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Abstract—The domain name system (DNS) is critical to Inter-
net functionality. The availability of a domain name refers to its
ability to be resolved correctly. We develop a model for server
dependencies that is used as a basis for measuring availability. We
introduce the minimum number of servers queried (MSQ) and
redundancy as availability metrics and show how common DNS
misconfigurations impact the availability of domain names. We
apply the availability model to domain names from production
DNS and observe that 6.7% of names exhibit sub-optimal MSQ,
and 14% experience false redundancy. The MSQ and redundancy
values can be optimized by proper maintenance of delegation
records for zones.

I. INTRODUCTION

The Domain Name System (DNS) is a fundamental part of
today’s Internet. It is utilized by users and applications to map
Internet names to addresses, which are required by machines
for communication. Critical Internet systems rely on both
responsiveness and accuracy of DNS for proper functionality.

Resolution of domain names often requires the resolution of
other intermediate domain names. Such relationships form a
graph of name dependencies which are collectively responsible
for correct resolution of the dependent names. Subtle graph
behaviors may go unnoticed in production DNS environments,
but may increase potential for failure or attack. In many cases,
this potential is caused by misconfiguration of downstream
dependencies of a domain name, regardless of the security and
robustness applied to the configuration of the domain name
itself.

The availability of a domain name refers to its ability to
be reliably resolved using DNS. In this paper we formalize
the concept of domain name availability and develop a model
for measuring availability. We show how common DNS mis-
configurations apply to this model and discuss their impact
quantitatively using metrics derived from the model. Using
current DNS data we analyze the state of DNS in light of the
availability model and discuss our observations and inferences.

The primary contributions of this paper are:
• A model formalizing name server dependencies in DNS.
• Metrics quantifying the availability of a domain name.
• A quantitative study of the impact of DNS misconfigura-

tions on availability.
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The metrics introduced in this paper characterize DNS avail-
ability in terms of the number of servers that must be queried
for resolution and the level of server redundancy.

In Section II we discuss previous research related to that
presented in this paper. Section III provides a description
of the workings of DNS and the concept of dependencies
within DNS. In Section IV we introduce metrics to measure
the availability of domain names, as well as discussion on
common DNS misconfigurations. Section V describes our
methodology for data collection and contains an analysis of
live DNS data. We conclude in Section VI.

II. PREVIOUS WORK

DNS name dependencies are analyzed in [1], in which the
potential for a large number and variety of servers affecting
name resolution is demonstrated. A formal model for DNS
name dependencies is introduced in [2], in which dependencies
are represented by edges between domain names in a directed
graph. In this paper we extend the DNS name dependency
model to name servers, and the resulting model is used as a
basis for measuring availability.

Surveys of the state of DNS are presented in [3]–[5]. Various
misconfigurations are analyzed, including lame delegation,
diminished server redundancy, cyclic dependencies, and NS
RR inconsistency. DNS availability and robustness have been
studied in [6], [7]. These studies are largely based on empirical
analysis, whereas in this paper we derive a theoretical avail-
ability model and methodology to systematically identify such
misconfigurations and quantify their impact on availability.

The DNS Security Extensions (DNSSEC) [8]–[10] are the
industry-accepted standard for cryptographically validating
DNS queries. Proper application of DNSSEC foils attacks on
DNS integrity. However, just like unsigned names, DNSSEC-
signed names also rely on the availability of their dependen-
cies. In fact signed zones actually have greater reliance on such
dependencies, such as the “chain of trust” between parent and
child zones. The model presented in this paper thus forms a
useful analysis for both signed and unsigned domain names.

III. DNS AND DEPENDENCIES

In this section we describe the DNS protocol, as it pertains
to this research, and discuss the idea of dependencies in DNS.
We refer to the fictitious zone data in Table I for examples
throughout the remainder of this paper.

The DNS namespace is hierarchical. Each domain name is
comprised of a dot-separated list of labels describing its an-
cestry from left to right. For example, foo.net is a subdomain,



$ORIGIN foo.net.
Name Type Value

1 @ NS ns1
2 @ NS ns2
3 @ NS ns1.bar.com.
4 @ NS ns3.bar.com.
5 ns1 A 192.0.2.1
6 ns2 A 192.0.2.2

$ORIGIN net.
Name Type Value

1 @ NS ns1
2 @ NS ns2
3 ns1 A 192.0.2.3
4 ns2 A 192.0.2.4
5 foo NS ns1.foo
6 foo NS ns2.foo
7 foo NS ns1.bar.com.
8 foo NS ns3.bar.com.
9 ns1.foo A 192.0.2.1

$ORIGIN bar.com.
Name Type Value

1 @ NS ns1
2 @ NS ns2
3 ns1 A 192.0.2.5
4 ns2 A 192.0.2.6
5 ns3 A 192.0.2.7

$ORIGIN com.
Name Type Value

1 @ NS ns1
2 ns1 A 192.0.2.8
3 bar NS ns1.bar
4 bar NS ns2.bar
5 ns1.bar A 192.0.2.5
6 ns2.bar A 192.0.2.6

TABLE I
EXAMPLE ZONE DATA USING RFC 1035 NOTATION [11].

or descendant, of net. All names below the root domain (“.”)
are delegated to other organizations for administration, which
may in turn delegate a portion of their namespace. A zone is
an autonomous portion of namespace typically administered
by a single organization as a result of such delegations. For
example, foo.net is delegated by net. For any zone, z, a set
of servers are designated and configured as authoritative. The
names of these servers are maintained in the z zone using NS
(name server) resource records (RRs). The delegation from
zone Parent(z) to z is handled by maintaining corresponding
NS RRs in the Parent(z) zone as delegation records. The
sets names of servers authoritative for z maintained in z and
Parent(z) are denoted NSz and NS′

z , respectively. In our
example, the authoritative and delegation NS RRs for foo.net
are found on foo.net lines 1–4 and net lines 5–8, respectively.

For a resolver to query a server corresponding to name
u ∈ NSz , it must first resolve the address(es) corresponding
to u. If u is a subdomain of z, administrators of Parent(z)
should include a corresponding address (A- or AAAA-type)
RR in Parent(z) as a glue record for u to “bootstrap”
resolution [12]. Like delegation records, glue records are main-
tained in the parent zone independently from their authoritative
values and must be kept in sync for proper functionality. A
glue record for ns1.foo.net is shown on line 9 of the net
zone. The glue record for ns2.foo.net is missing; this type
of misconfiguration is addressed in Section IV-B.

In response to a query for a name in z, a name server
authoritative for Parent(z) responds with the set of delegation
NS RRs for z to direct the resolver to the proper servers. The
response also contains pertinent address records, such as glue
records, data from zones for which it is authoritative, or data
from its cache. However, it is recommended that the resolver
only trust address records if their names are in-bailiwick—
that is, if they are subdomains of Parent(z). Otherwise, the
resolver must look up the addresses itself [2], [13].

Fig. 1. The server dependency graph for foo.net, derived from the zone data
in Table I. The gray, rectangular nodes represent name servers, and the oval
nodes represent domain names.

In the remainder of this section we discuss name and server
dependencies, which both contribute to the performance, se-
curity, and robustness of name resolution.

A. Name dependencies
Name dependencies in DNS exist both as part of its hierar-

chical structure and as a result of explicit configuration. For
example, foo.net depends on net since a resolver must trust
the delegation information provided by its parent. The name
ns1.bar.com is also a dependency of foo.net because it is not
in-bailiwick and therefore requires a resolver to determine its
address before it can send it queries.

The collection of dependencies for the resolution of domain
name d is modeled as a directed graph, Gd = (Vd, Ad), with
edges representing direct dependencies between names [2].
This name dependency graph is the foundation for name
resolution, and server dependencies are derived from this
model. The dependency graph for foo.com is shown in Fig. 1.

The research in [2] considers both active and passive
influence. Active influence signifies a true dependence—one
name must be resolved before another. Passive influence is
the result of name servers giving preference to data received
from authoritative sources over data from glue and other
sources [13]. Since this paper is concerned with domain name
availability, we consider only active influence in our model.

B. Server dependencies
Just as a domain name may be dependent on other do-

main names, it also depends on name servers, identified
by IP address. We model server dependencies by extending
the active influence name dependency graph [2] for domain
name d, G′

d = (V ′

d , A′

d), to include name servers and direct
server dependencies. The resulting graph, Hd = (Wd, Bd),
has properties Bd = A′

d

⋃
{direct server dependencies} and

Wd = V ′

d

⋃
{name servers}. We explain the methodology for

adding server dependencies to the graph in the remainder of
this section. Edges in Hd are not weighted, as weights have
no significance in our study of availability.

A direct dependency between domain name u and server
s, u, s ∈ Wd, exists in two cases. If s is the address
corresponding to the glue record for an in-bailiwick name in
NSz , then we add edge (z, s) to Bd. Because a glue record
for s is sent to the resolver, the resolver isn’t dependent on the
server’s name, only on its address. The edge between foo.net
and 192.0.2.1 is an example of such a dependency.



If u resolves to s, then we add edge (u, s) to Bd; the
resolver must resolve u before it can query s. For example,
ns3.bar.com depends on 192.0.2.7. Ultimately each zone in Wd

is directly or indirectly dependent on the servers that answer
authoritatively for each. Fig. 1 shows the server dependency
graph derived from the data in Table I.

IV. DOMAIN NAME AVAILABILITY

Using the server dependency graph Hd, we can begin to
analyze the question of availability of d—whether or not the
name can be resolved. The availability of a name depends on
the contents of the resolver’s cache. Specifically, we analyze
two states of a resolver with regard to its cached knowledge
about a particular zone, z: knowledgeable and ignorant.

If the resolver has cached both the names and addresses of
servers authoritative for zone z, then we say that the resolver is
knowledgeable about z. Since the resolver knows the collective
addresses for the servers that are (reportedly) authoritative for
z, its Boolean availability is based on at least one of the name
servers authoritative for z responding authoritatively.

A resolver that is ignorant about zone z has no information
about the names or addresses of servers authoritative for z
in its cache. In order to become knowledgeable about zone
z, it must learn NSz and NSAz through the standard name
resolution process. Transitioning from an ignorant to a knowl-
edgeable state involves learning indirect server dependencies
in Hd using direct server dependencies (e.g., glue records)
as “knowledge anchors”. Caching allows a resolver to remain
knowledgeable about a zone until the pertinent RRs expire in
its cache. Since caching is temporary we consider only the
more general view of availability, as seen through an ignorant
resolver.

When evaluating availability for a domain name, each of
its dependencies must be considered relative to one another.
For example, a resolver only requires response from one of
the servers authoritative for zone z. However, it relies on
Parent(z) regardless of which server or NS dependency is
queried. Likewise for non-zone names, an alias dependency
and any direct server dependencies are collectively mutually
exclusive [13], but the parent of the name is required inde-
pendent of the others. This concept is displayed for foo.net in
Fig. 2, with symbolic OR nodes grouping mutually exclusive
dependencies and AND nodes grouping all required dependen-
cies. Because ns2.foo.net lacks a glue record, it depends on
foo.net. This cyclic behavior is discussed in Section IV-B.

A. Minimum servers queried and redundancy
Having a formal model of server dependencies allows us

to derive metrics to measure the availability of a domain
name. It may be possible, using server availability as a
basis, to recursively calculate a single normalized value which
defines the availability of the domain name. However, such a
metric would only serve a historical purpose and would not
represent availability from the perspective of robustness. We
introduce two metrics for analyzing the server dependency
graph of d, Hd: minimum number of servers queried (MSQ)

Fig. 2. A logical tree describing the availability of foo.net.

Fig. 3. The logical tree describing the MSQ of foo.net.

and redundancy. Both are defined with the assumption that the
resolver is ignorant.

The MSQ for a domain name refers to the minimum number
of servers which a resolver must query to resolve the name.
Domain names with larger MSQs may result in additional
resolution overhead for an ignorant resolver. However, caching
minimizes overhead of subsequent lookups.

The MSQ for domain name d is returned by calling
FindMSQ(d, ∅) (Algorithm 1). In a logical sense, FindMSQ
recursively performs a conversion of the Boolean availability
expression for d, such as that shown in Fig. 2, into disjunctive
normal form (DNF). Each resulting conjunction corresponds
to a complete set of servers that may be queried to resolve
d. Only the set of conjunctions having minimum size are
returned from each call. Fig. 3 portrays the logical struc-
ture resulting from recursively reducing foo.net by calling
FindMSQ(foo.net, ∅).

The MSQ is simply the size of any one of the sets
returned by FindMSQ. The sets of servers comprising the
MSQ returned for foo.net are: {192.0.2.1, 192.0.2.3} and
{192.0.2.1, 192.0.2.4}. Root servers are excluded from our
example for simplicity, so we increase the MSQ by one to
account for it. Thus, the minimum number of servers needed
to resolve foo.net is 3.

The MSQ for a domain name is optimal if it is less than or
equal to the number of zones in its ancestry, including the root
zone. This accounts for a resolver querying a single server
authoritative for each ancestor zone. Any queries required
beyond this number constitutes a sub-optimal MSQ. For
example, the MSQ of foo.net is optimal. Zones that completely
outsource their DNS services to out-of-bailiwick servers (e.g.,
foo.net → ns1.bar.com) are among those that are prone to



Algorithm 1 FindMSQ(u, J)

Input: Domain name u ∈ Wd

Input: Set of names visited J ⊆ Wd

Output: Set of all sets of servers comprising MSQ for u
1: if u ∈ J then /* cycle */
2: return ∅
3: else if u is a name server then /* knowledge anchor */
4: return {{u}}
5: else if MSQ(u) is already known then
6: return MSQ(u)
7: J ← J

⋃
{u} /* Add u to history */

8: MSQParent ← FindMSQ(Parent(u), J)
9: if u is a zone then

10: /* Direct server and NS dependencies of u */
11: D ← {∀v ∈ NSA′

u

⋃
NS′

u|∃(u, v) ∈ Bd}
12: else
13: /* Direct server and alias dependencies of u */
14: D ← {∀v ∈ Su

⋃
{Cname(u)} |∃(u, v) ∈ Bd}

15: /* Find min. MSQ among mutually exclusive deps */
16: MSQOther ← ∅
17: msq ← ∞
18: for all v ∈ D do
19: MSQ′

Other ← FindMSQ(v, J)
20: msq′ ← mins∈MSQ′

Other
|s|

21: if msq′ < msq then
22: MSQOther ← MSQ′

Other

23: msq ← msq′

24: else if msq = msq′ then
25: MSQOther ← MSQOther

⋃
MSQ′

Other

26: /* Find smallest union of MSQParent, MSQOther */
27: msq ← ∞
28: MSQ ← ∅
29: for all MSQ′

P ∈ MSQParent, MSQ′

O ∈ MSQOther do
30: MSQ′ ← MSQ′

P

⋃
MSQ′

O

31: if |MSQ′| < msq then
32: MSQ ← {MSQ′}
33: msq ← |MSQ′|
34: else if |MSQ′| = msq then
35: MSQ ← MSQ

⋃
{MSQ′}

36: MSQ(u) ← MSQ /* Store the value for future use */
37: return MSQ

have suboptimal MSQs because at least one additional lookup
is required for the server names.

The redundancy is the size of the smallest set of redundant
servers at any point in a required resolution path and might
be considered the “availability bottleneck” of a domain name.
If all servers comprising the redundancy of a domain name
were to fail, then the name would be rendered unavailable.
The methodology for determining the redundancy of a domain
name is very similar to that for determining the MSQ. The
difference is that rather than reducing to DNF, the logical
expression is reduced to conjunctive normal form (CNF),
returning a set of disjunctions. We have not included the

actual redundancy algorithm in this paper to conserve space.
The sets of servers comprising the redundancy of foo.net
are: {192.0.2.1, 192.0.2.8} and {192.0.2.3, 192.0.2.4}. That is
say that if both 192.0.2.1 and 192.0.2.8 are unavailable or
both 192.0.2.3 and 192.0.2.4 are unavailable, then foo.net is
rendered unavailable.

As a point of reference, we compare the redundancy of
domain name d to its configured redundancy, which is the
size of the set of server names, NSz , authoritative for its
nearest ancestor zone, z. If the redundancy for d is less than
|NSz|, then the true redundancy is less than the redundancy
configured by the administrator. We categorize such a case as
false redundancy. False redundancy may exist when multiple
names resolve to the same address or not all NS RRs for z are
included in Parent(z), so |NSA′

z| < |NSz|. It could also re-
sult from a narrower bottleneck in downstream dependencies.
The redundancy for foo.net is a false redundancy, as there are
four server names in the set of NS RRs for foo.net, but the
size of the redundancy set is 2.

B. DNS misconfigurations
DNS misconfigurations may lessen availability of a domain

name. We discuss in this section several DNS misconfigura-
tions and their relationship to domain name availability.
Lame delegation occurs when a server is included in the

NS RRs as authoritative for a zone, but does not actually
contain authoritative data for the zone. It can be caused by
either incorrect NS RRs for a zone or a misconfiguration on the
lame server itself. Lame delegation impacts the availability of a
domain name. If a server s is lame for zone z, then edge (z, s)
is effectually excluded from Hd, which potentially increases
MSQ and decreases redundancy of d. Our survey of DNS
showed 2.5% of authoritative servers as non-responsive and
another 1.2% that either issued an error response or returned
non-authoritative data.
Cyclic dependencies, discussed in [3], are identified by a

cycle in the server dependency graph, Hd, and affects the
availability of domain name d for resolvers which are ignorant
of d. A cyclic name dependency can be caused by a missing
glue record, such as that for ns2.foo.net, or it may be two
names that otherwise require each other for proper resolution.
Fig. 2 demonstrates the effect of cyclic dependencies when
measuring the availability of a domain name. A name which
is a dependency of itself is effectively “unavailable”. For
example, foo.net (the node below ns2.foo.net) cannot be relied
on for resolving foo.net (the root node) because they represent
the same name. This in turn makes ns2.foo.net unavailable.
Cyclic dependencies potentially decrease the redundancy of
a domain name for an ignorant resolver. We observed that
0.095% of the zones we examined exhibited self-dependence,
76% of which was caused by missing glue records. Glue
records required for delegation records were missing 0.024%
of the time.

Since delegation records for z are maintained in Parent(z)
independently from the authoritative NS RRs maintained in z,
it is not uncommon for the two sets to be out of sync (i.e.,
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Fig. 4. The availability of a zone, in terms of MSQ and redundancy.

NSz )= NS′
z). Our survey showed that child/parent NS RR

inconsistency exists in 20% of zones. Assuming that the set
of authoritative server names for a zone is exactly correct,
then extra delegation records lead to lame delegation, and
missing delegation records potentially reduce redundancy and
increase MSQ. Our survey showed that 6% of authoritative
server names do not exist as delegation records, and 5% of
delegation records do not exist in the authoritative zone data.

V. DATA COLLECTION AND AVAILABILITY ANALYSIS

For an availability analysis we extracted over 3 million
hostnames from an April, 2009 index of URLs provided by
the Open Directory (ODP) 1. We added to these hostnames
over 100,000 names issued as queries to recursive name
servers at the 2008 Supercomputing conference (SC08) 2.
We built a graph of name and server dependencies for each
of the ODP/SC08 hostnames by recursively following all
dependencies of each name. The graph data included nearly 3
million zones.

In our survey we were unable to detect certain DNS
configurations which affect availability. Requests sent to an
anycast address are routed to one of multiple DNS servers,
depending on source address and availability. Load balancers
bear a single unicast address but distribute requests to multiple
back-end servers. A multi-homed server responds to requests
on multiple addresses. In our analysis we treat each IP address
as a single server.

We assessed the availability of each of the ODP/SC08
names from our survey. Fig. 4 plots the MSQ and redundancy
for the ODP/SC08 names as a cumulative distribution function
(CDF). The average MSQ was 3.48, and 62% of names had
an MSQ of 3 or less. However, the average MSQ decreased
to 3.38 when the set of authoritative server names was used
instead of the delegation records, and 69% of names had an
MSQ of 3 or less. The names had an average redundancy
of 2.34, and 79% of the names had a redundancy of less

1http://www.dmoz.org/
2http://sc08.supercomputing.org/

than 3. Only 3% of the names had a redundancy greater
than 3. When the set of authoritative server names was used
instead of the delegation records, the redundancy of 5% of
the names increased to 3 or more. The differences in MSQ
and redundancy when using the set of authoritative server
names show the necessity of proper maintenance of delegation
records in the parent zone.

We observed that 6.7% of ODP/SC08 names had sub-
optimal MSQ values, and 14% exhibited false redundancy. We
attribute the fraction of sub-optimal MSQ values to zones that
outsource their DNS service to servers whose names are in out-
of-bailiwick zones. The large percentage of names experienc-
ing false redundancy demonstrates the impact that downstream
dependencies can have on domain name availability.

VI. CONCLUSION

In this paper, we formalize a model for name server de-
pendencies in DNS, and using that model we derive metrics
for quantifying the availability of domain names. We have
observed that 14% of domain names experience lower re-
dundancy than that with which they’ve been configured, and
the minimum number of servers required to query (MSQ) for
resolution was sub-optimal in 6.7% of domain names.

High availability and robustness were built into the DNS
protocol, but proper design and configuration by DNS ad-
ministrators are required for these behaviors to be displayed.
Common misconfigurations can negatively affect domain name
availability and consequently cause potential disruption of
critical services. DNS administrators should be aware of
the workings of DNS and the dependencies of administered
domain names. Such knowledge will allow them to handle
these important issues, and in turn, enhance the functionality
and accuracy of DNS services.
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