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Abstract—Advanced persistent threat (APT) is becoming a
major threat to cyber security. As APT attacks are often launched
by well funded entities that are persistent and stealthy in
achieving their goals, they are highly challenging to combat in
a cost-effective way. The situation becomes even worse when
a sophisticated attacker is further assisted by an insider with
privileged access to the inside information. Although stealthy
attacks and insider threats have been considered separately in
previous works, the coupling of the two is not well understood. As
both types of threats are incentive driven, game theory provides
a proper tool to understand the fundamental tradeoffs involved.
In this paper, we propose the first three-player attacker-defender-
insider game to model the strategic interactions among the three
parties. Our game extends the two-player FlipIt game model
for stealthy takeover by introducing an insider that can trade
information to the attacker for a profit. We characterize the
subgame perfect equilibria of the game with the defender as the
leader and the attacker and the insider as the followers, under
two different information trading processes. We make various
observations and discuss approaches for achieving more efficient
defense in the face of both APT and insider threats.

I. INTRODUCTION

Protecting the nation’s infrastructure systems and infor-
mation technology systems from advanced and ever more
sophisticated cyber attacks is a major concern. These attacks,
often classified under the name of Advanced Persistent Threat
(APT), are launched by well-funded entities and are persistent
in pursuing their objectives. Moreover, they often act in a
stealthy way to avoid being detected to maximize the long-
term payoffs. In fact, some notorious cyber attacks remained
undetected for months or even longer [1], [2]. Hence, tradi-
tional cyber defense techniques focusing on one-shot attacks
of known types are insufficient in the face of continuous and
stealthy attacks.

The defense task becomes even more challenging when
sophisticated attackers are further assisted by insiders within
an organization. An insider may have privileged access to sys-
tem resources and sensitive data including the organization’s
security practices, and can potentially sell these information
to an outside attacker for a profit. The inside information can
be directly valuable to the attacker or can help reduce the
attacker’s cost in achieving its goal. According to the 2014
US State of Cybercrime Survey [3], 28% percent of electronic
crime events are known or suspected to have been caused by

an insider. Moreover, those crimes with insiders involved are
often more costly or damaging than attacks from outsiders.
Therefore, it is critical to understand the interplay between
advanced attacks and insider threats and design robust defense
strategies accordingly.

In this paper, we propose a three-player game to model the
stealthy behavior of advanced attacks and its interplay with
insiders. We observe that although APTs are well-funded, so
does the defender is most cases. At the same time, they are
both driven by incentives and subject to various constraints.
The real challenge is to derive cost-effective defense strategies
that strike a balance between the cost of defense and the
loss from security breaches. Game theory provides a proper
framework to reason about the strategic behavior of each side
and help understand the fundamental tradeoffs involved.

Our game model is built upon the two-player FlipIt game
model [4] proposed by RSA labs in 2012 for modeling stealthy
takeover, by incorporating an insider. We consider a system
resource under protection and a continuous time horizon,
where at any time instance, either the defender or the attacker
can make a move to take over the resource at some cost, and at
any time t, the resource is under the control of the player that
makes the last move before t. To capture the stealthy behavior
of the players, we assume that neither the defender nor the
attacker has any real-time feedback about the other side.

To extend this model to the three players setting, we
assume that the attacker can purchase inside information to
reduce the attack cost. That is, while the defender incurs a
fixed cost of each move, the attacker can reduce the cost of
move by utilizing the inside information. The insider makes
a profit from selling information but also incurs a cost due to
security breaches. Since neither the defender nor the attacker
get any real-time feedback, it is reasonable to assume that
they adopt simple non-adaptive strategies. In this paper, we
consider a periodic strategy suggested in [4], where there is a
random starting phase and a fixed inter-arrival time between
two consecutive moves thereafter. When there is no real-time
feedback, periodic defense is optimal against periodic attack,
and vice versa. We study the subgame perfect equilibria of
the game where the defender first determines and declares its
strategy, the attacker and the insider then respond accordingly.

To have a complete game, we need to further state the



information trading process between the attacker and the
insider. Two models are considered in this paper. In the first
model, the insider first makes an offer to the attacker. The
attacker may either accept it or decline it and then determines
its strategy accordingly. The overall model then becomes
a three-stage Stackerberg game. In the second model, the
attacker and the insider are involved in a bargaining process,
and their strategies are determined from the Nash bargaining
solution [5]. We characterize the subgame perfect equilibria
for both models and derive various insights accordingly.

Although game theoretical models have been extensively
applied to cyber security [6], [7], [8], [9], [4], previous works
mainly focus on one-shot attacks or attacks with known types.
The FlipIt game is the first model that captures both the
persistence and the stealthy behavior of advanced attacks. The
basic model has been extended to the asymmetric information
and the multi-node settings in several follow-up works [10],
[11], [12], but they all consider the two-player attacker-
defender scenario. To the best of our knowledge, the only
work that considers both advanced attacks and insider threats
is [13], where two separate differential games are used to
model the defender-attacker interaction, and the competition
among multiple insiders for selling information, respectively.
However, the strategic interaction between attacker and insider
is not modeled and the interplay between the three types of
players is not considered.

Our main contribution can be summarized as follows.
• We propose a three-player FlipIt game model that cap-

tures the fundamental coupling of advanced attacks and
insider threats.

• We model two types of information trading processes
between attacker and insider with different bargaining
power at each side, and derive the subgame perfect
equilibrium for each case.

• Based on the equilibrium solutions derived, we make
suggestions on achieving more cost-effective defense in
the face of both advanced attacks and insider threats.

The remainder of this paper is organized as follows. We
present the three-player FlipIt game model and discuss our
choice of payoff functions in Section II. The analysis of the
game is provided in Section III, where we first consider the
simplified attacker-defender game without insider, and then
study the two information trading models in detail. Various
insights are derived from the analysis. We provide numerical
results in Section IV, and conclude the paper in Section V.

II. THREE-PLAYER FLIPIT GAME

In this section, we present our three-player game model,
which is inspired by the two-player FlipIt game by further
introducing an insider that can trade inside information to the
attacker.

A. Basic Model

The FlipIt game is a two-player attacker-defender game that
was originally designed for modeling stealthy and persistent
attacks against computing resources [4]. In the basic FlipIt

t
Defender
Attacker

Figure 1: Two-player FlipIt game. Blue and red circles represent
defender and attacker’s actions, respectively. Shaded rectangles de-
note the state of resource, blue for protected, red for compromised.
Takeovers are represented by arrows, reproduced from [4].
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Figure 2: Three-player FlipIt game with insider. The attacker and
defender employ periodic strategies at a rate of ↵ and �, respectively.
Green sectors in both sides indicate that the insider can earn benefit
from both the protected system and the attacker.

game, both the attacker and the defender can take action
(“flips”) to get control over a resource, which generates a
payoff to its current owner. There are several rules in this
game: 1) The resource is either protected or compromised;
2) Each player is allowed to flip at anytime; 3) If players
flip exactly at the same time, the ownership keeps unchanged;
4) Players earn profit for the length of time they control the
resource; 5) Each player must pay a cost for every flip; 6) If
a player already controls the resource and flips, the ownership
is unchanged; 7) If a player does not control the resource and
flips, it obtains the ownership; 8) Players do not know the
current ownership of the resource before they flip. Figure 1 is
a graphical representation of the two-player FlipIt game.

In this work, we extend the two-player model to the three
players case by introducing an insider. The insider can trade
information to the attacker to make a profit. The inside
information can reduce the attacker’s cost as modeled below.
On the other hand, similar to the defender, the insider also
earns profit from the protected system. Therefore, the insider
needs to balance the two types of payoffs. The three-player
FlipIt game is graphically demonstrated in Figure 2.

B. Periodic Strategies

Various types of feedback can be studied under the FlipIt
game framework. In this paper, we consider the setting where
neither the defender nor the attacker can get any real-time
feedback from the other side. It is then reasonable to assume
that they adopt simple non-adaptive strategies. To this end, we
focus on the periodic strategy defined in [4], where there is a
random starting phase and a fixed inter-arrival time between
two consecutive moves thereafter. As shown in [4], when there
is no real-time feedback, periodic defense is optimal with
respect to periodic attack, and vice versa. Moreover, this is
the only strategy that has been analyzed in detail for the two-
player FlipIt game with Nash Equilibria determined explicitly.
We will consider more general types of feedback including
the asymmetric information setting in our future work.

Let x 2 [0, 1] denote the long term average time when the
resource is compromised, and 1� x be the long-term average



time when the resource is protected. Under the periodic
strategies, both the attacker and the defender need to decide
their periods of moves. Let ↵ denote the attack rate (i.e., 1/↵
is the attack period), and � be the defense rate. Then x under
the periodic strategies can be determined as follows [4]:

x =

⇢

1� �

2↵ if ↵ � �,

↵

2� if ↵  �.

C. Payoff Functions

We model the long-term time average utility gains for the
attacker, defender and insider as follows.
Attacker: The attacker can earn benefit from the compromised
system resource and incurs cost for taking actions and pur-
chasing information from the insider. The attacker’s payoff is
defined as follows:

PA(↵,�, �) = x� CA(1� �)

b

↵� � (1)

where CA is the cost for each attack action. The first term
in (1) denotes the benefit from the compromised system, the
second term is the cost of launching attacks at rate ↵, and
the last term is the cost of purchasing information from the
insider at amount of �. With the inside information, the cost
of launching attack is reduced by a factor of (1 � �)

b. We
introduce an exponent b � 0 to represent how information
affects the cost. For instance, b > 1 means more information
is more useful to the attacker. Due to the space constraint, we
only provide results for b = 2 in this paper. Analysis of other
values of b is given in our online technical report [14].
Defender: The defender can earn benefit from the protected
system resource and incurs cost for taking actions. Its payoff
is defined as follows:

PD(↵,�, �) = (1� x)� CD� (2)

where CD is the cost for each defense action. The first term
in (2) denotes the profit from the protected system, and the
second term is the cost for recapturing the compromised
resources at rate �.
Insider: The insider gains benefit from the resource held by
the defender, and also earns profit from selling information to
the attacker. Its payoff is defined as follows:

PI(↵,�, �) = ⇢(1� x) + � (3)
where ⇢ is a constant denoting the insider’s proportion in
the system. The first term in (3) denotes the profit from the
protected system, and the second term is the profit of selling
information to the attacker at amount of �. To restrict the
capability of the insider, we assume that �  ⇢.

Table I summarizes the notations used in the paper. We
assume that C

A

, C
D

, and ⇢ are common knowledge among
the players. Compared with previous works [10], [12], [13],
we have intentionally minimized the number of parameters so
that our model can be applied to more general settings.

III. SUBGAME PERFECT EQUILIBRIA

In this section, we study the subgame perfect equilibrium [5]
of the three-player game under two different information
trading models. In both cases, the defender first determines

Table I: List of Notations
Symbol Meaning

x average time when the system is compromised
↵ attack rate
� defense rate
� amount of inside information traded
⇢ insider’s proportion in the system
CA attacker’s cost per move
CD defender’s cost per move

and declares its defense period, optimized over the possible
responses from the attacker and the insider. Note that with the
random starting phase of the defense strategy, the actual times
where defense actions are taken are unknown to the attacker
and the insider. On the other hand, as we show below, the
defender can actually gain from revealing (part of) its strategy.
In the first information trading model, the insider then makes
an offer to the attacker, which is optimized over the attacker’s
possible response. The attacker may either accept or reject
the offer, and then determines its attack rate. In this case, we
have found the three-level subgame perfect equilibria of the
game. In the second model, given the defender’s strategy, the
insider and the attacker are involved in a bargaining process,
where the amount of information traded is determined from
the Nash bargaining solution (together with the attack rate).
We have found the subgame perfect equilibria of the game
together with the bargaining solutions.

Below we first characterize the subgame perfect equilibria
of the attack-defender game when the insider does not exist
in Section III-A, which is interesting by itself (only Nash
equilibrium is studied in [4] for the two-player game) and also
serves as a stepping stone to the more general cases. We then
study the take-it-or-leave-it model in Section III-B, and the
bargaining model in Section III-C. Based on the equilibrium
solutions, we make some observations in Section III-D.

A. Attacker-Defender FlipIt Game

In this section, we study the subgame perfect equilibrium
of the game when the insider does not exist. In this case, the
payoff functions of attacker and defender are simplified to the
follows:

PA(↵,�) = x� CA↵, (4)
PD(↵,�) = (1� x)� CD�. (5)

To play the game, the defender first determines and declares
�. The attacker observes � and then determines ↵ accordingly.
The following theorem specifies the subgame perfect equilibria
of the two-player game.

Theorem 1. The set of subgame perfect equilibria of the
defender-attacker FlipIt game are:

(�

⇤
,↵

⇤
) =

8

>

>

<

>

>

:

(

CA
8C

2
D
,

1

4CD
),

CA
CD

< 1,

(

1

2CA
, 0),

CA
CD

� 1.

Proof: First assume ↵ � �. Taking the partial derivative
of PA(↵,�) in (4) w.r.t. ↵, we have :@PA(↵,�)

@↵

=

�

2↵2 � CA.



Hence, PA(↵,�) is increasing when ↵ 2 [0,

q

�

2CA
], and is

decreasing when ↵ 2 [

q

�

2CA
,+1), with the maximum value

achieved at ↵

max

= max

n

�,

q

�

2CA

o

. If ↵

max

= �, thus,
� � 1

2CA
, defender’s payoff becomes: PD(�) =

1
2 � CD�

with the maximum value 1
2 � CD

2CA
at �

max

=

1
2CA

. Attacker
will not take any action for a given � =

1
2CA

since its payoff
PA = 0, so there’s no equilibria in this case.

If ↵

max

=

q

�

2CA
, PD(�) =

q

CA�

2 � CD�. Taking

derivative of PD(�) w.r.t. �, we have @PD(�)
�

=

q

CA
8� �CD,

PD(�) is increasing when � 2 (0,

CA
8C2

D
], and decreasing when

� 2 [

CA
8C2

D
,+1), it achieves the maximum at �

⇤
=

CA
8C2

D
.

Attacker will take action at rate ↵ =

1
4CD

for a given �

⇤ if
↵ � � and CA

CD
< 1

Next consider the case � � ↵. We similarly take the partial
derivative of PA(↵,�) in (4) w.r.t. ↵ and get @PA(↵,�)

@↵

=

1
2��

CA, Hence, PA(↵,�) is decreasing when � 2 (

1
2CA

,+1),
and non-decreasing when � 2 (�1,

1
2CA

]. In both cases,
defender achieves its maximum value 1

2 � CD
2CA

in (5) at
�

⇤
=

1
2CA

, for a given �

⇤ in this case, the attacker plays
at rate 0. However, if CA

CD
< 1, defender’s payoff PD(�) < 0,

defender will not take actions, so there is no equilibria in the
� � ↵ and CA

CD
< 1 case.

The theorem then follows from the above analysis by
combining the two cases. Moreover, we can obtain the payoffs
of the players at the equilibria as follows.
Case 1, CA

CD
< 1: PD =

CA
8CD

, PA = 1� CA
2CD

,
Case 2, CA

CD
� 1: PD = 1� CD

2CA
, PA = 0.

B. Three Level Sequential Game

We then study the general three-player game. In this section,
we consider the case when the insider makes a take-it-or-leave-
it offer to the attacker, and the game is played as follows:

1) Defender first determines the defense rate �;
2) Observing �, insider makes an offer � to the attacker;
3) Observing both � and �, attacker determines whether to

accept the offer as well as the attack rate ↵.
To solve this game, we use backward induction:
1) Attacker finds ↵(�, �) = argmax

↵

PA(↵,�, �) for any
� and �;

2) Insider finds �(�) = argmax

�

PI(↵(�, �),�, �) for any
�;

3) �

⇤
= argmax

�

PD(↵(�, �(�)),�, �(�)) is defender’s
best strategy;

4) Insider’s best response is �

⇤
= �(�

⇤
);

5) Attacker’s best response is ↵

⇤
= ↵(�

⇤
, �

⇤
);

6) (↵

⇤
,�

⇤
, �

⇤
) forms a three level subgame perfect equi-

librium.
The following theorem characterizes the subgame perfect

equilibria for the three-player game for b = 2. A complete
analysis and proof for all values of b is provided in [14].

Theorem 2. The set of subgame perfect equilibria of the three-
player game with a take-it-or-leave-it trading between attacker
and insider for b = 2 are:

(�

⇤
, �

⇤
,↵

⇤
) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

(

CA
8C

2
D
, 0,

1

4CD
),

CA
CD

< 1,

(

(1� ⇢)

2
CA

8C

2
D

, ⇢,

1

4CD
), 1  CA

CD
<

2
1�⇢

,

(

1

2CA
, 0, 0),

CA
CD

� 2
1�⇢

.

We further obtain the payoff of each player as follows:
Case 1, CA

CD
< 1: PD =

CA
8CD

, PI =

⇢CA
4CD

, PA = 1� CA
2CD

.

Case 2, 1  CA
CD

<

2
1�⇢

:

PD =

(1� ⇢)

2
CA

8CD
,

PI =

⇢(1� ⇢)

2
CA

4CD
+ ⇢,

PA = (1� ⇢)[1� (1� ⇢)CA
2CD

].

Case 3, CA
CD

� 2
1�⇢

: PD = 1� CD
2CA

, PI = ⇢, PA = 0

C. Nash Bargaining between Insider and Attacker

In the previous section, we have considered the setting
where the insider can make a take-it-or-leave-it offer to the
attacker, which gives the insider some advantage. In this
section, we consider a different scenario where the attacker and
the insider are involved in a bargaining game with alternating
offers. This is arguably more practical and is more fair for
the attacker. We adopt the Nash bargaining solution [5] as
the solution concept that describes the agreement between
the attacker and the insider in equilibrium. For given � and
�, let ↵(�, �) = argmax

↵

PA(�, �,↵). Let p

A

(�, �) ,
PA(�, �,↵(�, �), and p

I

(�, �) , PI(�, �,↵(�, �)). The Nash
bargaining solution is determined by

max

�2[0,⇢]

⇣

p

A

(�, �)� p

A

(�, 0)

⌘

·
⇣

p

I

(�, �)� p

I

(�, 0)

⌘

(6)

To solve this game, we again use backward induction:
1) Attacker finds ↵(�, �) = argmax

↵

PA(↵,�, �) for any
� and �;

2) For any �, insider and attacker work together to deter-
mine �(�) that maximizes (6);

3) �

⇤
= argmax

�

PD(↵(�, �(�)),�, �(�)) is defender’s
best strategy;

4) Insider’s best response is �

⇤
= �(�

⇤
);

5) Attacker’s best response is ↵

⇤
= ↵(�

⇤
, �

⇤
);

6) (↵

⇤
,�

⇤
, �

⇤
) forms the subgame perfect equilibria of the

game.
The following theorem specifies the subgame perfect equi-

libria of the game. The proof can be found in our technical
report [14].

Theorem 3. The set of subgame perfect equilibria of the
three-player game with Nash bargaining between attacker and
insider for b = 2 are:



For ⇢ � 1� CD
CA

:

(�

⇤
, �

⇤
,↵

⇤
) =

8

<

:

⇣

CA
8C2

D
, 0,

1
4CD

⌘

,

CA
CD

< 1,

⇣

1
8CA

, 1� CD
CA

,

1
4CD

⌘

, 1  CA
CD

<

1
1�⇢

.

For ⇢ < 1� CD
CA

:

(�

⇤
, �

⇤
,↵

⇤
) =

8

<

:

⇣

(1�⇢)2CA
8C2

D
, ⇢,

1
4CD

⌘

,

1
1�⇢

 CA
CD

<

2
1�⇢

,

⇣

1
2CA

, 0, 0

⌘

,

CA
CD

� 2
1�⇢

.

The corresponding payoffs are:
Case 1: ⇢ � 1� CD

CA
and CA

CD
< 1

PD =

CA
8CD

, PI =

⇢CA
4CD

, PA = 1� CA
2CD

.

Case 2: ⇢ � 1� CD
CA

and 1  CA
CD

<

1
2�⇢

PD =

CD
8CA

, PI =

⇢CD
4CA

+ 1� CD
CA

, PA =

CD
2CA

.

Case 3: ⇢ < 1� CD
CA

and 1
2�⇢

 CA
CD

<

2
1�⇢

PD =

(1� ⇢)

2
CA

8CD
,

PI =

⇢(1� ⇢)

2
CA

4CD
+ ⇢,

PA = (1� ⇢)[1� (1� ⇢)CA
2CD

].

Case 4: ⇢ < 1� CD
CA

and CA
CD

� 2
1�⇢

PD = 1� CD
2CA

, PI =

⇢

2

, PA = 0.

D. Observations and Suggestions
Based on the theorems above, we can prove the following

properties of our three-player game.
• The defender always obtains a higher payoff under sub-

game perfect equilibria compared with Nash equilibria
derived in [4] for the two-player attacker-defender game.

• Comparing to the two-player attacker-defender game,
the existence of an insider always improves attacker’s
payoff (if it accepts insider’s offer), and at the same
time, decreases defender’s payoff in both the three-level
subgame perfect model and the Nash bargaining model.

• The attacker always gets more benefit with the increasing
proportion of insider in the system (⇢) in the Nash
bargaining model. On the contrary, a larger ⇢ always
reduces defender’s payoff in both the three-level subgame
perfect model and the Nash bargaining model.

• The attacker always gets more benefit from bargaining
comparing to the take-it-or-leave-it model for any system
parameters CD, CA and ⇢. Defender also gets more
benefit although it does not participate in the bargaining
game directly. This is because bargaining reduces �,
the amount of inside information traded in equilibrium,
which improves defender’s profit. On the contrary, bar-
gaining always decreases insider’s payoff.

From the above properties, we have the following sugges-
tions to the defender for holding a more secure system:

• The defender can publicly announce (part of) its strategy
(e.g., by revealing the protecting period but not the
random starting phase) and let attacker move behind to
obtain more benefit from the subgame perfect game.

• The defender should take effective practices (e.g., mon-
itoring suspicious behavior, separation of duties, and
secure backup) to prevent and detect insider thereby
reduce its proportion in the system.

• Intuitively, the defender should get more benefit with a
larger CA/CD as in traditional attacker-defender games.
However, this is not always true when there is an insider.
In fact, the defender may sometimes prefer maintaining
a relatively small CA/CD to prevent the trading between
attacker and insider. This phenomenon is further studied
in simulations.

IV. NUMERICAL RESULT

In this section, we examine our proposed three-player game
with numerical study under different system configurations and
scenarios. In addition to verifying the properties described in
Section III-D, we make some further observations from the
simulations results.
Subgame Perfect vs. Nash: We first compare the subgame
perfect equilibrium found in SectionIII-A with the Nash equi-
libria derived in [4]. We plot the payoffs of both defender and
attacker with CA/CD varies between [0.5,2] in Figure 3. We
observe that both defender and attacker obtain a higher payoff
in the subgame perfect equilibrium case.
Impact of Insider: We then study the impact of an insider.
We compare the payoffs in the three-level subgame perfect
game with the non-insider case in Figure 4. The proportion of
the insider in the system is fixed at ⇢ = 0.3. Figure 4a shows
that the defender’s payoff increases with CA/CD smoothly in
most cases, but there is a drop at CA

CD
= 1 where the insider

first joins the game (i.e., � = 0 before that point), and a jump
at CA

CD
= 2.5 where both the insider and the attacker quit the

game. From Figure 4b, we find that the existence of the insider
provides a positive payoff to the attacker for CA

CD
2 [1, 2.5],

where the attacker originally gets nothing in non-insider case.
We further demonstrate the impact of an increasing ⇢ in

Figure 5. Figure 5a shows the payoff of each player in
subgame perfect equilibrium under take-it-or-leave-it model
with CA

CD
= 3. Interestingly, a more powerful insider does not

always help attacker to seize more profit (attacker’s payoff
decreases after ⇢ =

2
3 ). This is because the insider is the

leader and tends to sell as much information as possible to
the attacker to maximize its benefit. The attacker may not
need that much information, but it has to accept the offer,
since otherwise it will get nothing. On the other hand, in the
bargaining case shown in Figures 5b and 5c, attacker’s payoff
is non-decreasing as a function of ⇢, due to the increased
power of negotiation in this case.
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Figure 3: Payoff vs. CA/CD under subgame perfect equilibrium and
Nash equilibrium.
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Figure 4: Payoff vs. CA/CD without insider (subgame perfect
equilibrium) and with insider (take-it-or-leave-it model), ⇢ = 0.3.

Take-it-or-Leave-it vs. Bargaining: Finally, we compare
the payoffs of each of the three players in the take-it-or-
leave-it model and the Nash bargaining model in Figure 6.
We observe that the attacker always gets more benefit from
bargaining while the insider prefers the take-it-or-leave-it case
as expected. On the other hand, the defender can also benefit
from bargaining even if it does not participate in the bargaining
game directly, due to the fact that less information is traded in
the bargaining case compared with the take-it-or-leave-it case.
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Figure 5: Payoff vs. ⇢ in the take-it-or-leave-it (TILI) model and the
bargaining model.
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Figure 6: Payoff vs. CA/CD in take-it-or-leave-it (TILI) model and
Nash bargaining model. ⇢ = 0.3.

V. CONCLUSIONS

Advanced attacks with stealthy behavior and insider threats
are two major concerns to cyber security. The coupling of the
two can inflict even big damage to our nation’s infrastructure
and information technology systems. In this paper, we present
the first three-player attacker-defender-insider game model to
understand the interplay between stealthy attacks and insider

threats. Our model is built upon the two-player FlipIt game
where the attacker can purchase information from an insider.
We characterize the subgame perfect equilibria of the game
with defender as the leader and attacker and insider as the
follower, under two different information trading processes.
Various insights on achieving more cost-effective defense are
derived.
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