurement tasks. We also compare
FQAE with the following approaches:

1) Per-Flow : the ideal case that every flow is tracked.
2) Elephant : methods that produce biased statistics

that favors heavy hitters, as discussed in Sec-
tion V-C.

3) Superflow : In many routers and firewalls, it is possi-
ble to configure LOG rules to collect traffic statistics
of superflows. LOG rules are similar to accept/drop
rules except that its only operation is to increment
the counter when a matching packet is observed.
There is a large amount of research on packet clas-
sifiers, but for comparison purposes, we consider
the most widely deployed variation, where a packet
traverses through the rules sequentially until the first
matching is found.

1) Deriving Traffic Demand: Our first task is to collect
traffic statistics for deriving the traffic matrix of an ISP
backbone. In particular, we consider the case that an
administrator wants to measure the traffic going through
a particular ISP with a list of AS number Y1, Y2, · · · , Yn.
Such measurement has important application in traffic
engineering and network planning.

The classical approach proposed by Feldmann et al. [20]
is to perform per-flow measurement on an ingress router
and then, based on the routing table at that moment,
aggregate the flow statistics to find traffic demands. They
also observed that around 1,000 elephants account for
about 80% of the traffic demands. Therefore, techniques
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# Counters Accuracy Computation/Pkt

Per-Flow 109 High 1 Hash
Superflow 71 High 35.5 match

FQAE 1 High 1 bdd imp
Elephants 103 Low ×

Table VII: Comparison on Tracking Bogons.

that ignore mice should still return sufficiently good statis-
tics in general. One could associate a counter with every
routing rule to collect statistics for each prefix (superflow)
and then perform aggregation. However, since current
BGP table carries around 170,000 prefixes [21], such ap-
proach will generate a large amount of data.

We propose a two-step approach to pre-process the rout-
ing table and compute the flowset that will go through AS
Y . First, we process the routing table to find all prefixes
that contains any of Yi, Y2, · · · , Yn in its AS path. Then we
use FCL to compute the union of the selected prefixes to
find the flowset. We experiment by applying this approach
on processing the BGP routing table dumped by the
Route Views project [22] and find this approach viable.
We identified 84,312 prefixes (among a total of 188,275
prefixes in the routing table) that might traverse through
this tier-1 ISP (with 13 AS numbers) on its AS path.
Figure 13 presents the BDD nodes used throughout our
computation. The final flowset that represents the union
of them requires a total of 70,291 BDD nodes (1.4MB
using BuDDy and can be reduced to 560KB using other
packages). At the beginning, adding new prefixes causes
the BDD to require more nodes to enumerate more paths.
However, the number of BDD nodes used to describe such
flowset peak at about 80,000 nodes (56,000 prefixes) and
decreases with more prefixes. This is because the large
number of BDD paths actually present more opportunity
for BDD to summarize the entire sub-tree into one node.

2) Tracking Bogons: The second task we consider is to
track bogons, which are packets with reserved or unallo-
cated source IP addresses. Packets from these addresses
are often used by spammers or attackers and otherwise
have no legitimate reason to appear on the Internet. Since
these source IP addresses are spoofed, differentiating them
is not meaningful. Administrators would normally want to
track the aggregated volume of bogons as a single metric.
Furthermore, administrators have to be prepared for the
worst case since this is a security-oriented application.

The current bogon list [17] has 71 non-aggregated CIDR
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Figure 14: Average Sample Number E[N ].

blocks (about 109 unique IP addresses). Keeping per-
flow counter for these bogons is clearly unrealistic, even
though it has high accuracy and requires only a single
hash operation to derive the flow ID. Techniques that
focus on elephants are not suitable here as we discussed in
Section V-C. For superflow-based measurement, a packet
will be compared with 35 bogon IP blocks on average.
Using FQAE, one can pre-compute the union of all 71
CIDR blocks in bogon list as one flowset (as in Figure 10a).
Consequently, one only needs to maintain one counter for
all packets with bogon source.

F. Speed of MRT

In network monitoring, especially if it is security-related,
it is important to detect a heavy hitter in the shortest
time possible. In addition to the memory cost factor,
the sample number required for the hypothesis to be
conclusive (denoted as N) is another key parameter. For
a flowset with weight Fw, the expected value of N (E[N ])
is a joint function of θ+, θ− Fw, α and β, as in Eq. 17.

E[N ] =
L(Fw) logB + (1− L(Fw)) logA

Fw log
θ+

θ−
+ (1− Fw) log

1− θ+

1− θ−

(17)

In Eq. 17, L() is the operating characteristics (OC) func-
tion of the test. Directly evaluating L(Fw) is difficult.
Therefore, Wald [14] proposed a numerical method to
evaluate L(Fw), which we used here to calculate E[N ].

Figure 14 presents E[N ] under various scenarios. For a
given α and β, Average sample number (ASN) is larger
when Fw is close to the threshold θ and is small when the
weight is either significantly larger or smaller than θ. This
property presents a much desired feature for heavy hitter
identification — heavier elephants will be identified faster
than not-so-significant elephants.

One can use Figure 14 together with Eq. 16 to deter-
mine the expected speed of MRT in identifying elephants.
Consider the case that we want to find all flows with
weight larger than 0.01 and one flow f has a weight of
0.1. The worst case scenario is that f is the sole flow in
the flowset that covers it. In this case, it takes an average
of 26 samples for the hypothesis test to conclude that MRT
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should zoom into this flowset. For a two-tuple {sip, dip}
definition of flow and a memory cost factor of 256, it takes
eight iterations, i.e., 208 packets to identify the ID of this
flow. This is the worst-case and the actual speed of MRT
depends on the traffic pattern and can be faster.

VI. Related Work

Cisco’s Netflow V9 [23] and IETF’s IPFIX [24] propose
very generalized definition of flow. In RFC 5101, the defi-
nition of flow is essentially a set of packets selected based
on functions applied to packet header fields, characteristics
of packet or treatment of packet. It is however unclear
what functions one can define. One could use FCL as the
function to define flow in conformance to RFC 5101.

Online aggregation [25, 26] has received considerable
attention in the database community. A typical example
is to find the sum or average of a large number of objects.
Instead of running through a large number of objects and
return an accurate result after a long latency, such systems
use statistical methods to provide running estimation so
that users can decide in real time whether to continue. If
a database of flow/packet records has been built, such a
system can be adapted to query a database of flow records.
The proposed flowset composition language (FCL) can be
used for efficient specification of user queries, and FQAE
can be used for aggregation on the database side.

There are several work on producing traffic summary or
identifying hierarchical heavy hitters. Aguri [27] is a traffic
profiler that aggregates small flow records (both temporal
and spatial) until the aggregated weight is larger than a
certain threshold. Autofocus [28, 29] is a traffic analysis
and visualization tool that finds both uni-dimensional
or multi-dimensional clusters from traffic trace or flow
records. These tools requires per-flow statistics to make
summary bottom-up. They are more engineered to work
offline to find an effective presentation of traffic statis-
tics but cannot improve the scalability of the measure-
ment tools. There are some online variants that identify
hierarchical heavy hitters without maintaining per-flow
counters. Zhang et al. [30] applied packet classification
algorithms dynamically (upon reaching a fixed threshold)
to identify hierarchical heavy hitters top-down. The MRT
algorithm in this paper also zoom into the heavy hitters
top-down, but use SPRT to update the flowsets with
proved optimality. Both offline and online aggregation
are performed along hierarchies and driven entirely by
traffic. They do not consider the different preference that
administrators might have, e.g., to cluster traffic on port
80 with port 8000 instead of port 81.

In Section V-C, we compared FQAE with techniques
that produce biased flow records to reduce resource con-
sumption. This is exemplified by the work by Estan and
Varghese [5], which calls to “focus on the elephants and ig-
nore the mice” in flow statistics collection. They proposed
two techniques, namely sample and hold and multistage fil-
ter, to achieve this goal. Of similar spirit are the work using
smart sampling techniques. Threshold sampling [31, 32] is
a stream-based method fits ideally for online monitoring.

Priority sampling [33] follows the similar spirit of online
aggregation and is more suitable for querying a database of
flow records. Another class of elegant formulation are the
coincidence-based techniques [34, 35] that exploit the fact
that one is more likely to observe n consecutive packets
from the same flow if the flow is large or long-lived.
These techniques favor large flows without knowledge of
user requirements, thus unsuitable when mice, e.g., DDoS
traffic, are of interest. ProgME can complement these tech-
niques by defining flowset that should receive preferential
treatment, e.g., by setting different thresholds for different
flowsets. ProgME can also use some of those techniques
to improve its adaptive engine. For example, one could
use coincidence-based techniques together with SPRT to
improve the zooming process of the MRT algorithm.

Adaptive NetFlow (ANF) [36] is a scheme that dynam-
ically adapts the sampling rate and the size of time bin in
order to reduce the number of flow records while maintain-
ing the accuracy. ProgME and ANF are complementary to
each other since ProgME offers spatial adaptability while
ANF achieves temporal adaptability.

Sangireddy and Somani [37] presented a high-speed
routing lookup engine based on Field Programmable Gate
Arrays (FPGAs). Their fundamental approach is to ex-
press packets going to a certain next-hop as a BDD and
then process the BDD with the SIS package to generate
the equivalent combinational logic, which can be mapped
to FPGA. The performance of the hardware realization is
reported to reach about 200 million lookups per second
(varies according the routing table under consideration) –
sufficient for 200Gb/s links. This work shows the feasibility
for a similar hardware realization of ProgME on FPGA-
based platform, which we explored separately [38].

Commercial products from Cisco [23], cPacket [39],
and Gigafin [40] provide hardware-accelerated collection
and processing of flow records or flow aggregate records.
Unfortunately, we do not have sufficient information about
their implementation details for a meaningful comparison.

VII. Conclusion and Future Work

In this paper, we presented ProgME, a framework for
programmable network measurement. The key idea of
ProgME is to collect traffic statistics based on a novel
and versatile concept of flowset i.e., arbitrary set of flows,
instead of the traditional inflexible concept of flow. The
core of ProgME is a flowset-based query answer engine
(FQAE), which can be programmed by users and appli-
cations via the proposed flowset composition language.
Knowledge about user requirements offers measurement
tools a fresh perspective and enables them to adapt itself
by collecting statistics according to the tasks at hand.
We further extended ProgME with an adaptive multi-
resolution tiling (MRT) algorithm that can iteratively re-
program itself to identify heavy hitters. We show that
ProgME, being a versatile tool, can adapt to different
measurement tasks.

In addition to the software implentation in this paper,
we also explored implementing ProgME on a specialized



14

FPGA-based hardware platform [38]. Our implementation
is based on a parallel and pipelined programmable archi-
tecture and assembles the row-level parallelism implemen-
tation in this paper. The core of this architecture is an
programmable array of processing elements, each mapped
to a flowset and providing mapping and counting function
for the flowset. We believe this demostrates ProgMe’s
applicability to wider hardware platform.
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