
Navigating in Signal Space: A Crowd-sourced
Sensing Map Construction for Navigation

Jindan Zhu,1 Souvik Sen,2 Prasant Mohapatra,1 and Kyu-Han Kim2

1Department of Computer Science,
University of California at Davis, Davis, CA 95616

{jdzhu, pmohapatra}@ucdavis.edu

2Hewlett-Packard Laboratories,
Palo Alto, CA 94304

{souvik.sen, kyu-han.kim}@hp.com

Abstract—Indoor navigation is typically achieved by an
operational localization system among a range of location-
based services it provides. However, the construction of a
localization map, which is prerequisite for binding sensed
observation in sensing space to individual locations in geo-
graphic space, remains a challenging task to date. In this
work, we propose an indoor navigation system that alleviates
the need for constructing a localization map and instead
provides navigation in signal space. The main idea behind our
approach is to construct a sensing map consisting of signal
observations (WiFi Clusters) and connecting dead-reckoning
segments obtained through mobile sensing capabilities (traces
of accelerometer and digital compass reading). To this end,
we design a prototype to demonstrate effective construction
of such sensing map with energy-efficient sensors and crowd-
sourcing, and its ability to support accurate navigation.

I. INTRODUCTION

Navigation is a task of controlling the movement of
subject from one location to another. Unlike localization,
the objective of which is to position the subject in the
physical or geographic space, navigation concerns more
about the movement than the representation of end loca-
tions. Although pedestrian navigation is an indoor appli-
cation that holds equal importance as localization, current
navigation system is typically built upon an operational
localization system. The source and destination locations
are first localized in physical space, then the movement
in between is inferred from the corresponding geographic
layout such as a floor map. Such an approach limits the
development of navigation as it heavily depends on the
map of physical space, the physical map. The drawback
is two-fold. First of all a physical map itself may not be
readily available in practice, for administrative or security
reasons. Furthermore, localizing with physical map requires
building a localization map that projects observations in
sensing space to their corresponding geographic locations.
Producing such a binding has become one of biggest chal-
lenges for localization since it demands substantial amount
of knowledge about both sensing and physical spaces. This
process usually involves laborious and time consuming
survey as adopted by various Wi-Fi fingerprinting and
Simultaneous Localization and Mapping (SLAM) [1], [2]
schemes. Recent work [3–6] managed to alleviate problems
in map construction by exploiting unique features seen in
both spaces. Despite the effort errors still build up when
performing localization because the volatile nature of sens-
ing space makes it too difficult to build stable association

with the physical space without heavy investment. In the
absence of a physical map and an accurate localization
system, current navigation approach does not work.

Alternatively, if we refocus the navigation task to its
essence about movement, we may find that the physical lo-
calization step is unnecessary. Navigation can be performed
by following previous movement trails connecting two
endpoints. A collection of these trails can create a general
topological map in sensing space, the sensing map. In the
sensing map a node represents a unique signal observation
obtained at certain location, and the edge specifies moving
displacement and direction between nodes. To navigate, the
system first attaches signal observations at endpoints to
the closest nodes on sensing map respectively, then works
out the trail that consists of a sequence of intermediate
nodes and connecting edges. By following the trail the
user is navigated from one node to another according
to the displacement and direction information, until the
destination. Sensing map assumes no knowledge about the
geographic space as locations are represented by signal
observations and geographic layout is only inferred from
sensed movement. Without the need to convert all elements
back in geographic scope, a sensing map can avoid the
dilemma of localizing and extending a localization map
based on an inaccurate one, and its resulting accumulative
error. Navigation task can therefore be completed indepen-
dently and free from issues in an underlying localization
system.

There are two intuitions supporting the construction of
sensing map: 1) Geographic layout crucial for navigation
can be largely preserved by movement information encoded
as displacement vector between signal observations, and
translated into plain instructions such as “walk forward for
10 meters to next intersection then turn right”; 2) Signal
observations are statistically correlated with geographic
locations. Therefore any location can be represented by
one or more signal observations sharing certain level of
similarity, which is the basis of many indoor localization
systems. Practically the movement information is embodied
as inertia sensor trace, and signal observation is collected
through sensing ambient infrastructure such as Wi-Fi fin-
gerprinting. Collection task of both can be crowd-sourced
to users as they walk around their usual habitat. However
putting crowd-sourced sensing information in use for the
map construction still poses challenges:

1) Numerous studies have concluded that both of the
sensed information are noisy and unstable, making
it difficult to obtain unique signal observation for
any location as well as accurate displacement vector
between arbitrary nodes. In summary, Wi-Fi signal
fluctuation resulted by indoor multi-path effect con-
tributes a large part of localization error for the
use of Wi-Fi observation, which is aggravated by
diverse quality from crowd-sourcing due to device
diversity and placement. Pedestrian dead-reckoning
(PDR) technique has errors in estimating walking
distance and angle from inertia sensor measurements.
Such error can accumulate fast, creating a tendency
of drifting away from actual trajectory as it prolongs.

2) Taking a crowd-sourcing approach suggests a prob-
lem of maintaining trade-off between collection ef-
ficiency, energy consumption, and sensor capability.
Frequent and continuous use of energy-intensive sen-
sors such as Wi-Fi radio should be limited, while
in favour of low-power, ubiquitous sensors such as
accelerometer. This requirement forces us to consider
alternative to solutions such as detecting unique Wi-
Fi signal landmarks through heavy Wi-Fi scanning.

Many solutions have been proposed to tackle these issues
individually, and some of the techniques can also be in-
corporated into our scheme. However they are designed
for localization systems thus inefficient for sensing map
construction and navigation. After considering the charac-
teristic of navigation task, we are particularly interested
in one type of location with special geographic feature: the
turns. A turn usually suggests a change in mobility whereas
explicit for navigation task. It dissects complex mobility
path into multiple segments within each the mobility is
relatively uniform, thus can work as pivot points in a path.
During navigation, giving instructions according to turns
also provides user a useful visual clue for compensating
small error in sensing map. Performing a turn is common
and relatively easier to detect with energy-efficient inertia
sensors, and provides a useful hint to collect more signal
observations at turn locations for improving the robustness
of fingerprint. Therefore constructing a skeleton map con-
sists of accurate signal observations at turns and the dis-
placement vectors connecting them is crucial for charting a
full-fledged sensing map. In this process we battle the first
challenge by clustering Wi-Fi observations and merging
PDR segments from crowd-sourced data to boost stability.
A modified density-based clustering algorithm is employed
to group observations sharing signal similarity together as
a cluster to represent a location. At turn locations where
user path intersect frequently, dense observations can often
be found thus result in better clustering accuracy and
efficiency. Multiple PDR segments are merged if they are
connecting same pair of turn clusters, or intermediate nodes
in between. Measurement errors are averaged out, while
drifting is minimized considering the relative displacement
between clusters is short and simple. To achieve more
energy efficiency, we also develop a scheme that can detect
turns by looking at acceleration pattern, thus reduce the
use of gyroscope sensor. At detected turn locations, the

Fig. 1. System Architecture
system collects Wi-Fi observations and magnetometer sam-
ples aggressively. Otherwise it switches to an opportunistic
schedule with large interval for power saving.

In this work, we apply and test the principle of navi-
gation with sensing map by developing a prototype that
constructs a skeleton sensing map through autonomous
crowd-sourcing. The main contribution of this paper is
summarized as follows:

1) We propose separating the navigation task from local-
ization task through the construction of a dedicated
sensing map.

2) We design a crowd-sourcing friendly turn detection
mechanism using discovered turn patterns from only
accelerometer trace.

3) We adapt an iterative density based clustering algo-
rithm to extract representative Wi-Fi observations.

4) We implement the system design on Android plat-
form and evaluate its performance with real-life
crowd-sourcing data.

The rest of this paper is organized as follows. In section
II we give an overview of our proposed navigation system,
and section III presents design and implementation details
about turn-aware crowd-sourced trace collection, WiFi ob-
servation clustering and PDR displacement estimation. Sec-
tion IV shows evaluation results on our proposed scheme.
Section V provides background and state-of-art of WiFi
localization and navigation, and finally we conclude this
paper in Section VI.

II. SYSTEM OVERVIEW

As shown in Figure 1, our current system consists of
1) a client-side application on smartphone responsible for
harvesting and submitting crowd-sourced user trajectories
and Wi-Fi observations, and 2) a remote service that
learns turning pattern from training accelerometer trace,
and processes user-contributed data into topological sensing
map.

Most of the time the client runs in background sensing
the user’s mobility and environment. Its modules stay idle if
user is static. When user starts walking normally, the client
tracks his acceleration with accelerometer at 50Hz rate.
Meanwhile it periodically triggers magnetometer and Wi-Fi
scans to sense the walking direction and signal space at a
lower 1/5 Hz rate. A turn detection engine is implemented
to identify potential turns within accelerometer trace in real
time, based on learnt turn pattern model. At the beginning
of deployment the turn detection engine undergoes a train-
ing phase, in which accelerometer samples are annotated

2

when actual turn happens. The actual turn is obtained
by gyroscope if available, or annotated by user manually.
Training traces are sent to server where machine learning
algorithm is applied to find the turn pattern. Whenever the
turn detection engine identifies a turn, client immediately
activates Wi-Fi module and magnetometer to collect Wi-Fi
observations and change of direction at the turn location,
and annotates them. While for the rest of the time they
revert to the low sampling rate for power saving purpose.

Data collected by all participating users will be sent in
a piggybacking manner to a central repository on which
the remote service runs. The remote service carries out
crucial processes of learning and map constructing. For
each user, the turn pattern learning module builds a turn
pattern classification model from annotated accelerometer
trace for each user. Learnt model is returned to corre-
sponding user client, or a generic model from multiple
users is returned if no training trace is provided. The Wi-
Fi clustering component performs density based clustering
on entire Wi-Fi observation dataset to extract similar Wi-
Fi observations encountered by different users during their
walks, preferably at the same turn they passed through.
When new cluster is found, the displacement vector estima-
tion component calculates a path to other existing clusters
by fusing dead-reckoning traces that connect them. As a
result, a topological sensing map made of Wi-Fi clusters
and displacement vectors is constructed incrementally. On
top of this system, a navigation module can be later built
and plan route based on the constructed sensing map.

III. SYSTEM DESIGN

In this section we describe in detail the design of major
components in our system, motivation to each of these
components and their validations.

A. Turn Detection
Turn location plays a significant role in two regards:

navigation and sensing. Most indoor environments maintain
a layout consisting of open spaces and structured pathways.
Typical navigation task that entails finding a pathway con-
necting two spaces can be conveniently restated as finding
a series of path segments pivoting at turns. Users usually
cope well with the by-turn instructions given that they
can perceive clues from surrounding layout. On the other
hand, movements within each path segment are largely
constrained by its monotonous structure, simplifying their
accurate extractions from the noisy and under-sampled iner-
tia sensor trace. Only at turns the user mobility is forced to
change and thus exhibits a change of pattern in acceleration,
which is relatively frequent and easy to detect compared to
other landmarks. Based on these considerations, we propose
constructing our sensing map out of a skeleton network
of turns, in accordance with the nature of navigation.
Compared to ordinary locations, Wi-Fi observations are
collected aggressively at turn locations in order to increase
the effectiveness of finding corresponding Wi-Fi clusters
and the amount of connecting PDR segments.

The design hinges on detecting turns in an energy-
efficient and accurate way. Cumulative integration on gy-
roscope samples is known to be simple and effective in

detecting turn. However working on the gyroscope requires
continuously monitoring additional sensor, costing more
power (6mA on Samsung i9500 smartphone, compared to
0.25mA of the accelerometer). Furthermore gyroscope may
not be available on majority of inexpensive devices, as
currently out of more than 1500 listed devices only 304
are equipped with a gyroscope [7]. To complement this
situation we also develop a solution to detect turns based
on accelerometer samples only. Accelerometer is essentially
ubiquitous on all handheld devices, and it is always-on
anyway for supporting PDR and other applications. By
studying subjects walking at average speed and making
turns, we observe that a typical turn is most likely to
be finished within three steps, and takes less than 1.5
seconds. The movement can be dissected into a sequence
of consecutive linear accelerations along mediolateral axis
biased towards the direction of the turn. In addition as body
trying to stabilize during the turn, magnitude of movement
on both superior-inferior and anteroposterior axis reduces
compared to walking straight. If 3-axis accelerometer can
capture these subtle changes in movement, it is possible to
detect turns from accelerometer trace.

This component consists of two parts: the sensing com-
ponent collects mobility related sensor traces and detects
turns based on learnt model, and the learning component
mines the patterns from training traces. We apply machine
learning technique to extract the potential turn pattern
from accelerometer trace. We use gyroscope detected turns
as ground truth to annotate the accelerometer trace for
training. A supervised classifier is built from the training
trace.

1) Feature Extraction: We adopt a half-sliding-window
on all three axes for extracting features of the window.
Since the sampling rate is 50Hz we choose a window
size of 64 so that a window will contain 1.28 seconds
of samples, roughly corresponding to two to three steps
during a walk and is enough time to complete a turn. The
window moves for every 32 samples to limit the detection
delay. For the windowed samples, a total of 18 features are
calculated and summarized in Table I. In the table N = 64
is the window size. k, l ∈ x,y,z denotes the axis of trace.
ak

n denotes the nth sample in windowed trace of axis k. In
the energy calculation, the samples are first processed by
a low-pass filter with cut-off frequency empirically set at
6Hz, which no walk related movement is likely to exceed.
The FFT window size is the same as the sliding window.
All feature calculations can be implemented efficiently on
smartphone and performed in real-time without incurring
too much computational overhead.

2) Axis-Movement Association: Before we start training
and using learnt model to detect turns in real-time, we
need to make sure the acceleration axes of training and
testing traces follow the same coordination system. Due to
the ambiguity of phone orientation, we need to determine
which axis of acceleration corresponds to what direction of
movement. Solution to this problem has been studied [8].
However since exact orientation is not required but a rough
association of axes in our system, a simple scheme is
employed to identify the axis-movement association, and
it performs well throughout the turning experiments. We

3

TABLE I
LIST OF EXTRACTED FEATURES

Name Description
Arithmetic Mean µk µk = 1

N ∑
N
i=n ak

n

Standard Deviation σ k σ k =
√

1
N ∑

N
n=1(ak

n−µk)2

Range Rk Rk = (Max(ak
n)−Min(ak

n))|n=1 to N

Inter-axis Correlation ρk,l =

N
∑

n=1
(ak

n−µk)(al
n−µ l)

σkσ l

ρk,l

Inter-window Correlation the correlation between
corrk(t−2, t) two consecutive non-overlapping

window.

Spectrum Energy Sk Sk =
∣∣∣∑ fcuto f f

n=1 xne−2πi f n
∣∣∣2,

examine the frequency components of windowed samples
from three axes using FFT. The axis produces largest DC
component is associated with vertical movement as it is
influenced most by gravity. Then the scheme searches
through the spectrum of identified superior-inferior axis,
and finds the frequency at which the maximum energy is
observed. This frequency is denoted as steps frequency,
for it reflects the repetitive pattern of walking. Note that
the anteroposterior movement coincides with the same
repetitive pattern therefore normally has its maximum en-
ergy component observed at the same frequency. And we
choose the axis that has lowest energy at this frequency
among three as lateral axis. By doing so, an association
between phone’s current orientation and the one used to
describe walking direction is created, and later used to
match features in training trace to that of testing trace.
This association is checked on a per-window basis. If
association changes are reported three consecutive times the
system believes a change of association occurs and waits for
required amount of samples to update to new association.
Any turn detected during this period are discarded until
new association stabilized.

3) Turn Pattern Learning: After collection of training
traces and extraction of their features, we normalize the
resulting traces of features and input them to a neural
network for a training of supervised classification. For an
instance, each feature of the windowed samples is treated as
one attribute to the classifier. The binary class attribute of
ground truth is obtained by integrating gyroscope samples
in the same window duration. Output of the training is the
turn pattern model we can later use to detect the turns
on client side. The learning component is implemented
using Java Machine Learning Library (Java-ML) [9] and
its Weka [10] interface.

To validate our intuition that turn patterns do exist in
accelerometer trace, we perform several experiments to
assess the effectiveness of the learning. We use a 30×25
square shaped corridor for the walking/turning experiment.
In each trail we ask the participant to walk through the
corridor for 3 rounds, thus making 11 turns. The phone is
held in three typical positions: reading in hand, belt holster,
and pants front pocket. For each position a left turn trail
and a right turn trail are made. Three participants conducted
the experiment in different days, and we collected 18 trails
and 198 turns in total. We generate the feature traces
from collected accelerometer traces as described in previous
sections, and feed them to the learning algorithm. Traces

are randomly subsampled with a SpreadSubsample filter
to maintain a 1/3 proportion of turn/non-turn to mitigate
imbalance sampling problem. Each trace is re-subsampled
10 times and re-learnt and their average result is reported.
For learning we use a two layer MultilayerPerceptron
classifier with default parameters and test its performance
with 10-fold cross-validation. The effectiveness of learnt
model can be measured by precision and recall metrics for
each class.

Among them we are particularly interested in the recall
for turn class and the precision for non-turn class, since
we have a goal to minimize missed detection of actual turn
while a few false positives in turn class are tolerable.

First we examine the overall performance regardless
position. For each participant all traces are used for the
learning. Figure 2 shows the result. We can see that there
is indeed a pattern of turn within user’s acceleration. With
a small period of training, we can discover the pattern with
a reasonable accuracy.

We also look at the effect of different holding positions
on the pattern discovery. As illustrated in Figure 3, both
hand and belt position give relatively good result while
in pocket position the pattern is obscured. After closer
analysis of the traces we believe the reason is that when
the phone is in pocket, the rotational movement of the
legs during regular walking generates substantial amount
of noisy acceleration which makes it more difficult to be
distinguished from those of a turn. This situation is less
severe when the phone is attached to the body trunk that
is more stable.

When we look into the individual feature trace we also
find some interesting results. Some features show more
relevance than others. Specifically coinciding with the time
when turn happens, we observe dips in the energy on
vertical axis, and the inter-window correlation on both
vertical and anteroposterior axis. Figure 4 shows a typical
example of these three features with respect to turns.
In the example Y-axis is the vertical axis and Z-axis is
the anteroposterior axis. Traces are manually layered to
increase visibility. To our surprise, features on the lateral
axis does not consistently exhibit changes as visible. We
believe there are two reasons: 1) sometimes participants
prefer a pattern that breaks down a turn into multiple step
so that the lateral acceleration becomes too small to notice.
2) the noise from leg movement when phone is placed in
pocket.

B. Iterative Density-based Wi-Fi Clustering
After gathering the crowd-sourced Wi-Fi observations

and PDR traces from user, the system needs to determine
representative observations for waypoints along a trace.
Since indoor Wi-Fi signal fluctuates from time to time,
observation at the same location may vary. Despite this
instability, Wi-Fi observations collected at nearby location
still show a distinguishable level of similarity suggesting
correlation between signal similarity and physical distance,
as reported in various Wi-Fi fingerprinting studies. By con-
trolling the signal similarity level, we can find from crowd-
sourced data the group of Wi-Fi observations representing a
finely confined area, or simply the same location. Although

4

Fig. 2. Turn Classification Accuracy: Subject Fig. 3. Turn Classification Accuracy: Position Fig. 4. Turn Classification Accuracy: Feature

conversely, a same location is allowed to have multiple
groups to represent it, due to the inevitable signal variation.
We use a clustering algorithm to find these groups. Number
and quality of found Wi-Fi clusters are crucial for the
accuracy of merging PDR segments connecting them, and
ultimately the construction of sensing map.

Turns along a trail serve as better waypoints than reg-
ular locations. Since we collect Wi-Fi observations more
frequently at turn locations, the sample distribution will be
denser near turn locations over other places. This naturally
leads us to select a density based clustering algorithm
for the clustering task. Besides its property of handling
noise/outliers well, density based clustering has the ability
of finding arbitrary shape clusters which also makes it more
desirable over other techniques, as our Wi-Fi observations
are collected along a trace while users are mobile and unco-
ordinated. Our implementation is based on DBSCAN [11]
clustering algorithm with several adaptations. Following
sections describe the procedure in detail.

1) Wi-Fi Observation and Signal Distance: First we
make a brief note about a few technical problems in our
Wi-Fi observation collection, and define the distance metric
for clustering. Channel diversity enjoyed by nowadays Wi-
Fi chipsets adversely poses difficulty to our data collection.
For instance for a device supporting both 2.4GHz and 5GHz
bands the full scanning process can take up to 5 seconds to
complete, which is unacceptable when user is mobile. To
address this issue we made a trade-off by limiting the scans
to ten channels in two bands which AP most commonly
operates on. The time to finish one scan is reduced to about
1 second, and all scans will have uniform set of channels.
During our data collection we find numbers of virtual APs
are set up to broadcast multiple BSSIDs. These virtual APs
are in fact co-located and operate on same channel thus
have the same signal strength. Treating them as unique APs
when calculating the signal distance will bias the result.
Therefore we group these virtual APs into single AP during
the calculation.

We use Tanimoto coefficient as the similarity metric to
measure signal distance between two Wi-Fi observations.
Let obsi and obs j be two observation vectors of Wi-Fi AP-
RSSI pairs, the signal distance between them SDist(i, j) is
defined as:

SDist(i, j) = 1− obsi·obs j
|obsi|2+|obs j |2−obsi·obs j

If an AP only appears in one of the observations, the absent
signal is set to value zero for calculation. A constant of
-95dBm is subtracted from all RSSI absolute values to
reflect the correct effect of signal strength in the presence
of absent APs.

2) Iterative Clustering and Pruning: The generic DB-
SCAN algorithm controls the clustering process through
two parameters, a distance threshold ε − distance and a
density threshold minPts. If point p has a distance less than
ε to point q, p is in the ε − neighborhood of q and vise
versa. If p has a dense ε − neighborhood with members
more than minPts, it becomes a core. DBSCAN defines
a model of density reachability stating that q is density-
reachable from p if there is a chain of points p1, ..., pn
where p = p1, q = pn, and pi+1 is in the ε−neighborhood
of core pi (1 ≤ i ≤ n− 1). p1 and p2 are defined density-
connected if there exist a point q so that p1 and p2 are
density-reachable from q. The clustering is a process of
merging small dense areas centered at core into a larger
area, by grouping all density-connected points into the
same cluster. The algorithm starts with a randomly chosen
point and repeatedly looking for cores and their density-
connected points to form clusters.

In our scheme we use ε−distance threshold for control-
ling the compactness of a cluster, so that the cluster can
be representative for a small area. A minimal membership
of cluster is also required so that the property of cluster
is stable and not easily swayed by wrongly clustered
outliers. This is controlled by minPts parameter. Density
reachability allows DBSCAN to find clusters of arbitrary
shape, however also tends to cause the clusters to over-
grow. Therefore we make following adjustments to prune
the over-grown clusters. We define another compactness
threshold δ . If a cluster has compactness exceeds δ , we
mark it as over-grown and is to be split. At each stage of
splitting, all clusters marked over-grown together with all
the noise points will form a new data set. A DBSCAN
clustering operates on the new data set with increased
minPts by one per stage, to focus on the denser portion
of over-grown clusters while exclude the sparse part. This
process is repeated iteratively for at least five times and
stops until there is no new cluster can be formed in two
consecutive iterations.

When a new observation is added incrementally, the
scheme will calculate its ε − neighborhood and mark af-
fected existing clusters to be updated if they have members
in the new observation’s ε−neighborhood. New round of
clustering is performed on affected clusters and noise. If no
new cluster is formed then existing clusters are kept and
the new observation is marked noise.

3) Clustering Parameters: The value of ε−distance and
threshold δ are the most important parameters concerning
the clustering, since they determine the compactness of re-
sulting clusters. Choice of the values is based on the signal-

5

spatial correlation that smaller signal distance indicates
nearby locations. To verify this signal spatial correlation,
we first examine the signal characteristics. We use the
same experiment setting as in turn pattern learning. Wi-Fi
observations are collected by participant walking along the
trails, in which coordinates of turn location observations
are manually marked afterwards and other observations’
coordinates are interpolated. We calculate the pairwise
signal distance as well as physical distance for all samples,
to find out how do they correlate.

First we examine the extent of signal variation at dif-
ferent locations. Signal distance samples for observation
pairs collected at same location are isolated and the CDF
of which is plotted in Figure 5. From the result we can see
signal distance varies a lot even when collected at the same
location. However over 90% are under 0.2, which provides
us a guideline for choosing ε−distance and δ within this
range.

Next we look into the signal-spatial correlation. We cal-
culate physical distance from all observation pairs that with
signal distance less than 0.2. We modify the signal distance
threshold by a 0.02 step, and see the distribution of physical
distance among all qualifying samples within the cutoff
signal distance. We plot their mean, standard deviation, and
size in Figure 6. Smaller the physical distance means better
compactness of samples within the cutoff signal distance.
The result shows a correlation between physical and signal
distance, suggesting it is plausible to use signal distance
parameters to control the physical compactness of clusters.
However the available samples also drop fast as signal
distance declines. To make a trade-off, we choose 0.12 as
ε−distance to form nucleus of clusters, and set δ to 0.16
to regulate the final compactness of formed cluster.

Parameter minPts can affect the effectiveness of finding
clusters given the dataset. The optimal value of minPts may
change as the size of total dataset increases. From Figure 6
we find about 20% of samples are under ε − distance of
0.1 and there are at least four turn locations. Therefore
we choose empirically a relaxed minPts around 3% of
the dataset size. We will evaluate the effect of different
parameter choices in next section.

C. Displacement Vector Estimation
Once clusters representing waypoints along the trace are

found, we can determine the displacement vector between
them through a PDR fusion process. Each Wi-Fi obser-
vation is bind with a sample in the corresponding PDR
trace by matching the timestamps. Given two clusters, the
displacement estimation component examines their mem-
bers by pairs. If a pair of members have associated PDR
samples belong to the same PDR trace, the segment in
between is extracted and checked whether it is a straight
segment. If any sample in the segment is detected as a
turn, this segment is discarded. After all pairs of members
are accounted for, the displacement estimation component
fuses all straight segments into a single displacement vector
by averaging the distances and angles.

Extracting displacement from a PDR trace has been
heavily studied in the past[4], [12], [13]. Although sophisti-
cated solutions certainly can achieve better performance, a

basis approach involving step counting and frequency-based
stride length estimation is incorporated. Same technique
described in [14] is used for counting steps. Magnitude
of acceleration trace is passed into a low-pass filter to
remove high frequency noise that cannot be associated
with steps. Derivative of the resulting output is calculated
and the crossing point when its value reverses from pos-
itive to negative suggests a local maximum, thus a step.
Frequency-based stride length estimation [15] model the
linear relation between stride length and step frequency
as stride = a× f reqstep + b. In evaluation we assume the
parameters a and b are trained beforehand.

Although our scheme relies more on turns than the
actual turning angle, angle reference is still a useful clue
especially when a navigation starts. In our data collection
we observed that the values of both absolute direction and
relative turning angle are highly unreliable and misleading.
However readings collected within a straight segment are
fairly consistent throughout different walks, which makes
it possible to hint the direction of a segment. There are
several techniques[8], [16] for estimating initial orientation
offset of device, however in this work we do not emphasize
this and assume it is known and will not drastically change
during a walk. If any sample in a PDR segment possesses
a compass reading, an angle reference is added to this
segment. If large conflicting compass reading appears in
a segment, it may suggest an undetected turn or simply
magnetic turbulence. This segment is temporarily removed
until more data received can confirm if there is a missed
turn. When multiple segments are fused into one displace-
ment vector connecting two clusters, all available angle
references are also averaged to represent the direction of
the displacement vector.

IV. EVALUATION

Based on realistic traces collected through experiments,
we evaluate the feasibility and effectiveness of our proposed
system.

A. Experiment Setup
We collect trace data inside a campus building where

offices, computer labs, and classrooms locate and with
moderate populace and traffic. Users walk around the
main corridors carrying smartphones equipped with user
client. For each walk user carries the phone in one of the
three positions described previously, and with no significant
change in phone orientation. All inertia sensors record at a
rate of 50Hz, and the Wi-Fi scan is performed at 1/5 Hz
for non-turn locations. We use gyroscope samples to mark
the ground truth of turns, so as to limit the interference of
user intervention. Although in reality users can start and
stop a route at any point and in any direction, to simplify
the coordinates assignment of ground truth locations we
use one designated route. The route is shown in Figure 8
where red arrow indicate the path and direction, and red
start and octagon mark the start and end respectively.
The route is connected by 8 turns. Each turn is assigned
a coordinates manually during analysis, and for samples
collected between turns their coordinates are interpolated
according to time intervals. At normal walking speed it

6

Fig. 5. Signal Variation at Same Locations Fig. 6. Signal-Spatial Correlation Fig. 7. ROC Curve of Turn Detection

Fig. 8. A Sensing Map
takes about three minutes to walk through the route. We
collect a total of 30 traces for the route over a seven-day
period.

B. Evaluation Metrics

Using this dataset we evaluate both the turn detection
accuracy, as well as the clustering performance and sensing
map accuracy.

When measuring the performance of turn detection we
are interested in its precision and recall.

Precision =
T P

T P+FP
, Recall =

T P
T P+FN

.

To evaluate the general performance of the clustering
algorithm, we adopt the standard BCubed precision and
BCubed recall metrics with respect to the ground truth:

Precision BCubed =
∑

n
i=1

∑o j :i 6= j,C(i)=C(o j)
Correctness(oi,o j)

|o j |i 6= j,C(i)=C(o j)|
n

Recall BCubed =
∑

n
i=1

∑o j :i 6= j,L(i)=L(o j)
Correctness(oi,o j)

|o j |i6= j,L(i)=L(o j)|
n

, where n is the size of dataset. L(oi) denotes the ground
truth category of object oi, C(oi) is the cluster object oi is
classified to. Correctness is defined as:
Correctness(oi,o j) =

{
1 if L(oi) = L(o j)⇔C(oi) =C(o j)
0 otherwise

Accuracy of sensing map can be measured by the quality
of found clusters, and the error in estimated PDR seg-
ments. For each individual cluster we are most interested
in physical compactness, defined by averaging the pair-
wise physical distance a(o) for all o in the cluster Ci:

a(o)=
∑o‘∈Ci ,o6=o‘ distphy(o,o‘)

|Ci|−1 . Cluster centroid error is another
important metric, defined as the Euclidean distance between
coordinates of signal centroid and actual physical centroid.
PDR distance error is calculated with estimated inter-cluster
distance and the ground truth distance between physical
centroids of corresponding clusters.

C. Evaluation Results

1) Turn Detection Accuracy: We use turn pattern model
trained from experiment in the previous section to predict
turns in this dataset. The training and testing set are
collected under different circumstances, and only part of
the turn locations appears in both dataset. When we looked
into the raw result reported by the classifier we found
degraded performance as both metrics dropped to about
70%, which after analysis is caused by the slightly out
of sync between the windowed features of prediction and
ground truth. Instead of examine precision and recall at per
window level, we manually inspect the result at turn level
by defining that a turn is correctly detect if it is within
2 windows from the ground truth. The time difference is
less than 1.28 second which we consider acceptable delay
without causing large error in Wi-Fi collection. We reach a
turn-level detection precision of 0.812, and recall of 0.895.
The ROC curve of the detection is shown in Figure 7, the
large area under the curve indicates a high accuracy.

2) Accuracy and Coverage: We use {ε − distance =
0.1,δ = 0.16,minPt = 11} on whole dataset and evaluate
the overall performance. Figure 9 shows the CDF of cen-
troid error in found clusters. We observe an average error
of 0.72m with 90% of errors less than 1.5m. It indicates
strong signal-spatial correlation at locations represented by
clusters. Physical compactness result in Figure 10 shows
90% of errors less than 3.5m and the average error is 2.3m,
suggesting compact clusters formed are able to uniquely
represent locations.

Figure 11 illustrates the error in inter-cluster distance
estimated by fusing PDR segments. The average error is
2.23m, and a 90 percentile at about 4.5m. The error is small
enough for human to correct automatically with a few envi-
ronmental cue. Also the estimation can be further improved
with more sophisticated PDR algorithms. Although our
system replies primarily on turns for determining relative
direction in navigation instead of absolution orientation,
the orientation information obtained from magnetometer
can still provide a coarse clue in helping user adjust the
initial heading and determining if it is on correct path.
Individual angle collected during the walk exhibits large
error thus lack of practical use. However surprisingly after
fusing PDR segments the orientation reading shows certain
level of consistency along same direction. The result is
summarized in Table II.

We examine the effect of amount of data trace as they
incrementally added to the system. Portion of the data set is

7

Fig. 9. Error in Cluster Centroid Fig. 10. Cluster Compactness Fig. 11. Error in PDR Distance Estimation

TABLE II
FUSED PDR DIRECTIONS

Source Destination Direction Mean Direction Deviation
(0,25) (0,0) 159.2 18.07
(30,25) (0,25) 246.6 11.39
(30,0) (30,25) 300.4 27.18
(60,0) (30,0) 241.5 8.95
(60,25) (60,0) 164.2 10.27
(80,25) (60,25) 257.7 11.03
(80,0) (80,25) 298.8 29.78

randomly sample from 40%. As expected accepting more
data will gradually improve accuracy in clustering and PDR
estimation, as shown in Figure 9 to Figure 11. Coverage
related statistics is plotted in Figure 12. As size of data
set increases, more clusters are formed. We found for most
cases all turn locations are covered with at least one cluster,
except for one missing in 40% data. This result proves the
effectiveness of turn detection scheme. Average member
size of cluster increases as more data coming in, resulting a
higher number of PDR segment fused. Especially with 80%
of the data set, all the seven non-overlapping PDR segments
between turn locations are covered and a connected sensing
map is formed.

3) Effect of Clustering Parameters: First we examine the
effect of varying ε−distance. We fix minPt value at 11 and
set δ to a large value 0.26, then modify ε−distance from
0.06 to 0.2 at a step of 0.02. Figure 13 shows the change in
performance of clustering in terms of BCubed precision and
recall, and the number of clusters found. When ε−distance
is small the high precision suggest formed clusters are pure,
in contrast to the low recall because fewer clusters is found
to accommodate many the samples collected at the same
location. As the ε − distance increases, cluster becomes
more and more heterogeneous, resulting in lower precision
but high recall. The number of cluster increases up to a
point then reverse due to previously compact clusters are
merged into a few large clusters.

Next we fix ε−distance to 0.1 and δ to 0.16, and change
the minPt value from 8 to 20, in a range of about 1% to
3% of the data set size. Figure 14 shows the change in
BCubed precision and recall, and the number of clusters
found. minPt has a large impact on the number of clusters
found, but not on the BCubed metrics. It only influences
the members of noise cluster, causing slight fluctuation in
the BCubed metrics.

D. Discussion
The evaluation shows promising accuracy for the turn de-

tection engine, nonetheless we believe there is still room for
improvement. The difference in classification accuracy for

three positions suggests that phone placement will affect the
turn pattern in various ways. By setting up dedicated pattern
model profile for each phone placement in prediction, it
is possible to further enhance the detection robustness.
We plan to study in future the run-time phone placement
identification for more commonly observed placements, and
apply corresponding turn model for identified placement.

Energy awareness is one key incentive for successful
crowd-sourcing systems. Through reducing the activation
of power hungry radios while relying on low energy inertial
sensors, the construction of sensing map based on turn
locations demonstrates the feasibility of enabling navigation
without incurring high energy consumption to participating
devices. Although our clustering scheme is based on Wi-Fi
fingerprinting, it is straightforward to adopt other types of
signal observation for representing nodes in sensing space.
For Wi-Fi fingerprinting there exists many solutions in
order to improve the crowd-sourced collection by dealing
with common issues such as device diversity or temporal
variance. In our future work, we are also interested in
integrating these schemes into our system, and evaluating a
full-fledged crowd-sourcing solution in a large scale setting
with more participants, devices diversity, and environment
diversity.

V. RELATED WORK

WiFi fingerprinting based localization [17–19] recog-
nizes the statistical correlation between WiFi RSSI signal
vector and the location where it is observed. Such bindings
can be collected and compiled into a localization map for
interested space, usually through a dedicated or crowd-
sourced survey. This map can later be used to localize user
who observes a new WiFi signal vector by matching the
vector to existing one on the map. This approach takes
great advantage of ubiquitous WiFi infrastructure indoor
and RSSIs easy-to-extract property from the multiplying
WiFi enabled commercial mobile devices. Nonetheless such
a localization map based approach requires surveying at
known locations, which seriously undermines its practical-
ity. Therefore we adopt its principle on WiFi fingerprint as
a representation to location but seek other ways to remove
the constraints in sensing map generation.

Techniques from simultaneous localization and mapping
(SLAM) [20], [21] have been adapted into efforts to
enable the automatic localization map generation. WiFi
landmarks [1], [2], [22] are placed and can be perceived
through sensing. In localization user localizes himself with
respect to a landmark, and then as he moves and encounters
previously learned landmarks their locations with respect

8

Fig. 12. Coverage Statistics Fig. 13. Effect of e-Distance Fig. 14. Effect of minPt

to each other can be determined by the mapping. These
schemes and their applications [23], [24] have demonstrated
the feasibility of tracking an existing PDR trace. SLAM
approaches treat localization and mapping as recursive,
inter-dependent processes. Several stochastic process mod-
els have been created to handle the signal fluctuation and
noisy dead-reckoning trace. Whereas in our approach we
separate mapping from localization process. Landmarks
are extracted in parallel from large crowd-sourced data by
employing a clustering technique that exploits the signal
similarity and stability at some of the locations, and only
their locations relative to each other are of interest and
preserved by fusing the PDR trace.

Several recent work also proposes ways that help better
estimate landmark locations by identifying special land-
marks that exhibit unique physical features or sensing
features. In LiFS [5] and Zee [4] a floor plan is assumed
to extract some physical features that can aid regulating
the sensed landmarks. Special types of signal landmarks
are discussed. In unLoc [3] WiFi observation with least
similarity to nearby observations are used as a landmark.
In Walkie-Markie [6] a WiFi-Mark is identified as a point
where WiFi signal from an AP reverses its trend. In our
approach landmarks are WiFi observations that can be clus-
tered from crowd-sourced data. We pay special attention
to landmarks collected at turns from the point of view
of navigation task and energy efficiency in crowdsourcing.
Different from aforementioned signal landmarks that usu-
ally require frequent WiFi scanning to detect, change of
mobility pattern at turns can be detected through low-power
accelerometer alone and works as trigger for proactive WiFi
landmark collection at turns which improves both clustering
and power efficiency.

VI. CONCLUSION

By recognizing the different nature of navigation from
localization, we propose the construction of a sensing
map to facilitate the deployment of an indoor navigation
system. A sensing map, parallel to localization map, is
more suitable to create by a crowdsourcing system in
an automatic and energy-efficient manner. Based on the
intuition, we design and implement the system generating
the sensing map consists of WiFi clusters and connecting
PDR displacement vectors. Preliminary results demonstrate
the effectiveness and accuracy achieved by proposed system
and resulted sensing map, and potential for the successful
conducting of navigation tasks.

REFERENCES

[1] B. Ferris, D. Fox, and N. Lawrence, “Wifi-slam using gaussian
process latent variable models,” ser. IJCAI’07, 2007, pp. 2480–2485.

[2] H. Shin, Y. Chon, and H. Cha, “Unsupervised construction of an
indoor floor plan using a smartphone,” vol. 42, no. 6, 2012, pp.
889–898.

[3] H. Wang, S. Sen, A. Elgohary, M. Farid, M. Youssef, and R. R.
Choudhury, “No need to war-drive: unsupervised indoor localiza-
tion,” ser. MobiSys ’12, 2012, pp. 197–210.

[4] A. Rai, K. K. Chintalapudi, V. N. Padmanabhan, and R. Sen, “Zee:
zero-effort crowdsourcing for indoor localization,” ser. Mobicom
’12, 2012, pp. 293–304.

[5] Z. Yang, C. Wu, and Y. Liu, “Locating in fingerprint space: wireless
indoor localization with little human intervention,” ser. Mobicom
’12, 2012, pp. 269–280.

[6] G. Shen, Z. Chen, P. Zhang, T. Moscibroda, and Y. Zhang, “Walkie-
markie: indoor pathway mapping made easy,” ser. nsdi’13, 2013, pp.
85–98.

[7] PhoneArena. (2014) Phone finder and compare. [Online]. Avail-
able: http://www.phonearena.com/phones/full#/phones/full/?f[325]
[]=1600

[8] D. Mizell, “Using gravity to estimate accelerometer orientation,” in
Wearable Computers, 2003., 2003, pp. 252–253.

[9] JavaML. (2014) Java machine learning library. [Online]. Available:
http://java-ml.sourceforge.net/

[10] Weka. (2014) Weka 3: Data mining software in java. [Online].
Available: http://www.cs.waikato.ac.nz/ml/weka/

[11] M. Ester, H. peter Kriegel, J. S, and X. Xu, “A density-based
algorithm for discovering clusters in large spatial databases with
noise.” AAAI Press, 1996, pp. 226–231.

[12] U. Steinhoff and B. Schiele, “Dead reckoning from the pocket - an
experimental study,” ser. PerCom ’10, 2010, pp. 162–170.

[13] S. Sprager and D. Zazula, “Impact of different walking surfaces on
gait identification based on higher-order statistics of accelerometer
data,” ser. ICSIPA ’11, 2011, pp. 360–365.

[14] R. Libby. (2008) A simple method for reliable footstep detection in
embedded sensor platforms. [Online]. Available: http://ubicomp.cs.
washington.edu/uwar/libby peak detection.pdf

[15] D.-K. Cho, M. Mun, U. Lee, W. Kaiser, and M. Gerla, “Autogait: A
mobile platform that accurately estimates the distance walked,” ser.
PerCom ’10, 2010, pp. 116–124.

[16] K. Kunze, P. Lukowicz, K. Partridge, and B. Begole, “Which
way am i facing: Inferring horizontal device orientation from an
accelerometer signal,” in ISWC ’09., 2009, pp. 149–150.

[17] P. Bahl and V. N. Padmanabhan, “Radar: an in-building rf-based user
location and tracking system,” 2000, pp. 775–784.

[18] M. Youssef and A. Agrawala, “The horus wlan location determina-
tion system,” ser. MobiSys ’05, 2005, pp. 205–218.

[19] J.-g. Park, B. Charrow, D. Curtis, J. Battat, E. Minkov, J. Hicks,
S. Teller, and J. Ledlie, “Growing an organic indoor location system,”
ser. MobiSys ’10, 2010, pp. 271–284.

[20] H. Durrant-Whyte and T. Bailey, “Simultaneous localisation and
mapping (slam): Part i the essential algorithms,” IEEE ROBOTICS
AND AUTOMATION MAGAZINE, vol. 2, p. 2006, 2006.

[21] P. Robertson, M. Angermann, and B. Krach, “Simultaneous local-
ization and mapping for pedestrians using only footmounted inertial
sensors,” in In Proc. UbiComp 2009, ACM, 2009, pp. 93–96.

[22] L. Bruno and P. Robertson, “Wislam: Improving footslam with wifi,”
ser. IPIN ’11, 2011, pp. 1–10.

[23] I. Constandache, X. Bao, M. Azizyan, and R. R. Choudhury,
“Did you see bob?: human localization using mobile phones,” ser.
MobiCom ’10, 2010, pp. 149–160.

[24] H. Shin, Y. Chon, K. Park, and H. Cha, “Findingmimo: tracing a
missing mobile phone using daily observations,” ser. MobiSys ’11,
2011, pp. 29–42.

9

