
Analysis of Windowing and Peering Schemes for
Cache Coherency in Mobile Devices

Sandhya Narayan, Julee Pandya, Prasant Mohapatra, Dipak Ghosal ?

Department of Computer Science
University of California, Davis, CA 95616, USA,

{ghosal}@cs.ucdavis.edu

Abstract. A major factor in determining the effectiveness of caching
in wireless networks is the cache coherency scheme which maintains
consistency between mobile stations (MSs) and the server. Since the
wireless channel is inherently a broadcast medium, an appropriate cache
coherency scheme is one in which the server broadcasts cache invalida-
tion reports (IRs) that contain data update information. However, in a
wireless environment, since MSs may connect to the network only inter-
mittently (e.g., to save power), IRs may be missed. This would cause the
MS’s cache to become invalid and in turn the cache would have to be
purged resulting in higher query-delay and lower throughput. One ap-
proach to improving the cache coherency for mobile devices is the Time
Stamp (TS) method [2] which uses a windowing scheme. In this scheme,
the IR in a particular interval contains the IRs for a number of previous
intervals determined by the window size. Another orthogonal approach
to improving cache coherency is the peering scheme [10] where an MS can
query neighboring peers to retrieve IRs that it may have missed while it
was disconnected. In this paper, we present a unified mathematical model
based on Discrete Markov Models (DMMs) to study the effectiveness of
these orthogonal schemes both individually as well as their relative im-
portance when they are implemented together. The results show that
both schemes are comparable for the most part. Since they are orthog-
onal, they can be combined in ways that is tailored for the particular
environment to achieve significant improvement in performance.

1 Introduction

For wireless networks and applications, caching data at the clients reduces un-
necessary network accesses and use of wireless channels, saving energy as well as
wireless bandwidth [9, 13]. Benefits of caching can be maximized through robust
and effective placement of data objects, maintaining coherency, replacement al-
gorithms of cached objects, and various timing issues. This paper addresses the
? S. Narayan, P. Mohapatra, and D. Ghosal are with the Department of Computer

Science, University of California, Davis. J. Pandya is with the MIT Lincoln Labs.



problem of maintaining cache coherency specifically in the context of intermit-
tently disconnected devices.

The underlying cache invalidation method studied in this paper is based on
periodic server broadcasts of Invalidation Reports (IRs) to the clients. These
reports indicate which data items have been modified during the last interval.
Clients use the IRs to update their caches. One of the key issues of IR based
techniques arises due to the intermittent disconnectedness of the clients. Since
connecting to the network uses power and because power is a limited resource,
wireless devices may connect to the network only when necessary. During pe-
riods when the device is disconnected, IRs will will be missed. As result, upon
reconnection, the client will not be able to guarantee that the cache data is valid
and will have to purge its cache. This method, known as the TS scheme, was first
discussed in the well known paper [2] in which they also proposed an windowing
scheme as an enhancement to the basic approach. Under this scheme, each IR in
a particular interval contains the IR for a number of previous intervals defined
by the window size. The paper provided analysis based on asymptotic bounds
and studied the impact of the window size on the cache hit rate and throughput.

An orthogonal approach for improving cache coherency is to exploit peering
among MSs [10]. In this approach, called Peer Enhanced Cache (PEC), MSs
utilize the ad-hoc mode of operation, which is now available with most wireless
interfaces. They store IRs on behalf of other MSs which are disconnected. If
an MS misses IRs due to disconnection, it can attempt to retrieve them by
querying all the peers within its direct transmission range. Note that PEC is
an orthogonal scheme and can be implemented in conjunction with other cache
invalidation methods, in particular with the TS scheme.

In this paper we present a unified mathematical model to study the perfor-
mance of the windowing and peering schemes. The analysis is based on Discrete
Markov Model (DMM) [1]. The model allows us to study the windowing and the
peering schemes individually and when they are implemented together. Based
on a thorough analysis of the system, the following are the main contributions
of this paper:

– While the cache consistency using windowing in TS approach was analyzed
in [2], the authors only provided upper and lower bounds for the cache hit
rate and throughput. In this paper, we provide an accurate analysis of the
TS scheme.

– The peering scheme analyzed in [10] modeled only the basic scheme, i.e.,
with window size of 1. This model extends the study to the case when both
peering and windowing are used.

– The results show that both schemes provide significant improvements to
cache coherency, and that their performance is comparable for the most part.
However, both windowing and peering consume bandwidth and thereby re-
duce the gain inthroughput. Since they are orthogonal, they can be combined
in ways that is tailored for the particular environment to achieve significant
improvement in performance.



The remainder of this paper is organized as follows. Section 2 presents a
reference architecture to describe the peering and windowing schemes. Section 3
outlines the model and presents a mathematical analysis of the windowing and
peering schemes and when they are implemented together. Section 4 presents the
derivation of some metrics such as hit rate and throughput. Section 5 discusses
the results and Section 6 provides a brief description of related work. Finally
conclusions are drawn in Section 7.

2 Reference Architectures

An application program running on a Mobile Station (MS) uses a local cache
for performance, bandwidth savings, and energy efficiency. An application query
is handled by the cache if possible, otherwise, it is sent to the base station
(BS) which also acts as a server. The Base Station (BS) responds with the data
objects for that query which are then cached by the MS. The BS periodically
(every L time units) broadcasts an Invalidation Report (IR), which indicates
the data items have been modified during the past interval. All connected MSs
within the base station coverage area (BSCA) receive the IR. They use this to
validate their cache contents and discard data objects that have been invalidated
by the IR. During periods when an MS is disconnected, it does not receive IRs.
Therefore, if disconnection times is greater than the IR interval, and one or more
IRs is missed, when the MS reconnects, the cached data cannot be guaranteed
to be valid and will have to be purged.

2.1 TS Scheme

In the TS scheme (also called broadcast time stamp method) [2], the BS broad-
casts IRs every L time units as before. However, each IR indicates the items that
have been modified during a specified window of time w, where w is some mul-
tiple of L. The larger the w, the longer the client can disconnect without having
to purge its cache. However, increasing w also increases the size of the IR which
implies higher bandwidth for each broadcast. Note that in all IR based schemes,
the MS has wait to answer queries until the next IR is broadcast. Queries gen-
erated between broadcasts are queued until the next IR is received. This is done
so that data items that became invalid during the IR interval are not retrieved
from the cache and used to answer the queries. Therefore, if the IR interval can
be decreased, the query latency will also decrease.

2.2 Peer Enhanced Caching (PEC)

An orthogonal scheme to improve the IR-based cache coherency mechanism is
PEC which exploits peering between MSs [10]. We denote peer coverage area
(PCA) to be the coverage area defined by the transmission range of the peer. In
order to assist other peers, each MS stores the IRs it receives when connected
to the network. When a MS reconnects after being disconnected, it broadcasts a



query in its PCA requesting for the IRs that it has missed. All the MSs that are
within the PCA respond with the subset of the requested IRs that they have. The
requesting MS then waits until the next IR and based on the IRs received from
its peers, it determines if it can validate the cache. If not, the cache is purged.
Note that the larger the number of peers, the longer the client can disconnect
without having to purge its cache. However, the more the number of peers the
higher the bandwidth consumption.

3 A Unified Model

We consider that time is slotted and the slot length is one IR interval denoted
by L. The sleep-awake cycle is modeled by a first-order Discrete Markov Model
[1] consisting of two states - a sleeping (disconnected) state and 2) an awake
(connected) state. When awake, the MS can get disconnected in an interval with
probability d. The duration of being in the awake state is negative exponentially
distributed with rate 1/d. We assume that the disconnection time is also negative
exponentially distributed with a mean value of Td. Since L is the length of the
IR interval, the probability that a sleeping MS would continue to sleep in the
next IR is given s = e−L/Td . Similar to the two papers of interest ([2] and [10]),
we assume that the probabilities s and d are equal.

The models for the query and update are same as that used in [2]. Each
MS queries a subset of the database with a high locality. This subset is known
as the hot spot and each item in the subset is queried at rate λ. Updates to
each data item are negative exponentially distributed with mean rate µ updates
per second. We consider a random mobility model in which at the end of each
IR interval, the MS moves to a random location within the BSCA. Under this
model, the number of peers within the PCA will be proportional to the ratio of
the areas of the PCA and the BSCA. We will let N denote the average number
of peers in the PCA.

In addition to the above parameters, we use the following notation adopted
from [2]. The probability of being awake and having no queries in an interval is
q0 = (1− s)e−λL. The probability of no queries in an interval is p0 = s+ q0. The
probability of no updates during an interval is u0 = e−µL.

3.1 Analysis of the Windowing Scheme

Let k denote the window size. As in [2], the goal of the analysis is to find
the probability that a tagged MS, denoted by MSt, has slept for k or more
consecutive intervals between two consecutive queries that are i intervals apart.
Based on the model, the states of MSt can be modeled by a DMM shown in
Figure1. There are k + 1 states. State 0 indicates that the MS is awake and it
has all the required IRs and that its cache is in a consistent state. State m for
0 < m < k, indicates that the MS has slept for m− 1 consecutive intervals and
that it can still get all the missed IR data if it wakes up at the next interval. State
k indicates that MSt has missed some IR data as a consequence of sleeping for



k or more consecutive intervals. The cache has become inconsistent as a result
and needs to be purged. It should be noted that the system will not remain
in this state forever. In fact, it will get back to state 0 as soon as the cache is
purged and valid data is retrieved from the server. The diagram also shows the
state-transition probabilities.

k-1 k
s 1

10

1-s

s

1-s

1-s

s

1

1-s

2

s – sN+1

0 (s- sN+1)

1-s

1

sN+1
sN+1

k-1 ks(1–a(t))

(1-s)x(t)

k+1

1 – a(t) – (1-s)x(t)

a(t)s*a(t)

10

1-s

s

1-s

1

1-s

s

Windowing only

Peering only
Windowing and Peering

Fig. 1. The Discrete Markov Model for windowing only, peering only, and the combined
schemes.

Let Pm(t) be the probability that the DMM is in state m at time t. Without
loss of generality, we assume the following initial conditions: 1) P0(t) = 0 for
t < 0 and P0(0) = 1 and 2) Pm(t) = 0 for m > 0 and t ≤ 0. For m = 0,
P0(t) =

∑k−1
j=0 Pj(t−1)(1−s). Since,

∑k
j=0 Pj(t) = 1, P0(t) = [1−Pk(t−1)](1−s).

For m = 1, 2, ..k − 1, Pm(t) = sPm−1(t− 1) and for m = k,

Pk(t) = sPk−1(t− 1) + Pk(t− 1) = skP0(t− k) + Pk(t− 1). (1)

Substituting for P0(t− k) we get

Pk(t) = Pk(t− 1) + sk(1− s)(1− Pk(t− 1− k)), (2)

for t ≥ k and Pk(t) = 0 for t ≤ k. This difference equation can be used to compute
the probability at time t that a MS has slept for k or more consecutively intervals
over a period of t intervals.

3.2 Analysis of the Peering Scheme

Let N denote the number of peer in the PCA. The state transition diagram of
the DMM is shown in Figure 1. State 0 indicates that it has all the required
IRs and that its cache is in a consistent state. State 1 indicates that the MS has



slept for one or more consecutive intervals and missed some IR data. However,
it can still get the missed IR from other peers that have it. State 2 indicates
that none of the MS has valid IR. The diagram also shows the state-transition
probabilities. Note that there is a transition from both State 0 and State 1 to
State 2. This corresponds to the case when MSt and all its N peers are asleep
in the same interval. As a result no MS will have valid IR for that interval.

It can be shown that the probability of having incomplete IR data is given
by

P2(t) = sN+1
t−1∑
k=0

(1− sN+1)t = 1− (1− sN+1)t. (3)

Thus the probability of having valid IR at time t is 1 − P2(t) = (1 − sN+1)t

1. The effect of peering is evident from the above equation; the effective sleep
probability is reduced from s to sN+1, thereby significantly improving cache
performance.

3.3 Analysis of the Combined Scheme

In this case we consider both peering and windowing. As before, k is the window
size for the IR and N is the number of peers of MSt. A DMM to describe this
case will have (N + 1)k states. We consider an approximate state machine with
(k + 2) states shown in Figure 1. State k indicates that the MSt has slept for
k or more consecutive intervals and its local IR is incomplete. However, at least
one of the peers has required IR and using which the MS could complete the
required list of IRs. State k + 1 indicates that all the MSs have incomplete IRs
and the union of all the IRs list is also incomplete. There is a transition from
State k to State 0 since MSt can obtain all the IRs from other peers even after
having slept for k or more consecutive intervals. The term a(t) which indicates
no peer-help is available is given as:

a(t) = (sPk−1(t− 1) + Pk(t− 1))N . (4)

The term x(t), which indicates that MSt can get the IRs it missed from other
peers, is given by

x(t) = 1− (1− (sP0(t− 1) + (1− s)(1− Pk(t− 1)− Pk+1(t− 1)))N . (5)

Using this model, we can compute the probability that the MSt has incomplete
IRs if it slept for k or more consecutive intervals between two queries that are i
intervals apart in a situation where there are N other peers helping the MSt to
maintain valid IR. As before, the probability Pk+1(t) can be solved recursively.

1 In [10], this probability of obtaining valid data at a particular interval t is given
as (1 − sN )t. The derivation had ignored the case where the MSt also contributes
through peering. That is, the IR is valid because MSt is awake and has a valid IR
while all other N peers are asleep. The derivation here accounts for this case.



4 Performance Metrics

The improvement in cache coherency due to windowing and peering is measured
by using cache hit rate and throughput as in [2] and [10]. Note that we only
consider the hit rate due to cache coherency; effects of cache size and replacement
policies are not considered in this study.

4.1 Hit Rate

To determine the cache hit rate, we consider two consecutive queries that are
i intervals apart. Using the notations defined earlier, the following conditions
must be satisfied for a cache hit for the second query: 1) probability that there
are no updates during the i intervals which is given by u0

i, 2) probability that
there are no queries during the i − 1 intervals between queries which is equal
to p0

i−1, 3) probability that MSt has a valid IR at interval i which is equal to
Pv(i) = 1− Pk+1(i− 1)− (1− x(i− 1))Pk(i− 1), and 4) the first query arrived
at interval 1. Taking all these four conditions, the cache hit probability is given
by

hgen = (1− p0)
∞∑

i=1

u0
ip0

i−1Pv(i). (6)

For the case of k = 1, the term Pv(i) = 1− P (2) = (1− sN+1)i. For the case of
N = 0, the term Pv(i) = 1− Pk(i− 1), as state k + 1 is renamed as k.

4.2 Throughput

To compute the throughput we follow the analysis done in [2] and [10]. As
mentioned before, we assume that window w is a multiple of L and thus w = kL
and the bandwidth of the wireless network is W . Therefore, bandwidth available
for each interval is LW . We assume that the number of bits per up-link query
is bq, and the number of bits per query answer is ba. Each timestamp takes bT

bits and there are n items in the database.

Without Peering. The bandwidth available for queries is LW − Bc, where
Bc is the bandwidth needed to broadcast the IR and is computed as follows:
The expected number of items that changed in window w denoted by nc =
n(1− e−µkL). Total size of the IR denoted by Bc = bT + nc(log(n) + bT ), where
log(n) is the number of bits needed to transmit an object’s ID, and bT bits are
needed to transmit its timestamp. The first bT term represents the bits needed
to send the IR report’s timestamp.

Throughput T is the number of queries processed per interval by MSt.
Throughput due to cache misses = T (1−h), where h is the cache hit rate. Traffic
due to queries that resulted in cache misses = T (1 − h)(bq + ba) = LW − Bc

from which we get
T = (LW −Bc)/(1− h)(bq + ba). (7)

We can substitute for the hit rate derived in the previous section and compute
the throughput.



With Peering. In this case the bandwidth available for queries will be lower be-
cause the communication between the peers uses up some of the bandwidth. Let
BP2P be the bandwidth used for communication between peers which consists
of two components, i.e., BP2P = BP2P1 +BP2P2 where BP2P1 is the bandwidth
required to query other other peers and BP2P2 is the bandwidth required to
respond to a peer query.

Calculating BP2P1. Let breq be the fixed number of bits required to broadcast
request to peers. Let Nres1 be the number of peers that respond and bres be the
size of each response. Let preqh denote the probability that MSt will send out
query to its peers and let presh denote the probability that a peer receiving the
query will respond with a subset of of the IR requested by MSt. Then

BP2P1 = preqh ∗ (breq + Nres1 ∗ bres). (8)

where preqh = (1−s)sk. Further, Nres1 = N ∗presh where presh = (1−s)(1−sk),
as it must be awake and has not slept for k consecutive intervals. Thus,

Nres1 = N ∗ (1− s)(1− sk). (9)

The expected number of intervals asleep is equal to s/(1− s) as derived in [10].
Therefore, conditional expectation of number of IRs needed given that the MSt

has slept for k or more intervals is still s/(1−s), although the probability of this
occurring is much smaller (sk). Thus the size of this response bres = s/(1−s)∗Bc,
where Bc is the mean bandwidth needed to transmit an IR.

Calculating BP2P2. Let breq be the bits used to broadcast request to peers.
This has a fixed and known value. Let Nreq2 be the number of peers that request
for peer help and Nres2 be the number of responses sent by MSt. As before, let
bres be the size of each response. Finally, let pvIR denote probability that the MS
receiving the query has at least one valid IR. Let BP2P2 denote the bandwidth
required to respond to a query and is given by

BP2P2 = (1− s)(Nreq2 ∗ breq + (pvIR) ∗Nres2 ∗ bres) (10)

where, pvIR = (1− sk), Nreq2 = N ∗Pr(MS requesting help) which is equal to
N ∗ ((1−s)∗sk). Finally, Nres2 = Nreq2 because the MSt is assumed to respond
to all requesters, if it has valid IRs.

5 Results and Discussions

All the experiments were run with the following parameter values: the length of
the IR interval L was set to 10 seconds, two different query rates were used, i.e.,
λ was set to 0.001 or 0.1 queries per second, and the update rate µ was set to
0.0001 updates per second.



λ = 0.001

0

0.1

0.2

0.3

0.4

0.5

0.6

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
s

hi
t r

at
e

N=10
N=20
N=100
N=0
N=5
N=2
N=4
N=6
N=8

λ=0.001

0

0.5

1

1.5

2

2.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
s

T/
T_

A
T

N=10
N=20
N=100
N=5
N=2
N=4
,N=6
N=8

λ=0.1

0

0.2

0.4

0.6

0.8

1

1.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
s

hi
t r

at
e

N=10
N=20
N=100
N=0
N=1
N=2
N=4
N=6
N=8

λ=0.1

0

50

100

150

200

250

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
s

T/
T_

A
T

N=10
N=20
N=100
N=1
N=2
N=4
N=6
N=8

a b

c d

Fig. 2. Hit rate (a and b) and throughput (c and d) for peering only scheme (Note
that normalizing throughput TAT is for k = 1 and no peering).

5.1 Peering Only

The hit rate and improvement to throughput in the peering only scheme are
shown in Figures 2. As expected the hit rate decreases with increasing s. Also
the hit rate increases with increasing query rate λ. This is because when the
query rate is high, queries occur at fewer intervals apart, where the probability
of having incomplete IR data is lower. When queries occur far apart, the hit rate
is lower as the probability of having incomplete IR data is higher. Therefore, at
a low query rate (λ = 0.001), the hit rate is very low. As queries come farther
and farther apart, the probability of having incomplete IR data will eventually
be 1 (for any value of s except 0).

The hit rate increases with increasing N. The benefit of having N peers is to
reduce the effective sleep probability from s to sN (see Equation(3)).

As expected, the throughput improvement is much higher for high query rate
(λ = 0.1) as compared to low query rate (λ = 0.001). The benefit of peering
levels off at higher values of s because the increased peer-to-peer traffic consumes
bandwidth.

5.2 Windowing Only

The results of windowing scheme is shown in Figures 3. For high query rates,
the benefit of windowing is more at higher values of s. This is because when ss
is high, the hit rate is low for the case without windowing. Windowing reduces
the effective sleep probability and thus increases the hit rate. For low query



λ=0.001

0

0.1

0.2

0.3

0.4

0.5

0.6

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
s

hi
t r

at
e

k=2
k=4
k=6
k=1
k=8
k=10
k=15
k=20
k=40

λ=0.001

0

0.5

1

1.5

2

2.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
s

t/t
at

k=2
k=4
k=6
k=8
k=10
k=15
k=20
k=40

λ=0.1

0

0.2

0.4

0.6

0.8

1

1.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
s

hi
t r

at
e

k=2
k=4
k=6
k=1
k=8
k=10
k=15
k=20
k=40

λ=0.1

0

50

100

150

200

250

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
s

T/
T_

A
T

k=2
k=4
k=6
k=8
k=10
k=15
k=20
k=40

a

c

b

d

Fig. 3. Hit rate (a and b) and throughput (c and d) for windowing only scheme (Def-
inition of TAT same as before).

rates, the effect of windowing is more significant at lower values of s. At higher
values of s, windowing is not as effective because the queries are too far apart for
any windowing to make a difference. With respect to the throughput, as in the
case of peering, the improvement drops at higher values of s because of higher
bandwidth overhead due to larger window size.

5.3 Combined Scheme

The improvement to hit rate and throughput due to a combination of windowing
and peering is shown in Figures 4. To study the relative effectiveness of window-
ing versus peering, we chose N and k values such that the product (N + 1) ∗ k
is constant denoted by C and set equal to 10 for results shown here. For high
query rates increasing k improves the hit rate better. When k = C (i.e., only
windowing), the probability of having incomplete IR data for the first (C − 1)
intervals is equal to zero and is equal to sC at interval C. In contrast, when
N + 1 = C (only peering), the conditional probability of having incomplete IR
data is sN+1 in each of the C intervals and the probability of having incomplete
IR data is 1− (1− sC)C at interval k. When query rate λ is high, the first few
intervals are more important in the analysis, as the second query is expected in
that duration. However, during this same period, as shown above, probability of
having incomplete IR data is higher in the case of peering. Therefore, the case
for windowing performs better than the peering.



λ=0.001, k*(N+1) = 10

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

s

hi
t r

at
e

k=1, N=0
k=1, N=9
k=2, N=4
k=5, N=1
k=10, N=0

λ=0.1,  k*(N+1) = 10

0

0.2

0.4

0.6

0.8

1

1.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

s

hi
t r

at
e

k=1, N=0
k=1, N=9
k=2, N=4
k=5, N=1
k=10, N=0

a b

λ=0.001,k*(N+1)=10

0

0.5

1

1.5

2

2.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

s

T/
T_

AT

k=1,N=9
k=2,N=4
k=5,N=1
k=10,N=0

c

λ=0.1,k*(N+1)=10

0

50

100

150

200

250

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

s
T/

T_
AT

k=1,N=9
k=2,N=4
k=5,N=1
k=10,N=0

d

Fig. 4. Hit rate (a and b) and throughput (c and d) for the combined (Definition of
TAT same as before).

6 Related Work

In this paper we studied two methods to improve cache invalidation upon update
using IRs ([2], [10]). Many other works ([5], [4], [11], [3], [12], and [8]) also dealing
with cache invalidation have been published. Group-based invalidation schemes
were proposed in [8] to retain as many valid objects as possible by checking for
cache validity with the server upon reconnection. A different type of IR was
proposed in [6] where the IR contains a set of bit sequences, each associated
with a timestamp. The bits represent data objects in the database and indicate
change to objects. The scheme reduces the number of cached objects discarded,
but increases the size of the IR report. An asynchronous and stateful approach
was proposed in [7] to reduce query latency and number of discarded objects.
In [5] the authors have proposed an adaptive algorithm which combines the TS
and Bit-Sequence approaches based on current query and update rate to achieve
better performance. Another approach to reduce query latency and improve
bandwidth utilization was proposed in [4] by repeating a small fraction of the
IR information within the IR interval. In [11] the authors evaluate the cache
performance when using some of the above schemes.

7 Conclusions

In this paper we proposed a unified mathematical model for studying the im-
provement to cache coherency using windowing, peering and a combination of



both. From the results we conclude that both methods provide significant im-
provements to cache performance, and that their performance is comparable for
most part. Both windowing and peering consume bandwidth and thereby reduce
throughput. The extra bandwidth consumed by windowing is of the order of k,
while for peering it is of the order of N2. Since the two schemes are orthogonal,
they can be combined to improve cache performance greatly. Depending on the
relative costs of bandwidth and power consumption for Base Station to Mobile
Station and peer-to-peer communications, one can choose to combine the two
methods in a way to optimize the cache performance. Future work can include
studying the performance of the three schemes using different cost models for
bandwidth and power consumption.

References

1. A.W.Drake. Discrete state markov processes. Chapter 5: In Fundamentals of
Applied Probability Theory, 1967.

2. D. Barbará and T. Imieliński. Sleepers and workaholics: caching strategies in
mobile environments. MOBIDATA: An Interactive journal of mobile computing,
1(1):1–12, 1994.

3. J. Cai and K. Tan. Energy-efficient selective cache invalidation. Wireless Networks,
5(6):489–502, 1999.

4. G. Cao. A scalable low-latency cache invalidation strategy for mobile environments.
In Proceedings of the sixth annual international conference on Mobile computing
and networking, pages 200–209. ACM Press, 2000.

5. Q. Hu and D. K. Lee. Cache algorithms based on adaptive invalidation reports for
mobile environments. Cluster Computing, 1(1), 1998.

6. J. Jing, A. Elmargarmid, S. Helal, and R. Alonso. Bit-sequences: An adaptive
cache invalidation method in mobile client/server environments. ACM/Baltzer
Mobile Networks and Applications, 2(2), 1997.

7. A. Kahol, S. Khurana, S. Gupta, and P. Srimani. A strategy to manage cache
consistency in a distributed mobile wireless environment, 2000.

8. P.S.Yu K.L.Wu and M.S.Chen. Energy-efficient caching for wireless mobile com-
puting. In Proceedings of the 12th International Conference on Data Engineering,
pages 336–343. IEEE, February 1996.

9. P. Nuggehalli, V. Srinivasan, and C. Chiasserini. Energy-efficient caching strategies
in ad hoc wireless networks. In The Fourth ACM International Symposium on
Mobile Ad Hoc Networking & Computing MOBIHOC 2003, 2003.

10. J. P. Pandya, P. Mohapatra, and D. Ghosal. Asymptotic analysis of a peer en-
hanced cache invalidation scheme. In Proceeding WiOPT: Modeling and Optimiza-
tion in Mobile, Ad Hoc and Wireless Networks, pages 200–209. IEEE Press, 2004.

11. K. Tan, J. Cai, and B. Ooi. An evaluation of cache invalidation strategies in
wireless environments. IEEE Transactions on Parallel and Distributed Systems,
12(8):789–807, 2001.

12. B. Zheng, J. Xu, and D. Lee. Cache invalidation and replacement strategies for
location-dependent data in mobile environements. IEEE Transsactions on Com-
puters, 51(10):1141–1153, 2002.

13. R. Zheng, J. Hou, and L. Sha. Asynchronous wakeup for ad hoc networks. In
The Fourth ACM International Symposium on Mobile Ad Hoc Networking and
Computing MOBIHOC 2003, 2003.


