
An Efficient Overlay Link Performance Monitoring
Technique

Zhi Li1, Lihua Yuan2, and Prasant Mohapatra2

1 Network Systems Engineering, AT&T
lizhi@cs.ucdavis.edu

2 University of California, Davis
{lyuan@ece, prasant@cs}.ucdavis.edu

Abstract. Link performance monitoring is a common task required by differ-
ent overlay networks. Current overlays typically let each node monitor links by
itself, which is not scalable for large networks. Earlier improvement proposals
either use a centralized approach or sacrifice measurement accuracy. This paper
proposes MONET, a distributed overlay monitoring technique. Based on the pro-
posed X-Set concept, MONET enables peer cooperation so that each node per-
forms a minimum amount of measurement but can deduce the performance of
any link. It does not lose accuracy and adapts to IP-layer path dynamics. Theo-
retical analysis and simulation results, in terms of monitoring cost and querying
overhead, are also discussed in this paper.

1 Introduction

An overlay network is a virtual network formed by a subset of nodes in the underlying
layer and virtual links composed of one or more hops on the lower-layer links. Recent
research has shown a promising future for using application-layer overlay network to
introducing new applications and services, e.g. multicast [1], Quality of Service (QoS),
resilient routing, peer-to-peer file sharing, all without disrupting the operation of the
lower IP layer. To better support the many upcoming overlay applications, researchers
have proposed a generic overlay service network (OSN) [2, 3]. An OSN implements
common functionalities among application-specific overlays, e.g. overlay link perfor-
mance monitoring, topology construction, overlay service composition, and provides
them as services to applications. It can coordinate the activities of multiple overlays
and reduce overhead by avoiding repeating common tasks.

Monitoring overlay link performance, e.g. delay or loss rate, is a common task re-
quired by many applications. An overlay network with n nodes might need to monitor
n2 links, with each monitoring job incurring its own overhead. For overlay networks
with large number of nodes, a scalable solution is necessary. In fact, several existing
random measurement works have already incurred significant amount of overhead to
the Internet. Reducing the monitoring overhead while maintaining the measurement
accuracy is a challenging task that remains to be fully addressed.

This paper proposes a scalable monitoring service overlay network (MONET), which
aims to measure the performance of overlay links and provide timely results to any
querier. The key idea is based on the proposed X-Set concept (Sec. 3) through which
overlay nodes can share measurement information and deduce the performance of some

2

links without directly measuring them. MONET can effectively reduce the monitoring
overhead and distribute the measurement load among overlay nodes, all without scari-
fying accuracy. It also adapts well to lower-layer dynamics like IP path changes.

The rest of this paper is organized as follows. Sec. 2 presents some related work.
Sec. 3 discusses X-set, which is the foundation of the link selection algorithm used in
MONET. Sec. 4 presents the framework and detailed operations of MONET. We present
some analysis in Sec. 5, simulation studies in Sec. 6, and conclude in Sec. 7. Due to
space limitations, the detailed proof and additional simulation results are referenced for
interested readers [4].

2 Related Work

Internet measurement is an active research field. Extensive work has been dedicated
to inferring per-link performance when limited information is available [5, 6]. In over-
lay networks, measurement is focused on the performance of overlay links instead of
individual IP links. Several works have been done to infer the distance between two
arbitrary end hosts [7–9]. However, their approaches are only applicable to estimate the
approximate end-to-end distances (delay), which is different from our goal of providing
accurate overlay link performance information.

Shavit et al. [10] use algebraic tools to compute the link distances that are not di-
rectly measured. Given some tracers and some direct path measurement results, the pro-
posed method can infer the performance of some paths or path segments. However, they
do not deal with the selection of directly monitored links, sharing monitoring results, or
providing scalable monitoring service, which are necessary for overlay networks. Chen
et al. [11] also use an algebraic method to show how to use minimal linearly indepen-
dent k paths to represent the performance of all n2 paths. Both methods and MONET
try to exploit the IP-layer information for reducing the overlay link monitoring over-
head. The approach in [11] uses a centralized approach to determine directly monitored
overlay links. In contrast, MONET proposes a distributed approach and tradeoff over-
head reduction for scalability to large overlay network. In addition, MONET can cope
with dynamic IP-layer path changes and avoid single point failure.

Tang et al. also propose approaches to reduce the number of directly monitored
overlay links and track all the performance of all possible overlay links [12]. It has
a centralized version and a distributed version. Their approaches are based on the as-
sumption that an overlay link performance is approximately similar to the performance
of its sub-segments, which can not provide accurate monitoring results.

3 X-set

Although an overlay node can measure the performance to any other nodes, it is possible
for overlay nodes to share information and reduce measurement overhead if there is
sufficient knowledge about the IP topology. Fig. 1 depicts a simple scenario in which
node C is on the path of AB. Although there are 3 overlay links, it is sufficient to
monitor the delay of any two of them and then deduce the other. For an additive metric
like delay, the relationship of the three links can be expressed with Eq. 1. Similarly, the
loss rate of link AB (ÃB), which is a multiplicative metric, can be found using Eq. 2.

3

This paper focuses on additive metrics since a multiplicative metric can be transformed
to additive metric at log-scale (Eq. 3).

IP nodes
A C B

Overlay nodes

Fig. 1: On-Path Overlay Nodes

AB = AC + CB (1)gAB = 1− (1−gAC) (1−gCB) (2)

log(1−gAB) = log(1−gAC) + log(1−gCB) (3)

C

X

BA

D

(a)

A

X

B

C

Y

D

(b)

A B

C D

X
Y

(c)

A B

C D

X

Y

Z

(d)

A

B

C D

X

Y

(e)

Fig. 2: Different Combinations of Two "Y"s.
Path AC AD BC BD

(a) AX + XC AX + XD BX + XC BX + XD

(b) AX + XY + Y C AX + XY + Y D BX + XY + Y C BX + XY + Y D

(c) AX + XC AX + XY + Y D BY + Y C BY + Y D

(d) AX + XC AX + XY + Y D BZ + ZY + Y C BZ + ZD

(e) AX + XC AX + XD BY + Y C BY + Y D

Table 1: Mathematical Expression of the Graphs in Fig. 2

For an overlay node A, if we map its paths to all other nodes onto the underlying IP
topology, all the IP paths form a source-based routing tree (SRT) rooted as this node.
Similarly, the IP paths from other nodes to A form a destination-based routing tree
(DRT). Both source and destination-based routing trees can be decomposed into a set
of basic components in the shape of a reverse “Y”. We can use this basic component
to reduce the number of overlay links we need to monitor. Consider a simple topology
with four overlay nodes A, B, C and D. A and B need to monitor the performance
of the overlay links (AC, AD, BC, and BD) connecting to nodes C and D. Based
on the SRT of A or B, the two paths to C and D (from A to C, D and from B to C,
D respectively) can be decomposed into two "Y"s. The different combinations of the
two “Y”s are shown in Fig. 2, in which, X , Y and Z are non-overlay, on-path nodes.
Note that Fig. 2 does not include every possible combination of two “Y”s. However,
any other scenario can be reduced to one of the graphs in Fig. 2.

Equations in Table 1 present the relationship among the performance of overlay
links for topologies illustrated in Fig. 2. For an additive metric, the performance of an

4

overlay link is the combination of the performance of all its sub-segments. Using a
similar theory to that used by Chen et al. [11], if there are linearly dependent equations
within a set of overlay link performance expressions, some of the overlay links can be
removed from the set of links to directly measure without affecting the accuracy. The
total number of overlay links these two nodes (A and B) need to directly monitor is
the rank of this set of equations. The corresponding directly monitored overlay links
are the linearly independent equations. For the equation sets in Fig. 2, it is easy to see
that the equations in sets (a) and (b) can be decomposed into three equations, which
means that the performance of the four overlay links in Fig. 2a and Fig. 2b can be
obtained by directly monitoring three overlay links. For example, if node A monitors
the performance of AD, node B monitors the performance of BC and BD, A can
obtain the performance of AC since AC = AD + BC − BD.

Definition 1. X-Set: For two overlay nodes, if their IP layer paths to the other two
overlay nodes can be reduced to Fig. 2a or Fig. 2b, the four overlay links form an X-
Set. The performance of all the four overlay links can be obtained by directly monitoring
any three of them.

The basic requirements for two Ys to compose an X-Set is that the two branching
nodes of the two "Y"s overlap with each other such as node X in Fig. 2a and Y in
Fig. 2b. Based on this, two nodes can cooperate with each other to find X-Sets (the
details of which are described in the next section). As "Y"s are the basic components of
SRTs, finding X-Sets is the basic method for two overlay nodes to cooperate and reduce
the total number of directly monitored overlay links. More complicated combinations
of the SRTs of two nodes can be partitioned into multiple X-Sets, which then allows the
total number of directly monitored overlay links to be reduced.

D1 D2

...
Dm−1 Dm

A B

(a)

X1 X2

...
Xm−1 Xm

Y1 Y2
...

Yn−1 Yn

(b)

B X1 X2

...
Xm

Y1 Y2
...
Ym A

(c)

Fig. 3: Combinations of X-Sets

For example, in Fig. 3a, overlay node A and B need to track the performance of the
2m incident overlay links to the destination nodes (from D1 to Dm). The graph can be
seen as the combination of m−1 X-Sets ({A,B, D1, D2}, {A,B, D1, D3}, · · · {A,B, D1, Dm}).
For the first X-Set, we only need to directly monitor three overlay links. For each of the
remaining m−2 X-Sets, one only needs to directly monitor one additional link to obtain
the performance of two links (as we already have the performance of AD1 and BD1).
The total number of directly monitored links is m + 1 instead of 2m.

5

4 A Framework of Monitoring Service Overlay Network
(MONET)

MONET assumes that an overlay link observes many more performance (delay or loss
rate) changes than underlying IP path. An overlay node can identify its IP routing in-
formation to other nodes, by either querying other service modules or by traceroute. In
MONET, overlay nodes independently determine their incident overlay links and con-
tinuously monitors their performance. They also share these monitoring results with a
set of neighbors.

Given an IP topology G(V,E) and a set of overlay nodes V ′ ∈ V , each overlay
node independently chooses its set of directly monitored overlay links either based on
its local information or by collaborating with other overlay nodes. These overlay links
form the topology G′(V ′, E′) of the MONET, in which each link in G′ is an IP path
in G. Based on the MONET topology, each overlay node continuously monitors the
performance of its incident overlay links. The links in the MONET topology are directly
monitored. Other links in the corresponding full-mesh topology are called indirectly
monitored overlay links, whose performance can be derived by the directly monitored
results. In other words, MONET aims to track the performance of n2 overlay links but
incurs the least amount of monitoring overhead. Meantime, MONET aims to minimize
the communication overhead and balance the load among the overlay nodes.

4.1 How does MONET work?

In MONET, each overlay node maintains an overlay monitoring table (OMT), which
is an essential component to provide overlay link monitoring services. One entry is
created for each adjacent overlay node in the full mesh topology. Each OMT entry
has three fields: DestID,MonitorBool,MethodList. DestID is the address of the
neighbor – the destination of this overlay link. MonitorBool determines whether the
current overlay node (the OMT owner) should directly monitor the performance of the
corresponding overlay link or not. If not, the MethodList field includes the list of
methods to obtain the performance of this link and the maximal query hops for each of
these methods. For each indirectly monitored overlay link, an overlay node may have
more than one method to obtain the corresponding overlay link performance. In our
simulation studies (Sec. 6), we assume that each node only maintains one method for
each indirectly monitored overlay link.

For example, in Fig. 1 and Fig. 2a, A can use one of the two methods to obtain the
performance of link AC: AB +BC or AD +BC−BD. A needs to query one hop for
the performance of BC. When a query arrives at node A for link AC performance, A
first locates the corresponding entry for AC from its OMT. If the entry’s MonitorBool
is true, it can directly return the overlay link performance. Otherwise, it will obtain the
methods from MethodList and try each of them to obtain the link performance. Based
on method AB + BC, besides checking the entry for AB, node A also needs to send
a query to B for the performance of link BC, or, based on AD + BC − BD, it will
send a query for BC and BD. If any performance query request returns, A can obtain
the performance of overlay link AC. It is easy to see that a link performance query may
take several query hops to return the performance. To balance the tradeoff between the

6

query distance and query overhead, a node can try each of the methods (or a subset of
them) in parallel or sequentially.

4.2 Find Directly Monitored Overlay Links

Besides an OMT, each overlay node also needs to maintain two other data structures:
a list of Friend Nodes and the corresponding list of "Y"s for each Friend Node. To fill
each OMT entry, the overlay nodes can take the following two steps.
Algorithm.1: Finding “Y”s
Y − Set← ∅ //Initialization
for each overlay node X do

Retrieve the paths to every other nodes
Construct the SRT rooted at X
for each overlay nodes pair A, B do

Find the branching node BNAB // the
furthest common node of XA and XB
in the SRT

if BNAB 6= X do
Append < A, B, BNAB > into Y-Set

Algorithm.2: Load Balancing
Input: X-Set (A, B, X, Y), S ← size of overlay
Require: IDA<IDB and IDX < IDY

if IDY < S ∗ 1/(21/2)

if IDB < S ∗ 1/(21/2) [case 1]
A→ {AY, AX}, B → {BX}

else A→ {AX}, B → {BY, BX} [case 2]
else

if IDB < S ∗ 1/(21/2) [case 3]
A→ {AY, AX}, B → {BY }

else A→ {AY }, B → {BY, BX} [case 4]

First, each node independently identifies its list of "Y"s using Algo. 1. The main idea
of Algo. 1 is to construct the SRT so that a node can locate the branching nodes and
"Y"s. Based on the IP paths to other overlay nodes, a node can also find the possible
scenarios as described in Eq.1. In addition, a node can also choose a set of overlay
nodes as friend nodes, with which the node will share monitoring results. The selection
of friend nodes is based on the IP path distance because the closer the two nodes are,
the higher the chance that their incident overlay links will compose X-Sets.

In the second step, an overlay node will exchange its list of "Y"s information with
the selected Friend Nodes. Based on the "Y" information from its friend nodes, it can
easily identify the X-Sets by comparing the common branching nodes of the two "Y"s
for any two destination nodes. To balance the overhead from directly monitoring among
the overlay nodes and to avoid the complicated negotiation procedure, an overlay node
uses Algo. 2 to select its directly monitored overlay links.

The input to Algo. 2 is an X-Set with source nodes as A, B and destination nodes
as C, D. The main idea is based on the four nodes’ ID values. It is easily to find the
probability of (IDX < IDY) and (IDY < S ∗ 1/(21/2) is 1/2 and the probability of
(IDA < IDB) and (IDB < S ∗ 1/(21/2) is also 1/2. Considering both case 1 and
case 3, for the probability of 1/2, node A only needs to monitor one overlay link for
an X-Set. We can conclude that this algorithm balances the monitoring overhead (both
sending and receiving measurement probing traffic) among the different overlay nodes
without complicated negotiation procedures.

4.3 Dealing with Dynamic Network Condition

In MONET, each node periodically (much less frequently than link performance prob-
ing) performs traceroute or other methods to obtain the IP-layer path information. If a
node realizes that an IP-layer path to the other node changes, it will check whether there
is any change in its set of "Y"s. If necessary, it will update some overlay links’ mon-
itoring methods. In addition, it will also send the "Y" update information to its friend

7

nodes, which in turn may need to update their OMTs. The procedure of updating OMT
entries is similar as adding OMT entries as discussed above.

Similarly, when an overlay node joins an existing overlay network, it first retrieves
the IP-path information to other overlay nodes and chooses its friend nodes. After find-
ing its "Y"s in its SRT and receiving "Y" information from its friend nodes, it can begin
to find "X-Set" and fill its OMT entries one-by-one. If an overlay node needs to update
its friend nodes set, it can also take similar steps.

In some cases, overlay nodes may not be able to retrieve the complete IP path in-
formation. For example, an IP path traceroute result could be like "69.110.237.117, *,
171.66.1.17, 171.67.255.249, *, *, 171.66.7.234". As the X-Set technique in MONET is
based on the overlapping of two "Y"s’ branching nodes, the incomplete path informa-
tion will only affect the number of "Y"s each overlay node can find. It may result in the
increase in the number of directly monitored overlay links. However, it will not affect
the correctness and normal operations of MONET.

In summary, each MONET node independently (by exchanging information with a
selected set of friend nodes) chooses which methods are used to track overlay link per-
formance by either direct monitoring or indirect monitoring. Using the proposed tech-
niques, MONET can effectively reduce the number (cost) of directly monitored overlay
links without affecting the monitoring accuracy. In addition, it can quickly handle IP
topology or IP path changes and dynamic overlay network membership.

5 Performance Analysis

5.1 Number of Overlay Links in MONET Topology

Fig. 3b and Fig. 3c shows the two different combinations of X-Sets. In Fig. 3b, node
X1 needs to monitor the performance of links from itself to node Y1, · · · , Yn. Suppose
X1 realizes that the path of other m − 1 nodes (X1, X2, · · · , Xm) to Y1, Y2, · · · , Yn

compose multiple X-Sets as shown in the graph. We can estimate the average number
of links a node X1 need to directly monitor in order to obtain the performance of all
its links (X1Y1, X1Y2, · · · , X1Yn) based on the following analysis. First, X1, X2, Y1

and Y2 compose the first X-Set; the total number of directly monitored overlay links
(for both X1 and X2) is 3. After this, if X1 and X2 want to monitor the links to one
additional node (such as the links to Y3, X1Y3 and X2Y3), they only need to directly
monitor one more link to obtain the performance of two (X1Y3 or X2Y3). If another
node (such as X3) wants to monitor the performance to Y1 and Y2 (X3Y1 and X3Y2),
it only needs to directly monitor one additional link (X3Y1 or X3Y2). Consequently,
in order for all the nodes (X1, X2, · · · , Xm) to obtain the overlay links’ performance
to all the destination nodes (Y1, Y2, · · · , Yn), the total number links X1 · · ·Xm need to
directly monitor is m + n − 1. On average, for each overlay link, one node needs to
have 1

m + 1
n − 1

mn incident links in the MONET topology (average per node and per
link directly monitoring cost) to obtain the performance of all the links.

As mentioned above, the routing path of an overlay node to other nodes can be
mapped to a SRT rooted at itself. For a connected graph, all the overlay nodes are
located at the leaf nodes of other nodes’ SRTs. Assume the total of n nodes are in the
MONET and the average branching degree in the routing tree is k. The average height
of the tree is h (h = logn

k). For a routing tree, it has different levels of sub-trees: the

8

level 0 sub-tree is itself; level 1 sub-trees are the sub-trees that rooted at the children
nodes of the root;...;level h sub-trees are the leaf nodes.

5.2 Overlay Link Performance Query Hops

k
log n

1
 1−

k
log n

1
 1−

k
log n

1
 1−

k
log n

1

k
log n

1

k
log n

1

k
log n

1

1
Performance Query

2 3 4

Return Query Result

Fig. 4: Link Performance Query Processing Steps

A node of MONET does not monitor all adjacent overlay links directly. Therefore,
it may need to query other nodes, which may repeat the similar process, to infer the per-
formance of the link under request. We use Link Performance Query Hops to evaluate
the average query distance to fulfill each overlay link performance query. As depicted
in Fig. 4, the average directly monitoring cost of each overlay link is 1

logn
k

. The number

of incident overlay links for each node is n∗ 1
logn

k
. A link performance query processing

procedure is shown in Fig. 4. Suppose a query arrives at node 1. Node 1 has a probabil-
ity of 1

logn
k

to respond to the query without querying others. Otherwise, it will forward
the request to the next node (e.g. node 2) based on its OMT. Node 2 will then repeat
the same procedure: either returns the query result to node 1 with probability of 1

logn
k

or
sends another query based on its OMT to node 3. Consequently, the average query hops
can be found as logn

k −1. One can show that the upper bound of the directly monitoring
cost for each overlay link is 1

logn
k
− k

logn
k ∗n . The cost is inversely proportional to the

average height of the SRTs. Given a fixed number of overlay nodes, the smaller value
of the average degree is in the routing tree, the lower monitoring cost each overlay link
incurs (less directly monitored overlay links in the MONET topology).

6 Simulation Study and Discussions

We evaluate the performance of MONET through simulation. The simulations are based
on a real ISP intra-domain topology (Intra604) taken from Rocketfuel [13] and three
topologies generated by BRITE [14]. Intra604 has 604 nodes, 4547 directed links and
an average node degree of 7.5. For the other three topologies, W1000 is a router-level
Waxman [15] topology with 1000 nodes. The other two (H1000 and H5000) are two
2-layer hierarchical topologies with the lower level based on Waxman model and the
higher level based on Barabasi-Albert model, with 1000 and 5000 nodes respectively.
For the topologies generated by BRITE, each node is adjacent on average of two undi-
rected links, which leads to an average node degree of 4.0. The IP layer use shortest path
based routing. We focus on the following performance metrics: average query hops for

9

indirect monitored overlay links, average overlay link monitoring overhead, monitoring
overhead balancing results, and OMT table updates under dynamic IP-layer change.
Due to space limitation, we only present the results on Intra604 and H1000.

0

0.2

0.4

0.6

0.8

1

4 6 8 10 12 14 16 18 20

Av
er

ag
e

M
ea

su
re

 O
ve

rH
ea

d
Ra

tio

Num. of Friend Nodes

Overlay Size= 50
Overlay Size=100
Overlay Size=200

(a) Intra604

0

0.2

0.4

0.6

0.8

1

4 6 8 10 12 14 16 18 20

Av
er

ag
e

M
ea

su
re

 O
ve

rH
ea

d
Ra

tio

Num. of Friend Nodes

Overlay Size= 50
Overlay Size=100
Overlay Size=200

(b) H1000

Fig. 5: Monitoring Overhead vs. Num. of Friend Nodes.

0

0.5

1

1.5

2

2.5

3

4 6 8 10 12 14 16 18 20

Av
er

ag
e

Q
ue

ry
 H

op
s

Num. of Friend Nodes

Overlay Size= 50
Overlay Size=100
Overlay Size=200

(a) Intra604

0

0.5

1

1.5

2

2.5

3

4 6 8 10 12 14 16 18 20

Av
er

ag
e

Q
ue

ry
 H

op
s

Num. of Friend Nodes

Overlay Size= 50
Overlay Size=100
Overlay Size=200

(b) H1000

Fig. 6: Average Indirectly-Monitored Overlay Link Performance Query Hops

6.1 Monitoring Overhead

We use Monitoring Overhead Ratio (MOR) to evaluate the performance of MONET in
reducing the monitoring overhead of each node to provide constant link performance
monitoring service. For an overlay node, MOR is defined as:

MOR =
of Adjacent Directly Monitored Overlay Links

Overlay Network Size
(4)

The directly monitored overlay link means that the overlay node keeps sending
probing traffic to monitor the overlay link performance. It is easy to see that the smaller
value of MOR means that MONET can provide better performance in terms of decreas-
ing the monitoring overhead. Fig. 5 shows that the average MOR for overlay networks
of various sizes and numbers of friend nodes on top of the different IP topologies. From
the simulation results, one can observe that the increase in the number of friend nodes
will reduce the average MOR, which means the monitoring overhead will decrease. This

10

is because each node has higher chance to find X-Sets with its neighbors. However, as
we mentioned above, the "Y" information needs to be shared between friend nodes.
The larger number of friend nodes means that higher amounts traffic will be exchanged
during dynamic IP-layer path changes. When considering different sizes of overlay net-
works on the same underlying IP topology, we can observe that the performance of
MONET varies greatly. The larger an overlay network is, the less the average MOR is.
This is because each node can have more candidate nodes to choose as friend nodes.
This will result in more X-Sets, which means that the number of directly monitored
overlay links can potentially decrease.

6.2 Average Query Hops

An overlay node needs to query others when a query for an indirectly monitored overlay
link arrives and then relay the answer back. The number of query hops determines the
response delay and the accuracy of the performance value. Fig. 6 shows that the average
number of query hops for all indirectly monitored links. We can observe that the average
query hops are all below 2.0 for the various simulated scenarios. The average query
hops in Fig. 6a (between 1.5 and 2.0) is higher than Fig. 6b (between 1.0 and 1.5). This
is because the first topology is smaller, resulting in a higher probability of finding X-
Sets. Considering together with the simulation results of the average MOR and average
query hops, we can conclude that lower MOR is correlated to longer query hops which
agrees with our previous analysis results. In addition, we can observe that increasing
the number of friend nodes only slightly affects the average query hops.

6.3 Balancing the Monitoring Overhead

MONET aims to balance the overlay link monitoring overhead among all the over-
lay nodes as described in Algo. 2. For comparison, we consider another none-load-
balancing monitoring overhead distribution method: if A and B (assume IDA < IDB)
find the overlay links connecting to X and Y (assume IDX < IDY) form an X-Set, A
will never monitor link AX but always deduce its performance based on the values of
the other three links. Note that both methods allows overlay nodes to share the monitor-
ing overhead and collaborate without complicated negotiation and message exchanges.

OverHead Ratio
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Nu
m

. o
f N

od
es

0

5

10

15

20

No_Load_Balancing With_Load_Balancing

Fig. 7: Distribution of Monitoring Overhead Ratio

11

Fig. 7 presents the effect of load balancing based on Intra604 with 4 friend nodes.
The x-axis values are the different bins of MOR values while the y-axis shows the
numbers of overlay nodes within the corresponding bins. With load balancing, more
nodes are located in the bins whose value are closer to the average MOR. This suggests
that Algo. 2 can effectively distribute the overhead among nodes. In contrast, if load
balancing is not available, some nodes will have high monitoring overhead while others
are lightly loaded.

Overlay # of IP-layer path # of IP Link # of Overlay # of "Y" # of OMT
Size Friends Failure Ratio Failures Path Changes Changes Updates

50 4 0.001 6 14.66 3.75 5.6
50 8 0.001 6 15.64 4.70 3.43
50 10 0.001 6 13.54 5.21 3.45
50 15 0.001 6 10.18 4.82 5.30
50 4 0.002 11 24.76 6.86 4.48
50 8 0.002 11 23.68 7.70 5.05
50 10 0.002 11 25.30 9.5 7.0
50 15 0.002 11 31.90 8.6 10.03

100 4 0.001 6 47.75 9.2 6.14
100 8 0.001 6 45.10 9.58 20.35
100 10 0.001 6 50.0 10.38 29.4
100 15 0.001 6 51.38 13.3 40.92
100 4 0.002 11 122.76 18.5 14.96
100 8 0.002 11 113.79 19.12 25.09
100 10 0.002 11 124.63 27.13 54.43
100 15 0.002 11 125.00 22.73 70.13

Table 2: The Effect of IP-layer Path Changes (Overlays on Top of Intra604 Topology)

6.4 Effect of IP-layer Path Change

The operation of MONET is based on the IP-layer path information. If there is an IP-
layer path change in the overlay links, some X-Sets will be added or deleted, which
leads to the updates of OMT table. In this paper, we use Intra604 as an example to
investigate the effect of IP-layer path changes. We first randomly form an overlay net-
work with size 50 or 100. After this, each node runs the MONET to set up its OMT
table. After the system stabilizes, we randomly fail some IP-layer links without los-
ing the IP-layer connectivity. After this, the affected OMT entries will the refilled by
MONET. The relationships between IP-layer, overlay layer, number of "Y" changes as
well as the OMT table updates are shown in Table 2. From the results, we can observe
that the increase of the IP-layer link failure ratio will increase the number of changes in
the overlay links’ IP-layer paths. This is because that whenever the average number of
friend nodes is increased, the affected number of X-Sets (added or deleted) also will be
increased. This will result in larger number of OMT table updates. The OMT updates
include the changes between direct overlay link monitoring and indirect monitoring,
as well as the changes between different indirect monitoring methods. However, even

12

under higher IP-layer path failure ratios (0.001 or 0.002), the average number of OMT
updates is very small, less than 0.5 entry per node. This is because that even if there
are a lot of overlay link IP-layer paths change, the new paths will most likely take sim-
ilar paths to bypass the failed links. Consequently, even though the locations of X-Set
branching nodes change, the composition and the number of X-Sets will more or less
remain stable.

7 Conclusion

This paper proposed a framework called MONET to efficiently monitor and provide
accurate overlay link performance information. The important mission of MONET is
to reduce the monitoring cost while maintaining monitoring accuracy. MONET uses a
distributed approach that can evenly distribute the path monitoring overhead and easily
deal with IP-layer path changes. We also presented some analysis and simulation results
in terms of monitoring overhead reduction, link performance query hops and monitoring
load balancing.

References

1. Chu, Y.H., Rao, S.G., Zhang, H.: A case for end system multicast. In: Measurement and
Modeling of Computer Systems. (2000)

2. Lakshminarayanan, K., Stoica, I., Shenker, S.: Building a flexible and efficient routing infras-
tructure: Need and challenges. Technical report, UC Berkeley UCB/CSD-03-1254 (2003)

3. Braynard, R., Kostic, D., Rodriguez, A., Chase, J., Vahdat, A.: Opus: an overlay peer utility
service. In: IEEE OpenArch’02. (2002)

4. Li, Z., Yuan, L., Mohapatra, P.: An efficient overlay link performance monitoring technique.
Technical Report CSE-2005-28, Computer Science, University of California, Davis (2005)

5. Padmanabhan, V.N., Qiu, L., Wang, H.J.: Server-based inference of interent performance.
In: Proc. IEEE INFOCOM. (2003)

6. Caceres, R., Duffield, N., Horowitz, J., Towsley, D.: Multicast-based inference of network-
internal loss characteristics. In: Proc. IEEE INFOCOM. (1998)

7. Ng, E., Zhang, H.: Predicting internet network distance with coordiantes-based approaches.
In: IEEE INFOCOM. (2002)

8. Tang, L., Crovella, M.: Virtual landmarks for the Internet. In: ACM SIGCOMM/USENIX
IMC. (2003)

9. Dabek, F., Cox, R., Kaahoek, F., Morris, R.: Vivaldi: A decentralized network coordinate
system. In: ACM SIGCOMM. (2004)

10. Shavitt, Y., Sun, X., Wool, A., Yener, B.: Computing the unmeasured: An algebraic approach
to internet mapping. In: Proc. IEEE INFOCOM. (2001)

11. Chen, Y., Bindel, D., Katz, R.H.: An algebraic approach to practical and scalable overlay
network monitoring. In: ACM SIGCOMM. (2004)

12. Tang, C., McKinley, P.K.: On the cost-quality tradeoff in topology-aware overlay path prob-
ing. In: ICNP. (2003)

13. Spring, N., Mahajan, R., Wetherall, D.: Measuring isp topologies with rocketfuel. In: Proc.
ACM SIGCOMM. (2002)

14. Medina, A., Lakhina, A., Matta, I., Byers, J.: BRITE. http://www.cs.bu.edu/
brite/ (2002)

15. Waxman, B.M.: Routing of Multipoint Connections. IEEE JSAC (1988)

