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Abstract. E-Commerce (E-Com) search is an emerging problem with
multiple new challenges. One of the primary challenges constitutes op-
timizing it for relevance and revenue and simultaneously maintaining a
discovery strategy. The problem requires designing novel strategies to
systematically “discover” promising items from the inventory, that have
not received sufficient exposure in search results while minimizing the
loss of relevance and revenue because of that. To this end, we develop
a formal framework for optimizing E-Com search and propose a novel
epsilon-explore Learning to Rank (eLTR) paradigm that can be inte-
grated with the traditional learning to rank (LTR) framework to explore
new or less exposed items. The key idea is to decompose the ranking
function into (1) a function of content-based features, (2) a function of
behavioral features, and introduce a parameter epsilon to regulate their
relative contributions. We further propose novel algorithms based on
eLTR to improve the traditional LTR used in the current E-Com search
engines by “forcing” exploration of a fixed number of items while limit-
ing the relevance drop. We also show that eLTR can be considered to be
monotonic sub-modular and thus we can design a greedy approximation
algorithm with a theoretical guarantee. We conduct experiments with
synthetic data and compare eLTR with a baseline random selection and
an upper confidence bound (UCB) based exploration strategies. We show
that eLTR is an efficient algorithm for such exploration. We expect that
the formalization presented in this paper will lead to new research in the
area of ranking problems for E-com marketplaces.

1 Introduction

One of the most critical components of an e-commerce (e-com) marketplace is
its search functionality. The goal of an e-commerce search engine is to show
the buyers a set of relevant and desirable products and facilitate the purchasing
transactions that generate the revenue for the platform. Additionally, the e-com
search also need to facilitate the discovery of the new or less exposed items to
the buyers. This is in-fact critical for some categories such as apparel where
new items are added periodically. However, a search ranking algorithm uses the
behavioral signals such as sales, clicks, cart adds as features in its learning to
rank algorithm. Therefore, the search engine may favor certain items that are
purchased more by customers than other items in order to maximize the revenue,



but the more an engine favors certain items, the higher those items would be
ranked in the search. This creates a conflict between the revenue and discovery
metrics since some less-favored items might never have a chance of being exposed
to the users. It is also easy to see maximizing discovery can compromise rele-
vance of search results since those “unseen products” may not be relevant to a
user’s interest. We thus see that an e-com search engine must deal with a much
more challenging optimization problem dealing with optimizing relevance and
revenue as well as providing a discovery mechanism for the buyers. We address
this problem in this paper and have made three contributions: Firstly, we suggest
a formal framework for optimizing E-Com search and define multiple objectives
to form a theoretical foundation for developing effective E-Com search algo-
rithms. Secondly, we propose a simple and practical framework for conducting
regulated discovery in e-com search. We then provide an exploration algorithm
(eLTR) with a theoretical guarantee that can be easily integrated with tradi-
tional learning to rank algorithms. We also discuss how existing multi-armed
bandit algorithms such as upper confidence bound (UCB) can also be used to
address this problem in e-com search. Thirdly, we suggest a possible evaluation
methodology based on simulation with E-Com search log data and show the
effectiveness of our proposed eLTR algorithm using our evaluation methodol-
ogy with synthetically generated data. We also compare different exploration
strategies and show the effectiveness of eLTR algorithm.

2 Related work

There has been extensive research on learning to rank (LTR) algorithms par-
ticularly in the context of web search [11]. Most of the algorithms are designed
to optimize a single metrics. Recently, Svore et al. [17] proposes a variant of
LambdaMart [3] that can optimize multiple objectives particularly when two
objectives are positively correlated. Authors conducted their experiments show-
ing optimization of two different variants of normalized discounted cumulative
gain (NDCG) [8] metrics that are based on judgments of human raters and based
on click feedback respectively. In case of e-com search, aiming to maximize ex-
ploration can hurt the main business objectives and hence using this approach
is not possible. The exploration algorithms are well researched in machine learn-
ing [16, 2, 7], particularly in the context of recommender systems [14, 15], news
content optimization problems [10]. However, in e-com search we also need to
ensure maximization of revenue and the exploration needs to be well regulated to
minimize the expected loss. Vermorel et al. [18] in their paper compared the ef-
fectiveness of several multi-armed bandit (MAB) algorithms including heuristics
such as ε-explore, soft-max etc., and also approaches based on upper confidence
bound (UCB) [1] which has nice theoretical regret guarantee. The authors sug-
gested often simple heuristics can provide very good practical performance for
exploration. In this paper, we use a sub-modular function [12, 20] for exploration
in order to have a nice theoretical guarantee for the exploration component. Our
approach can be considered similar to the approaches used in learning adaptive



sub-modular function [6]. However, we integrated this with a ranking function
and propose a novel function and prove the monotonic sub-modularity of it.

3 Optimization of e-com search

We consider the problem of optimizing an E-Com search engine over a fixed
period of time {1, · · · , T}. We assume that the search engine receives N queries,
denoted by Q = (q1, q2, · · · , qN ) during this time. Let Z = {ζ1, · · · , ζM} be the
set of M items during the same time. Let’s denote the all the relevant items

(recall set) for a query qi by Ri ⊆ Z. Consequently, we have Z =
N⋃
i=1

Ri. Now,

we define a ranking policy by π : 2(Q×Z) → <, where the input is the set of
query item tuples where the items are from the recall set for the query and the
output of the policy function is a subset of K items. These items are shown to
the users and then an user browses the items one after another in the order they
are shown. The user may click an item, add it to the shopping cart, and can also
purchase. If a purchasing transaction happens then either the revenue generated
or a sale can be considered to be a reward for the π. If the reward is designed to
be using revenue it then needs to be real valued. If the reward is based on a sale,
it can be a binary variable. It is also possible to construct the reward using clicks
or cart-adds or a combination of all or some of these. An e-com search intends
to maximize all these measures. However, the policy functions space is exponen-
tial and we require to formulate an optimization problem for e-com search. We
don’t generally have the knowledge when a purchasing transaction can happen.
Hence, we introduce a binary random variable λij ∈ {0, 1} to indicate whether
a purchasing transaction will happen with λij = 1 meaning a purchasing event.
Naturally, p(λij = 1|ζj , qi) + p(λij = 0|ζj , qi) = 1 for an item ζj shown for query
qi. The expected RPV for this query is then given by

RPV (qt) =
∑

ζj∈π(qi)

price(ζj)×N(λij = 1|ζj , qi).

The total revenue defined on all the query results for the fixed period of time T
when using policy π is thus

gRPV (π) =

N∑
i=1

RPV (qi)

Similarly, we can also define the relevance objective function as

gREL(π) =

N∑
i=1

ρ(π(qi))

where ρ can be any relevance measure such as nDCG, which is generally defined
based on how well the ranked list π(q) matches the ideal ranking produced based



on human annotations of relevance of each item to the query. The aggregation
function does not have to be a sum (over all the queries); it can also be, e.g.,
the minimum of relevance measure over all the queries, which would allow us to
encode the preference for avoiding any query with a very low relevance measure
score.

gREL(π) = mini∈[1,p]ρ(π(qi))

We can now define the notion of discoverability of an e-commerce engine by
considering a minimum number of impressions of items in a fixed period of time.
The notion of discoverability is important because the use of machine learning
algorithms in search engines tends to bias a search engine toward favoring the
viewed items by users due to the use of features that are computed based on user
behavior such as clicks, rates of “add to cart”, etc. Since a learning algorithm
would rank items that have already attracted many clicks on the top, it might
overfit to promote the items viewed by users. As a result, some items might
never have an opportunity to be shown to a user (i.e., “discovered” by a user),
thus also losing the opportunity to potentially gain clicks. Such “undiscovered”
products would then have to stay in the inventory for a long time incurring extra
cost and hurting satisfaction of the product providers. To formalize the notion
of discoverability, we say that the LTR function f is β-discoverable if all items
are shown at least β times. Now, we can further define a β-discoverability rate
as the percentage of items that are impressed at least β times in a fixed period
of time. Let us now define again a binary variable γi for every item ζi and then
assume that γi = 1 if the item got shown in the search results for β times and
γi = 0 in case the item is not shown in the search results more than β times.
We can express this as follows:

gβ−discoverability =

∑i=M
i=1 γi
M

Given these formal definitions, our overall optimization problem for the e-com
search is to find an optimal ranking policy π that can simultaneously maximize
all three objectives, i.e.,

Maximize gRPV (π), gREL(π), gβ−dicoverability

.
The above is a multi-objective problem and maximizing simultaneously all

of the above objective may not be possible and it may also not be a desirable
business goal from the platform side. The optimal tradeoff between the different
objectives would inevitably application dependent.

The challenging aspect of this multi-objective problem is that the objectives
such as discovery requires exploration that can also hurt the relevance and rev-
enue.

4 Strategies for solving the optimization problem

Since there are multiple objectives to optimize, it is impossible to directly apply
an existing Learning to Rank (LTR) methods to optimize all the objectives.



However, there are multiple ways to extend an LTR method to solve the problem
as we will discuss below.

4.1 Direct extension of LTR

One classic strategy is to use a convex combination of multiple objectives to form
one single objective function, which can then be used in a traditional LTR frame-
work to find a ranking that would optimize the consolidated objective function.
One advantage of this approach is that we can directly build on the existing
LTR framework, though the new objective function would pose new challenges
in designing effective and efficient optimization algorithms to actually compute
optimal rankings. One disadvantage of this strategy is that we cannot easily
control the tradeoff between different objectives (e.g., we sometimes may want
to set a lower bound on one objective rather than to maximize it). Addition-
ally, it does not have any exploration component and hence we can not ensure
optimizing discovery with such algorithm.

4.2 Incremental Optimization

An alternative strategy is to take an existing LTR ranking function as a basis for
a policy and seek to improve the ranking (e.g., by perturbation) so as to optimize
multiple objectives as described above; such an incremental optimization strat-
egy is more tractable as we will be searching for solutions to the optimization
problem in the neighborhood. We can then construct such a perturbation by
keeping a fixed number of x positions for exploration out of the K top results.
Then, the rest of the (K − x) items can be selected using a LTR function based
on other criteria such as combination of revenue and relevance. This framework
is so simple that it is very easy to realize in practice but it is possible to conduct
exploration based on several strategies such that the regret in the form of loss
of revenue and relevance can be minimized. In the next section of the paper, we
discuss a few such strategies.

5 Exploration with LTR (eLTR)

Let us define the set from which the LTR function selects the items as Li ⊂ Ri
for a given query qi. We assume that all the items outside set Li are not β-
discoverable. Then, L = ∪i=Ni=1 Li is the set of all β-discoverable items. Hence,
the set E = R\L can then be consisting of all the items that require exploration.

Now, we propose three strategies to incorporate discovery in an e-commerce
search.

Random selection based exploration from the recall set (RSE): This
is a baseline strategy for continuous exploration with a LTR algorithm. In this,
for every query qi, we randomly select x items from the set E ∩ Ri. Then, we
put these x items on top of the other (k− x) items that are selected using LTR
from the set Ri. The regret here will be linear with the number of



Upper confidence bound (UCB) based exploration from the recall
set (UCBE): This is another simple strategy that uses a variant of UCB based
algorithm for exploration instead of random sampling. Here, we maintain a MAB
for each query. We consider each item in the set E ∩Ri as an arm for the MAB
corresponding to a query qi. We maintain an UCB score for each of those items
based on sales over impression for the query. If an item ζj is in the set E ∩ Ri
and is shown bj times in T iterations, and is sold aj times in between, then the

UCB score of the item ζj is ucbj =
aj
bj

+
√

2 log2 T+1
bj

. Note, this is for a specific

query. We then select x items based on top UCB scores.
Explore LTR (eLTR In this, we define a function that we call explore

LTR (eLTR) to select the x items. The rest of the items for top K can be chosen
using the traditional LTR. Then, we can either keep the x items on top or we
can rerank all K items based on eLTR.

The main motivation for the eLTR is the observation that there is inherent
overfitting in the regular ranking function used in an e-com search engine that
hinders exploration, i.e., hinders improvement of β-discoverability and STR. The
overfitting is mainly caused by a subset of features derived from user interaction
data. Such features are very important as they help inferring a user’s prefer-
ences, and the overfitting is actually desirable for many repeated queries and
for items that have sustained interests t users (since they are “test cases” that
have occurred in the training data), but it gives old items a biased advantage
over the new items, limiting the increase of β-discoverability and STR. Thus the
main idea behind e-LTR is thus to separate such features and introduce a pa-
rameter to restrict their influences on the ranking function, indirectly promoting
STR. Formally, we note that in general, a ranking function can be written in the
following form:

y = f(X) = g(f1X1), f2(X2))

where y ∈ R denotes a ranking score and X ∈ RN is a N dimensional feature
vector, X1 ∈ RN1 and X2 ∈ RN2 are two different groups of features such
that N1 + N2 = N,X1 ∪ X2 = X. The two groups of features are meant to
distinguish features that are unbiased (e.g., content matching features) from
those that are inherently biased (e.g., clickthrough-based features). Here g is an
aggregation function which is monotonic with respect to both arguments. It is
easy to show that any linear model can be written as a monotonic aggregation
function. It is not possible to use such representation for models such as additive
trees. However, our previous techniques do not have such limitation since they
are completely separated from the LTR. In this paper, we keep our discussion
limited to linear models. We now define explore LTR (eLTR) function as follows:

ye = fe(X) = g(f(X1), ε× f(X2))

where ye ∈ R and 0 ≤ ε ≤ 1 is a variable in our algorithmic framework. Since,
g is monotonic, fe(X) <= f(X) when ε ≤ 1. Since feature set X2 is a biased
feature set favoring old items, we can expect ranking based on fe would be
more in favor of new items in comparison with the original f , achieving the goal



of emphasizing exploration of new items. Note that ε controls the amount of
exploration: the smaller ε is, the more exploration (at the cost of exploitation).
Since the maximum exploration is achieved when ε=0, in which case, ranking is
entirely relying on f1, the only loss in the original objective function is incurred
by the removal of f2. By controlling what features to be included in f2, we
can control the upper bound of the loss. In this sense, eLTR ensures a “safe”
exploration strategy since f1 is always active. Note, this function gradually can
become very same as the LTR function when ε is close to 1. There can be various
ways of constructing the ε. In this paper, we experimented with three different
expressions for ε. These are as follows:

eLTR basic exploration (eLTRb): In this strategy, we keep ε = I
Tmax

.
Here, I is an iteration and Tmax is a maximum number of iteration after which
everything can be reset. This is a very simple strategy where the eLTR just
increases the importances of the behavioral features gradually with every itera-
tion.

eLTR ucb weighted exploration (eLTRu): In this strategy, we keep ε =
ucbj
Uj

. Here, Uj is a normalization factor and in our experiment it is chosen to be

the maximum UCB score in the set E∩Ri. This can be intuitively considered as
the expected LTR score based on a sales estimation. It is motivated by adaptive
sub-modular optimization in bandit setting [6] that has nice regret guarantee.

eLTR ucb weighted exploration and reranking (eLTRur): This strat-
egy first selects the top x items using eLTRu and it selects the remaining (k−x)
items using the classic LTR and then it reranks the k items using eLTRu.

6 Theoretical analysis

In this section, we discuss the regret bounds of all the strategies. We express
the regret in terms of total number of search session n in a fixed period of time
T . Our first strategy RSE can be arbitrarily bad and can have a worst case
regret proportional to O(xn). However, it can have a fast discovery. The UCB
is a better strategy compared to RSE. The regret of stochastic variant of UCB
can be estimated as O(log (xn)). The discovery in this algorithm will be not as
good as the RSE and it can be worst if the MAB arms converge fast towards
optimality. On the other hand, we can construct the eLTR function as monotonic

sub-modular. Then, the regret for eLTR can be estimated as O(1+1/e−
|E|
x ) times

worst compared to the optimal. In our case, the optimal algorithm is LTR [13].
The eLTR algorithm is inspired from ε-greedy style MAB algorithm and hence
can have better discovery compared to UCB. However, it is not clear if the
regret is necessarily better than UCB based strategy. In section 8 we conduct a
simulation to understand how these algorithms compare with each other. Here,
we now show that eLTR can be indeed monotonic sub-modular.



6.1 Monotonic sub-modularity of eLTR

Let’s call the ranking policy for selecting x items from the set E as

πe : 2(Q×E) → <

, where the cost function for our policy can be as follows:

c(E) = argmax
ζ∈E

i=x∑
i=1

yei

We now show that this cost function is monotonic.

If we add a new item in set E, that will be added to the result of a query if
the eLTR score for that query and that item is greater than the score of existing
top x items. In that case, the cost of eLTR will increase. If the eLTR score for the
query and the item is less than the existing top x items, the overall score from
eLTR will be unchanged. Hence, the function is monotonically nondecreasing.

Now, we show that this function is sub-modular.

Let us assume that A ⊂ B ⊆ E. Let’s also assume that there is an item
ζg /∈ (A ∪ B). Consequently, we can have, a = c(A ∪ {ζg}) − c(A) and b =
c(B ∪ {ζg})− c(B).
There can then be three cases: case 1: c(B) ≥ c(A)
In this case, there must be one or more high eLTR items in set B. Now, if we
add the item ζg, it will either get added to the top x or not. If it is added to
the top items in set B, that means it replaces at least the one item with the
minimum eLTR score in top x items in set B. If there are no common items in
the top x items for A and B, and since c(B) ≥ c(A), the new item has a higher
eLTR value than any items in set A and will also replace an item in top x for
A. Hence, a = b.
Now, if the item does not get added to top x items in B, that means the item
does not have higher value compared to the top x items in B. Then, we have
b = 0. Now, the item can be added in top items for A or not. If it is added in A
then we will have a > 0 and if it is not added then we have a = 0.

case 2: c(B) ≤ c(A)
This case will never happen since all the items in set A are also in set B and if
there are top items in set A, all of those items will be in set B. Hence, unless
there are items with higher eLTR compared to the top items in A, top items in
B will never be different.

case 3: c(B) = c(A)
This is the simplest case. All top items are same and the new item will either
get added in both or not since it need to replace one of the top items. Hence,
a = b.



We have now shown that this cost function always have a >= b and hence
this function is sub-modular.

7 Evaluation Methodology

Due to the involvement of multiple objectives, the evaluation of E-Com search al-
gorithms also presents new challenges. Here we discuss some ideas for evaluating
the proposed e-LTR algorithm, which we hope will stimulate more work in this
direction. The ideal approach for conducting such an evaluation would require
simultaneously deploying all candidate methods to live user traffic, and com-
puting various user engagement metrics such as click through rate,sales, revenue
etc. However this strategy is difficult to implement in practice. Since user traffic
received by each candidate method is different, we need to direct substantial
amount of traffic to each method to make observations comparable and con-
clusions statistically significant. Deployment of a large number of experimental
and likely sub-optimal ranking functions, especially when evaluating baselines,
can result in significant business losses for e-Commerce search engines. Perhaps
a good and feasible strategy is to design a simulation-based evaluation method
using counterfactual techniques [9]. Here, we use historical search session data
to replay the sessions for a fixed period of time. We then artificially make a set
of items selected randomly as candidates for exploration where we do not have
estimation of purchase probabilities. We keep these items in set E. We use the
true purchase probabilities estimated from the data fro the items that have been
shown sufficient number of time in our rank function but use zero values for the
same probabilities for the items in set E.

On the surface, it appears that we may simply use the clicks or sales of the
items to estimate the utility of each product. However, such a commonly used
strategy would inherently favor already exposed items, and if an item has never
been exposed, its utility would be zero, thus this strategy cannot be used for
evaluating discoverability. To ensure discoverability for potentially every item
in the collection, we can define the gold utility of a query product pair uq,d as
a number randomly sampled between [0, 1]. Such a random sampling strategy
would give every item a chance of being the underexposed target to be “discov-
ered.” Thus although the assigned utilities in this way may not reflect accurately
real user preferences, the simulated utility can actually give more meaningful
evaluation results than using click-throughs to simulate utility when comparing
different exploration-exploitation methods where only the relative difference of
these methods matters.

8 Experimental results

In this section, we first construct a synthetic historical dataset with queries,
items and their prices. We also generate the true purchase probabilities and
utility scores for the item and query pairs. Additionally, we use a specific rank
function to simulate the behavior of a trained LTR model.



Then we conduct a simulation as described in section 7 with various explo-
ration strategies. During the simulation we use the observed purchase probabili-
ties estimated from the purchase feedback as the most important feature for the
rank function but we use the true probabilities generated during the initial data
generation phase to simulate the user behavior.

The main goal of this experimental study is to evaluate the behavior of the
exploration strategies (a) with various different sets of number of queries and
number of items, (b) with different values of β-discoverability at the beginning,
(c) with different distributions of the utility scores representing different state
of the inventory in an e-com company.

We evaluate our algorithms by running the simulation for T times. We com-
pute RPV and β-discoverability at the end of T iterations. We also compute a
purchase based mean reciprocal ranking [4] metric (MRR). This metric is com-
puted by summing the reciprocal ranks of all the items that are purchased in
various user visits for all queries. Moreover, we also discretize our gold utility
score between 1 to 5 and generate a rating for each item. This also allows us to
compute a mean NDCG score at k-th position for all the search sessions as a
relevance metric.

We expect to see that the RPV and NDCG of the LTR function will be the
best. however the β-discoverability values will be better in ranking policies that
use an exploration strategy. The new ranking strategies will incur loss in RPV
and NDCG and based on our theoretical analysis we expect the eLTR methods
to have less loss compared to the RSE and UCB based approaches in those
measures. We also expect to see a loss in MRR for all exploration methods.
However, we mainly interested in observing how these algorithms perform in
β-discoverability metric compared to LTR.

8.1 Synthetic data generation

We first generate a set of N queries and M items. We then assign the prices of
the items by randomly drawing a number between a minimum and a maximum
price from a multi-modal Gaussian distribution that can have up to 1 to 10 peaks
for a query. We select the specific number of peaks for a query uniform randomly.
We also assign a subset of the peak prices to a query to be considered as the
set of it’s preferred prices. This makes a situation where every query may have
a few preferred price peak points where it may also have the sales or revenue
peaks.

Now that we have the items and queries defined, we randomly generate an
utility score, denoted by (uij) for every item ζj for a query qi. In our set up, we
use uniform random, Gaussian and a long tailed distribution for selecting the
utilities. These three different distributions represent three scenarios for a typical
e-com company’s inventory. Additionally, we generate a purchase probability be-
tween 0.02 to 0.40 for every item for every query. We generate these probabilities
such that they correlates with the utility score. We generate these numbers in a
way so that these are correlated with the utility scores with a statistically signif-
icant (p-value less than 0.10) Pearson correlation coefficient [19]. We also intend



to correlate the purchase probability with the preferred peak prices for a query.
Hence, we give an additive boost between 0 to 0.1 to the purchase probability
in proportion to the absolute difference of the price of the item from the closest
preferred mean price for that query. By generating the purchase probabilities
in this way, we ensure that the actual purchase probabilities are related to the
preferred prices for the queries, and also it is related to the utility scores of the
items for a given query. Now, we define a β-discoverability rate β = b and selects
b ×M items randomly from the set of all items. In our simulation, we assume
that the estimated (observed) purchase probability for all the items in set E at
the beginning can be zero. The rest of the items purchase probability are as-
sumed to be estimated correctly at the beginning. Now, we create a simple rank
function that is a weighted linear function of the utility score (u), the observed
purchase probability (po), and the normalized absolute difference between the
product price and the closest preferred mean price (m̂p for the query such that
l = 0.60po + 0.20u+ 0.20m̂p. Here l denotes the score of the ranker. This ranker
simulates a trained LTR function in e-com search where usually the sales can be
considered the most valuable behavioral signal.

We now construct an user model. Here, an user browses through the search
results one after another from the top and can purchase an item based on that
item’s purchase probability for that query. Note, in order to keep the simulation
simple, we consider an user only purchases one item in one visit and leaves the
site after that. We also can apply a discount to the probability of purchase log-
arithmically for each lower rank by multiplying 1

log2(r+1) , where r is the ranking

position of the item. This is to create an effect of the position bias [5].

8.2 Description of the experimental study

We conduct four sets of experiments with this simulated data.
In the first set of experiments, we use a small set of queries and a small set

of products to understand the nature of the algorithms. The utility scores for all
the products are generated from an uniform random distribution.

The table 1 shows the RPV, NDCG@6,PMRR, and β-discoverability. We
note that all the variants achieve high discoverability score with relatively small
loss in RPV, NDCG and MRR. It is clear that eLTRur performs better than
all other approaches. It in-fact performs even better than the LTR algorithm in
RPV metric along with doing well in discovery.

In the second set of experiments, we use a larger number of queries and
products and select a smaller starting value for β-discoverability. We also run
this simulation longer. In table 2, we find the eLTR variants perform much better
compared to the UCBE, and RSE. In-fact, this time eLTR variants also perform
as good as the LTR also in NDCG metric.

In the third set of experiments we use a Gaussian distribution with mean
0.5 and the variance 0.1 for generating the utility scores, but everything else is
same as the previous experiment. We again see in table 3 that eLTR variants
perform well compared to UCBE and RSE and they also do better in terms of



Algorithms RPV NDCG MRR β − d

LTR 0.09 0.94 0.41 0.37

RSE 0.089 0.86 0.38 0.97

UCBE 0.09 0.87 0.39 0.96

eLTRb 0.09 0.88 0.39 0.97

eLTRu 0.09 0.88 0.39 0.97

eLTRur 0.092 0.88 0.40 0.98

Table 1: Simulation of eLTR framework, with |Q| = 10, |Z| = 100, |L| = 50, β − d = 20%, β =
50, K = 6, x = 3, T = 10000.

Algorithms RPV NDCG MRR β − d

LTR 0.12 0.90 0.42 0.12

RSE 0.09 0.73 0.27 0.30

UCBE 0.10 0.73 0.27 0.66

eLTRb 0.11 0.91 0.32 0.68

eLTRu 0.11 0.92 0.32 0.68

eLTRur 0.11 0.92 0.32 0.68

Table 2: Simulation of eLTR framework, with |Q| = 100,M = 5000, |L| = 200, β − d = 10%, β =
50, K = 6, x = 3, T = 50000.

NDCG compared to LTR. The table ?? shows the convergence plots for the six
competing algorithms for RPV, MRR, and the discovery.

kept all the parameters same except the distribution of utility score. We
generate the scores for all the products from a Gaussian distribution with mean
0.5 and the variance 0.1. The table 3 shows the tables with final metrics for all
the algorithms. We observe that with a Gaussian distribution of utility scores
the eLTR approaches have better MRR, and β-discoverability.

Algorithms RPV NDCG MRR β − d

LTR 0.10 0.92 0.44 0.10

RSE 0.08 0.86 0.28 0.29

UCBE 0.08 0.87 0.28 0.66

eLTRb 0.09 0.94 0.33 0.67

eLTRu 0.09 0.94 0.33 0.67

eLTRur 0.09 0.94 0.33 0.67

Table 3: Simulation of eLTR framework, with |Q| = 100, |Z| = 5000, |L| = 200, β − d = 10%, β =
50, K = 6, x = 3, T = 50000.

In the fourth set of experiment, we use a power law to generate the utility
distribution. This means that only a small set of items here can be considered
valuable in this scenario. The table 5 shows the final metrics for this case and



Table 4: Simulation of eLTR framework, with |Q| = 100, |Z| = 5000, |L| = 200, β − d = 10%, β =
50, K = 6, x = 3, T = 50000.

the figure 6 shows the convergence plots for RPV, NDCG and discoverability for
the six different algorithms. We notice that even with this distribution of utility
scores the eLTR variants have smaller loss in RPV, NDCG, and in MRR. Note
that in this distribution, the discoverability can be considered to be naturally not
so useful since a large number of items are not that valuable. We expect in such
situation, a nice discoverability algorithm can help to eliminate items that do
not get sold after sufficient exposure and enable the e-com company to optimize
it’s inventory. The table 6 shows the convergence plots of all the algorithms in
this scenario.

Algorithms RPV NDCG MRR β − d

LTR 9.56 0.57 0.45 0.11

RSE 7.55 0.27 0.25 0.30

UCBE 7.55 0.27 0.26 0.66

eLTRb 8.2 0.33 0.31 0.67

eLTRu 8.3 0.33 0.31 0.67

eLTRur 8.4 0.33 0.32 0.67

Table 5: Simulation of eLTR framework, with |Q| = 100, |Z| = 5000, |L| = 200, β − d = 10%, β =
50, K = 6, x = 3, T = 50000.

9 Conclusions

This paper represents a first step toward formalizing the emerging new E-Com
search problem as an optimization problem with multiple objectives including
the revenue per-visit (RPV), and discoverability besides relevance. We formally
define these objectives and discuss multiple strategies for solving such an op-
timization problem by extending existing learning to rank algorithms. We also
proposed a novel exploratory Learning to Rank (eLTR) method that can be



Table 6: Simulation of eLTR framework, with |Q| = 100, |Z| = 5000, |L| = 200, β − d = 10%, β =
50, K = 6, x = 3, T = 50000 and with Pareto distribution for the utility scores and the purchase
probabilities.

integrated with the traditional LTR framework to explore new or less exposed
items and discussed possible methods for evaluating eLTR. We show that select-
ing the items from a set of yet not discovered items using eLTR can be mapped
to a monotonic sub-modular function and hence the greedy algorithm has nice
approximation guarantees.We hope that our work will open up many new di-
rections in research for optimizing e-com search. The obvious next step is to
empirically validate the proposed eLTR strategy by using the proposed simu-
lation strategy based on log data from an e-com search engine. The proposed
theoretical framework also enables many interesting ways to further formalize
the e-com search problem and develop new effective e-com search algorithms
based on existing multi-armed bandit and sub-modular optimization theories.
Finally, the proposed eLTR algorithm is just a small step toward solving the
new problem of optimizing discoverability in e-com search; it is important to
further develop more effective algorithms that can be applied with non-linear
learning to rank algorithms.

References

1. Auer, P., Ortner, R.: Ucb revisited: Improved regret bounds for the stochastic
multi-armed bandit problem. Periodica Mathematica Hungarica 61(1-2), 55–65
(2010)

2. Bubeck, S., Cesa-Bianchi, N.: Regret analysis of stochastic and nonstochastic multi-
armed bandit problems. FOUNDATIONS AND TRENDS IN MACHINE LEARN-
ING 5(1), 1–122 (2012)

3. Burges, C.J.: From ranknet to lambdarank to lambdamart: An overview. Learning
11(23-581), 81 (2010)

4. Craswell, N.: Mean reciprocal rank. In: Encyclopedia of Database Systems, pp.
1703–1703. Springer (2009)

5. Craswell, N., Zoeter, O., Taylor, M., Ramsey, B.: An experimental comparison of
click position-bias models. In: Proceedings of the 2008 International Conference on
Web Search and Data Mining. pp. 87–94. WSDM ’08, ACM (2008)



6. Gabillon, V., Kveton, B., Wen, Z., Eriksson, B., Muthukrishnan, S.: Adaptive
submodular maximization in bandit setting. In: Advances in Neural Information
Processing Systems. pp. 2697–2705 (2013)

7. Gittins, J., Glazebrook, K., Weber, R.: Multi-armed bandit allocation indices. John
Wiley & Sons (2011)
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