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Abstract—Recently, there have been proposals to evade censors
by using steganography to embed secret messages in images
shared on public photo-sharing sites. However, establishing a
covert channel in this manner is not straightforward. First, photo-
sharing sites often process uploaded images, thus destroying any
embedded message. Second, prior work assumes the existence of
an out-of-band channel, using which the communicating users
can exchange metadata or secret keys a priori; establishing such
out-of-band channels, not monitored by censors, is difficult.

In this paper, we address these issues to facilitate private
communications on photo-sharing sites. In doing so, first, we
conduct an in-depth measurement study of the feasibility of
hiding data on four popular photo-sharing sites. Second, based
on the understanding derived, we propose a novel approach for
embedding secret messages in uploaded photos while preserving
the integrity of such messages. We demonstrate that, despite the
processing on photo-sharing sites, our approach ensures reliable
covert communication, without increasing the likelihood of being
detected via steganalysis. Lastly, we design and implement a
scheme for bootstrapping private communications without an out-
of-band channel, i.e., by exchanging keys via uploaded images.

I. Introduction
The idea of hiding messages, using steganography, in user-

generated content on photo-sharing sites has recently received
increased attention; for example, Burnett et al. [19] suggest
that the approach can be used to “chip away” at censorship
firewalls. However, while the idea is conceptually attractive,
there exist several challenges in creating a viable covert channel
of this type. First, photo-sharing sites often process uploaded
images [6]. While some of the processing functions are clearly
specified on the photo-sharing sites [8], [5] (e.g., any photo
exceeding a pre-specified size limit will be re-sized), not all
such functions are publicly known. These (possibly unknown)
processing functions often interfere with the use of steganog-
raphy. Second, it is well known that steganography does not
offer perfect secrecy. Censors can try to read the embedded
message by applying a variety of extraction algorithms on a
carrier image. Thus, to prevent exposure in the rare cases of
interception, one will have to encrypt the secret information
embedded in the shared photographs. Encryption requires the
establishment of secret keys between communicating entities,
for which prior work often assumes the existence of an out-
of-band channel. However, in cases where people are trying
to hide information from government-controlled censors, the
creation of such an out-of-band channel is difficult because
phone calls, e-mail exchanges, and Internet communication
may be monitored [29].

Our goal is to address the above challenges and build a
framework for private communication on public photo-sharing
sites. Towards this, we make three key contributions.

First, to understand how secretly embedded messages are
affected by processing done on photo-sharing sites, we perform
an in-depth measurement study. We analyze photos uploaded
on four popular sharing sites—Google+, Facebook, Twitter, and
Flickr. We consider both photos wherein secret information is
embedded and photos without any such embedding. We observe

that, while the integrity of hidden messages is preserved on
some sites (e.g., Google+), other sites (e.g., Facebook and
Flickr) perform various processing functions on uploaded im-
ages and hence the extraction of secret messages from down-
loaded images fails. Our study sheds light on the processing
performed on different sites and provides an understanding of
why secret content is affected.

Second, based on the understanding obtained above, we
propose simple changes to the steganographic encoding process
which ensure that, unlike prior approaches, the embedded secret
messages survive the image processing performed by photo-
sharing sites. Though simple, our approach is not apparent
without the detailed study on the different photo-sharing sites.
Importantly, this improved reliability does not come at the
expense of greater likelihood of detection of hidden messages.
We evaluate our approach by applying two state-of-the-art
steganalysis tools and observe that, for a fixed amount of secret
data, the likelihood of detecting secret information embedded
with our approach is similar (or even lower in some cases)
to the probability of detection when prior approaches for
steganographic embedding are applied (while surviving the
processing done on the site).

Finally, as discussed above, encrypting the secretly embed-
ded messages is a must. Therefore, to enable recipients of
the shared photo to extract the raw data, a key exchange
between the sender and recipients is essential. Towards this, we
propose a protocol for bootstrapping the private communication
without any out-of-band channel (unlike what is assumed in
prior work [19]). Our bootstrapping phase uses the very same
channel, i.e., uploaded images, to exchange keys.

II. Background and Related Work
In this section, we first present relevant background and

subsequently discuss related prior work.
JPEG image steganography: Steganographic techniques

are typically developed to exploit the structure of JPEG (the
most common image format used on photo-sharing sites), and
hence, we focus on this format here. The image in which
the message is hidden is called the cover or the carrier. The
JPEG encoding process consists of several steps including
applying lossy compression, the division of the image into
blocks, application of the Discrete Consine Transform (DCT)
on each block, and the quantization of the DCT coefficients.
More details on JPEG encoding and decoding are found in [24].

Structure-based steganography exploits certain, usually op-
tional, markers in the JPEG format to embed secret data. Exam-
ples include embedding the message using the Exchangeable
Image File (EXIF) (e.g., as in [18]) or the Comment markers
(e.g., as in [1], [11]). The decoder tool simply examines marker
locations to extract the message.

Spatial domain techniques typically modify the Least Sig-
nificant Bit (LSB) of the pixel values to embed the secret
information [31]. These techniques exploit the fact that human
perception is not sensitive to subtle changes in pixels. Informa-



Tool Details on approach Facebook Twitter Flickr Google+
GhostHost [43] Embedding after the EOI marker × × ×

√

Steghide [15] Changing Pixel values ×
√

×
√

OutGuess [13] Changing DCT coefficients (pseudo-random) ×
√

×
√

F5 [4] Changing DCT coefficients (non-zero) ×
√

×
√

YASS [41] Changing DCT coefficients (error correcting)
√∗ √ √∗ √

TABLE I
EVALUATION OF STEGO TOOLS (× = FAILURE;

√
= SUCCESS;

√∗ = CONDITIONAL SUCCESS)

tion hiding in pixel values is however not reliable, especially
when used with lossy image compression schemes such as
JPEG. Steghide [15] is a stego implementation in this category.

Frequency domain based methods replace the LSBs in the
quantized discrete cosine transform (DCT) coefficients [22].
To avoid visual distortion, embedding of secret messages is
avoided for DCT coefficients whose value is zero; these co-
efficients typically correspond to high frequency components.
JSteg [12], OutGuess [13] (which uses a pseudo-random num-
ber generator to select DCT coefficients), and F5 [4] (which
decreases the absolute value of non-zero DCT coefficients by
one) are examples in this category.

Distortion-resistant schemes are more robust to image pro-
cessing. To lower the bit error rate (BER), these schemes per-
form transformations in other domains (like with the Discrete
Wavelet Transform) or use redundancy and/or masking tech-
niques. For example, YASS [41] uses a redundancy parameter
to control the number of times an information bit is repeated
inside an image.

Use of steganography on images shared online: Photos
upoloaded onto online sites provide a means of sharing secret
messages. However, it is known that photo-sharing sites pro-
cess such uploaded images [28], [17], [8], [16]; while these
sites explicitly indicate that they process images, the specifics
are not made known (no documentation is readily available).
There have been studies on whether messages are hidden in
images posted on the Internet [39]. However, Provos et al. [39]
analyzed two million images downloaded from eBay for hidden
messages but not a single such message was found. Because
of the specific detection approach applied, and their source for
the images, the insights gained from their attempt are limited.

The use of social media and steganography to build a covert
channel is recognized as promising in [23]. Zeljko et al. [42]
implement SecretTwit, a Twitter client that hides secrets in
tweets and images. An anti-censorship system proposed in
[19] is based on two parties exchanging messages in images
on Flickr. While the idea of a botnet performing private
communication using images on Facebook is suggested in [35],
the authors do not examine issues relating to image processing
or detection likelihood of hidden messages as we do here.

Despite this attention, the feasibility of private communica-
tion on OSNs or photo-sharing sites has not been fully explored
in prior work. From their first hand experience, some Internet
users have already realized that certain steganography tech-
niques do not work with images uploaded on Facebook [30].
However, the reasons for this are not well understood. Three
characteristics of images published on some OSNs, namely
image format, metadata and pixel resolutions of digital images
have been analyzed by Castiglione et al. [20]. However, the
use of steganography has not been examined. Realizing that
user images are usually processed on OSNs, Castiglione et
al. [21] propose the use of the name and tags of the images

Redundancy 2 6 10 14 18
Facebook 0.3442 0.1498 0.0411 0.0000 0.0000
Flickr 0.3491 0.1592 0.0456 0.0000 0.0000

TABLE II
AVERAGE BER WITH YASS WITH DIFFERENT REDUNDANCY LEVELS

as an alternative means of hiding information and thereby
establishing a secret communication channel.

In summary, thus far there is no thorough investigation on
how the processing of images on public photo-sharing sites
impacts different information hiding techniques. To the best of
our knowledge, our work is the first to fill this gap. We also
believe that we are the first to propose an approach to ensure
that secret messages can indeed be reliably communicated via
the photos uploaded onto these sites.

III. Secret Embedding Feasibility
In this section, we present our in-depth measurement study

on understanding the feasibility of embedding secrets in images
uploaded on online photo sharing sites.

A. Hiding information on different photo-sharing sites
We use multiple representative steganography tools from

each category described in Section II to hide messages in
images. We upload these images on to various sites and then
attempt to retrieve the hidden messages from the downloaded
images. We use 100 images from a database made available
by CMU [25]. We believe that this diverse set of images is
representative of the kinds of photos that people share online.
The sizes of these images range from a few KB to thousands of
KB. The minimum pixel resolution from among all the images
is 192 x 261 and the maximum is 4288 x 2848.

Steganography tools: The steganography tools used are
listed in Table I. These tools are chosen as they are widely
used and are publicly accessible. GhostHost simply appends the
hidden message after the End-of-Image marker. Steghide, F5,
and OutGuess are the most widely used tools for benchmarking
in academia. Yet Another Steganographic Scheme (YASS)
embeds data at randomized locations within an image and
repeats an information bit multiple times inside the image. The
redundancy (the number of times that a bit is repeated) is a
tunable parameter. Table I shows, for each site, whether we
were able to retrieve the hidden messages embedded with each
tool.

Definition of terms: For ease of discussion, we define
the following terms. (a) Success implies that the extracted
message is equivalent to the hidden message. (b) Failure means
that the retrieval effort does not yield a meaningful output.
For example, a failure causes the output of Steghide to be:
“extracting data...could not extract any data”. A failure is
experienced even if only a part of the message is corrupted;
a checksum may fail or metadata could yield mismatches.
In all of such cases, one cannot retrieve the original hidden
message. (c) Conditional success only applies to YASS which
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(a) First dimension
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(b) Second dimension

Fig. 1. Distribution of the differences in the pixel values in two color
dimensions between original images and after they are uploaded on Facebook.
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Fig. 2. CDF of quality factor and the change before and after upload

uses redundancy to control the decoding BER. The decoding
BER (the ratio of message bits in error to the total number of
message bits in an image) of YASS depends on the redundancy
parameter in use. We experiment with different redundancy
parameters and the results are presented in Table II. We observe
that when the redundancy parameter is larger than 10, the
BERs significantly decrease and approach 0. Similar results
are reported in [35]. We observe that the BERs experienced
for a given redundancy are similar on Facebook and Flickr.

Summary of the results: At first glance, we see that most
of the tools (except YASS) fail on Facebook and Flickr but
succeed on Google+ and Twitter. Google+ is the most generous
platform and accommodates all the steganography tools. Twitter
is the next best; GhostHost fails on Twitter but the other tools
are able to successfully exchange hidden content. Facebook
and Flickr show the least compatibility with steganography in
that all the tools except YASS (with high redundancy) fail in
successfully exchanging secret content.

To understand the above results, we next examine the pro-
cessing changes at the bitstream level done at each site on the
uploaded images.

B. Impact of processing on hidden messages
Google+: Image integrity is preserved. Experimenting with

our sample data set, we observe that Google+ preserves the
original images, when their sizes are within 2048 pixels by
2048 pixels (Table I). Since the integrity of an image is pre-
served as long as the image adheres to the permitted resolution,
any steganographic tool will work on Google+.

Twitter: Metadata fields are cleaned up. Some of the fields
for storing metadata within the JPEG image, (e.g., the COM
and the APP fields [24]), are rewritten by Twitter with its own
data. In addition, anything that appears after the EOI (End-of-
Image) marker is stripped off. The consequence is that tools
that exploit metadata markers for embedding messages (e.g.,
GhostHost) will not work. Except for this ‘clean up’ of the
metadata fields, Twitter preserves the image integrity as long
as the image size is no larger than 1024 pixels by 768 pixels.
Exceeding this limit will cause a loss of integrity. Hence, as
seen in Table I, Twitter accommodates most steganographic
tools as long as the image size is within the limit.

Facebook: Similar to Twitter, Facebook removes the content
in some of the metadata fields. In addition, we find that
Facebook applies the following processing functions.

Changes in pixel values. We find that, for a fraction of
pixels, the RGB (∈ [0, 255]) values are changed on Facebook
after image upload. Across the examined set of images, Fig. 1
shows the distribution (probability density function) of the

deviation of the pixel values from the original values for
two color (RGB) dimensions. The distribution for the third
dimension is similar and is not shown. We see that, while
most pixels (> 60%) remain unchanged, some are modified. The
maximum deviation of the pixel value from the original value
can be up to 30. The distribution of the deviation in general,
seems to follow a Gaussian distribution.

Pixel value changes can be due to JPEG’s lossy compression
(adopted by Facebook) and/or other manipulations (discussed
later). In either case, the steganography tools that rely on
embedding the messages into the pixel values (e.g., StegHide)
do not work. Images larger than 2048 pixels in either the length
or width dimensions get resized on Facebook. Resizing causes
the pixels to shift from their original locations or even to be
lost, thus destroying the integrity of embedded messages.

Changes in compression ratio. From the quantization tables
for luminance and chrominance associated with the original
images and the downloaded ones, we note that Facebook adjusts
the compression ratios for many images.

For color JPEG images, distinct luminance and chrominance
quantization tables are part of the JPEG structure and are stored
in the JPEG file. With the utility JPEGsnoop [27], we can
access these quantization tables. By comparing the quantization
tables of an image before and after upload, with the tables
from the International JPEG Group standard (libjpeg [10]), we
get the approximate quality factors before and after upload.
Note that, though the quality factor of a JPEG image is usually
represented by an integer in [0, 100], the calculated values are
not necessarily so due to the fact that custom tables may be used
for each particular image. We round each calculated number to
the nearest integer. The results are shown in Fig. III-A.

We observe that while the quality factors for both the
luminance and chrominance of the original images vary from
70 to 95, Facebook adjusts them to 75 in about 70% of all cases.
This matches the observation in [35] that the quality factor of
Facebook compression is approximately 75. Fig. III-A shows
the cumulative distribution function (CDF) of the quality factor
change for all images. We observe that, for about half of the
images, Facebook uses a higher compression ratio (resulting in
lower quality factors) than the original.

When a lower quality factor is used, it is likely that the
pixel values will change due to compression. Interestingly, we
observe that even for those images whose quality factors are
unchanged, the pixel values are modified. We conjecture that it
may be the case that Facebook applies other image processing
besides just compression. There is no official statement about
what the exact processing is, but some online discussions
suggest that a low pass filter is used (e.g., see bit.ly/UBlbI5).
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(a) Facebook DCT changes
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(b) Flickr DCT changes

Fig. 3. Variations in DCT coefficients with Facebook and Flickr

Method BER FEC Detection likelihood Detection likelihood
overhead (ensemble classifier) (StegAlyzerAS)

LSB 0.15239 0.0 0.44 0.69
LSB + 2-LSB 0.08144 0.0 0.47 0.68
2-LSB 0.00968 0.0 0.50 0.63
LSB+FEC [15,13] 0.09375 0.1333 0.45 0.69
LSB+FEC [15,11] 0.01125 0.2667 0.48 0.69
LSB+FEC [7,3] 0.0 0.5714 0.53 0.72
LSB+2-LSB+FEC [15,13] 0.02993 0.1333 0.50 0.68
LSB+2-LSB+FEC [15,11] 0.0 0.2667 0.51 0.69
2-LSB+FEC [15,13] 0.0 0.1333 0.51 0.63

TABLE III
COMPARISON BETWEEN LSB, 2-LSB AND MIXED LSB+2LSB STEGO METHODS

Changes in DCT coefficients. We access the DCT coef-
ficients using a JPEG dump utility [9] based on the libjpeg
library. Fig. III-B shows the number of DCT coefficients having
a specific normalized change as compared to the original value.
We notice that, while the majority of coefficients remain the
same (with no difference from the original value), about 20%
are decreased or increased by one. It seems that the change is
small (only one) and appears to occur in the least significant
bits (LSBs); as one might recall, the least significant bits of the
DCTs are exactly where the bits corresponding to the hidden
message reside when many of the stego embedding tools are
employed. A careful examination reveals that DCT coefficient
changes are evenly (uniform) distributed all over the image
(result not plotted due to space constraints).

A careful inspection suggests that there are two potential
reasons for the above changes in the DCT coefficients. First,
Facebook uses a different set of quantization tables from that
in the standard JPEG libraries. Second, it also changes the
pixel values themselves, thereby compounding the effect. We
were unsuccessful in preserving the DCT coefficients even
when uploading images with the same quality factors seen
in the images downloaded from Facebook. It is also possible
that Facebook applies a watermark to the uploaded images;
however, we were unable to verify this.

The above findings indicate that embedding messages in
the DCT coefficients (e.g., with F5 and Outguess) runs the
risk of extraction failures when the images are uploaded on
to Facebook and subsequently downloaded. Tools with error
correcting capabilities (e.g., YASS) can lower the decoding
BER and even eliminate errors in some cases. However, the
BER depends on the message itself and where it is encoded
within the image. Thus, it may not be possible to extract the
message in all cases.

Finally, we wish to point out that the default DCT encoding
in JPEG images is done with baseline encoding; however, Face-
book uses progressive encoding (which enables the user to see
a blurred version of the image while it is being downloaded).
However, we verified that this does not affect the values of
DCT coefficients. The encoding scheme only determines if a
specified band (i.e., a lower or higher part of the frequency
spectrum) is encoded first, and if the most significant (and the
number of) bits of the coefficients are encoded first. This results
in changes in the way that the coefficients are represented in
the JPEG format, but not in their values. We verified this by
changing the encoding scheme on the original JPEG images.

Flickr: Flickr cleans up the metadata fields as other sites
do. Unlike Facebook, it uses a constant quality ratio of 96 for

both the luminance and the chrominance while re-compressing
images. We have done extensive experiments that show that
the changes in the pixel and DCT coefficients in Flickr is
almost identical to that with Facebook for the set of images
considered. Specifically, the majority of the DCT coefficients
remain unchanged and less than 15 % are either increased or
decreased by one (Fig III-B). The fact that the processing on
Facebook and Flickr are almost identical suggests that the
modifications to DCT coefficients are not site specific. We
speculate that they are mostly likely due to watermarks inserted
by the sites and only affect the LSB of the DCT coefficients.
Typically, watermarks are inserted by modifying the LSBs to
ensure that the image quality does not degrade significantly.
Thus, one might expect that these processing functions on
Facebook and Flickr are unlikely to change (if at all) over time.

Summary: (a) Some sites (Google+, Twitter) preserve the
integrity of images to a large extent. Common steganography
tools can be used directly on images uploaded on these sites.
(b) Other sites (Facebook, Flickr) process uploaded images,
thus making it difficult to use these tools directly. Specifically,
metadata fields, pixels or DCT coefficients are exposed to the
manipulation by these sites. Our key observation is that the
modifications to the DCT coefficients are most likely due to
watermarks and affect only the LSBs of these coefficients.

IV. Reliable Embedding on Facebook and Flickr
While secret content can be reliably exchanged via images on

Google+ and Twitter, Facebook is today the most popular OSN.
Similarly, today, Flickr is considered as the top photo-sharing
site [38]. Thus, we ask the question: in spite of the processing
that is performed on Facebook and Flickr, can we enable users
to secretly communicate on these sites while simultaneously
ensuring that the detection probabilities with steganalysis tools
remain similar to that with common steganographic embedding
approaches?

Our answer to this question is based on our observation
that the failures with common steganography tools are because
the messages are embedded in the LSBs of either the DCT
coefficients or the pixel values (which are more prone to
processing changes). Thus, to preserve secret content embedded
in the LSBs one must use robust forward error correction (FEC)
codes as with YASS. However, since these bits are often subject
to processing changes, the overhead incurred will be high,
thereby reducing the secret carrying capacity (shown later).
Furthermore, as we also show later, the use of high degrees of
redundancy is one factor that increases the chances of detecting
the presence of a secret message via steganalysis.



Therefore, we ask the question: “Are there locations within
an image that remain relatively unaffected after processing on
Facebook or Flickr?” If there are, we could then embed secrets
in such locations, possibly with much weaker FEC.

Recall that the maximum change in the pixel values is about
30 for almost all images (Fig. 1), and the maximum change
observed in the DCT coefficients is 1 (Fig. 3). Intuitively this
suggests that embedding the message in the higher significant
bits of a DCT coefficient, as opposed to embedding it using
the LSB, could protect it during the processing operations
on the photo-sharing site. However, this approach poses a
potential pitfall. To evade the detection using steganalysis of a
message hidden within an image, there is an inherent tradeoff
between preserving integrity by changing higher-order values
and keeping the detection likelihood low.

Consider an example with a given color image, wherein a
pixel is represented by 3 bytes, one each for the RGB dimen-
sions. If two bytes only differ in the LSB, the represented colors
are virtually indistinguishable to the human eye. A variation at
the start of each byte causes more drastic color differences. In
addition, to detect hidden messages, a steganalysis tool could
examine the colors of adjacent “pixel pairs” and determine
how close they are to each other. It could examine the rare
occurrences of abrupt color changes within the image and
flag the image if such occurrences are observed. In general,
changing the higher order bits of pixels causes more drastic
color changes resulting in easier detection.

In fact, several sophisticated steganalysis tools have been
developed to detect steganographic embedding. As an example,
one modern image steganography detection tool [34] adopts
a machine learning approach trained to distinguish between
the original and “stego-ed” images. The algorithm is sensitive
to steganographic embedding changes, but is insensitive to
the original image content. It also captures many dependen-
cies among individual DCT coefficients; there is an increased
likelihood that at least some of these dependencies will be
disturbed by embedding. Because of this, common stegano-
graphic embedding tools typically hide data using the LSBs.
Needless to say, there is a race between the development of new
steganographic embedding solutions, and steganalysis tools to
combat such approaches.

Our approach: Given this, we propose the embedding of
secret information in the 2nd least significant bit (2-LSB) in
the DCT coefficients; this provides (as shown later) the best
tradeoff between detection evasion and preserving the hidden
messages on Facebook and Flickr 1. In order to decrease the
likelihood of detection via steganalysis, one can envision using
a combination of LSB and 2-LSB embedding. For example,
whether the changed bit of a DCT coefficient is its LSB or
2-LSB can depend on whether the chosen coefficient index in
the image is an odd number or even. This mixed approach is
referred hereafter as the LSB+2-LSB method.

We modify the open source stego tool F5 [4], which embeds
the secret message bits in the LSBs of pseudo-randomly chosen
non-zero DCT coefficients. We embed the message bits in the
2-LSB of these coefficients instead. In typical images, with both
a length and width of about 1000 pixels, there are about 10,000
non-zero coefficients. The number of these usable coefficients

1We do not pursue embedding in 3-LSB and above because 2-LSB embed-
ding suffices for preserving secret messages with a low detection likelihood.

is called the “image capacity”. As an example, when the image
capacity is 10,000 bits, by using 10% of the capacity to embed
secret information, we can embed 125 bytes or characters.
This translates to approximately 25 words (based on published
statistics that show that there are about 4.5 characters per word
on average [37]).

We choose an arbitrary image and compare it with its stego-
ed version obtained with the LSB and 2-LSB methods, when
a reasonable amount of data is embedded (10% of the image
capacity). We use the peak signal to noise ratio or PSNR metric
(typically used to quantify the difference between an image
and its processed (noisy) version) to compare the stego-ed and
original images. A high PSNR indicates that the quality of
the original image is preserved well in the stego-ed image.
The PSNR of the image with LSB and 2-LSB embedding,
with respect to the original image, are 57.21dB and 56.82dB,
respectively. The differences in the PSNRs with LSB and 2-
LSB embedding for all other images in our candidate set were
also very low (almost insignificant). This demonstrates that
there is not a significant hit in the image quality with 2-LSB
embedding as compared to LSB embedding.

Using the above three methods (the message length is 10%
of the image capacity), we upload three sets of stego-ed images
to Facebook and then download the images. We calculate the
bit error rates (BER) from the retrieved messages.

BER behaviors: From Table III (see Column 1, Row 3),
we see that embedding information in the 2-LSB of the
DCT coefficients encounters much fewer bit errors (≈ 1%) as
compared to using the LSB (≈ 15%). This is because, when the
DCT coefficients are changed by 1 (recall Fig. 3), the LSBs are
altered and so are the embedded data bits (if the embedding is
done in the LSB). Note that, with a unit change in the LSB,
the 2-LSB may be sometimes altered due to a carrier overflow
or a borrowing from the LSB. While using the 2-LSB does
not provide perfect error-free decoding, it comes really close.
Partially inheriting the merits of 2-LSB, the mixed LSB+2-LSB
method incurs a BER of about 8%.

Applying forward error correcting codes (FEC): Next,
we seek to eliminate errors by applying FECs to the hidden
message. Considering the small BER induced by the 2-LSB
method, we expect the overhead to be minor. We experiment
with Reed-Solomon codes [40] with different error-correcting
abilities. A Reed-Solomon code is a linear block code repre-
sented in the form [n, k]; n is the length of the code word and
k is the length of the message. The redundancy is (n - k) and,
in general, up to (n− k)/2 errors can be corrected.

We experiment with three settings—with [15,13], [15,11],
and [7,3] codes—with the LSB, 2-LSB, and the mixed LSB+2-
LSB methods. The results are in rows 4 to 9 in Table III.
We note that using the weakest code ([15,13]) protects the
2-LSB method from bit errors, while the LSB method needs
the strongest code of all—[7,3]—to achieve the same result.
The LSB+2-LSB method needs the code with medium strength
[15,11] to eliminate bit errors. In terms of delivering the same
amount of error-free secret data, the FEC overhead is about
13% for the 2-LSB method, about 58% for the LSB method,
and about 27% for the LSB+2-LSB method.

Summary: By comparing the BERs between the conven-
tional LSB stego method, the mixed LSB+2-LSB method, and
our 2-LSB approach on Facebook, we find that embedding



secret information in the 2-LSB jointly with a weak FEC is
sufficient. It outperforms the LSB and LSB+2-LSB methods in
terms of FEC overhead for a given message length.

A. Evaluation with steganalysis
Next, we use state-of-the-art steganalysis techniques to eval-

uate the likelihood of detection with our 2-LSB and LSB+2-
LSB approaches. We compare this with the detection likelihood
in cases where traditional steganography tools, which embed
information in the LSBs of the DCT coefficients, are used.
Our goal here is to show that our approaches do not signifi-
cantly increase the detection likelihood when the same message
capacity is delivered.

Steganalysis techniques in use: Steganalysis seeks to detect
the presence of embedded data in an image (it does not attempt
to extract the embedded message itself). To date, the most ad-
vanced steganalysis methods do supervised classification using
machine learning tools like SVM or ensemble classifiers [33].
We use the ensemble classifier from [33], implemented in Mat-
lab [3] along with the 548-dimensional CC-PEV features [7] 2.
As to commercial steganalysis products, Steganography Ana-
lyzer Artifact Scanner (StegAlyzerAS) developed by Steganog-
raphy Analysis and Research Center (SARC) [14] is probably
the best available steganalysis software in the market today.
We use a limited time trial version with full functionality from
their site.

Methodology: When using the ensemble classifier, we use a
training set of 100 (each) normal and stego-ed images, respec-
tively. The stego-ed images are produced by the traditional F5
tool which uses (i) the LSB method, (ii) our modified 2-LSB
method, and (iii) the mixed LSB+2-LSB method. An equal
number from both sources are considered. For both the normal
and stego-ed images, we uploaded and then downloaded the
images from Facebook.

Next, we apply the trained steganalysis tool on a test data set
consisting of 100 different normal and stego-ed images (each).
The false alarms on normal images contribute to the computed
false positive rate, and missed detections on stego-ed images
contribute to the computed false negative rates. When using
StegAlyzerAS, we simply scan the folders containing normal
and stego-ed images. We experiment on different sets of stego-
ed images with embedded message lengths that consume 10%–
50% of the image capacity. The embedded messages include the
secret data augmented by error correcting codes. The FECs are
[7,3] for LSB, [15,13] for 2-LSB and [15,11] for LSB+2-LSB
methods, respectively. These FECs are chosen to ensure that
the same BER (zero) is achieved with the three schemes. The
DCT coefficients to be modified are pseudo-randomly chosen,
and spread out evenly in the image.

Detection accuracy is defined to be the fraction of images
that are successfully flagged by the steganalysis tools in use
from among all the stego-ed images. We use terms detection
accuracy and detection likelihood interchangeably.

Results and interpretation: Tables IV and V present the
detection accuracy on stego-ed images produced by the aca-
demic and commercial tools we use. From Table IV, we see
that the ensemble classifier can detect more stego-ed images
constructed with the 2-LSB method than with the LSB method;

2CC-PEV was first proposed in [36] and its analysis is based on the use of
an extensive set of DCT coefficients and other features.

Capacity used 0.1 0.2 0.3 0.4 0.5
LSB 0.44 0.62 0.75 0.87 1.00
LSB+2-LSB 0.47 0.66 0.81 0.92 1.00
2-LSB 0.50 0.66 0.81 0.94 1.00

TABLE IV
DETECTION RATE OF ENSEMBLE CLASSIFIER (FALSE POSITIVE RATE 0.24)

Capacity used 0.1 0.2 0.3 0.4 0.5
LSB 0.69 0.77 0.83 1.00 1.00
LSB +2-LSB 0.66 0.75 0.80 0.94 1.00
2-LSB 0.63 0.75 0.79 0.81 0.81

TABLE V
DETECTION RATE OF STEGALYZERAS (FALSE POSITIVE RATE 0.20)

however, the difference is insignificant. The detection rates with
the mixed LSB+2-LSB method are higher than those with the
LSB method, but lower than those with the 2-LSB method.
This is to be expected since the mixed method distributes the
changes over the LSBs and the 2-LSBs in images.

Thus, in typical regimes of interest (when the used image
capacity is 10% or so), steganalysis on the images created
with all methods exhibits very similar detection rates. As we
aggressively embed more data into the images, the detection
likelihood increases with all methods.

Surprisingly, the commercial tool StegAlyzerAS correctly
categorizes a larger number of stego-ed images with the LSB
method than with the 2-LSB method (see Table V). This is
probably because the ensemble classifier uses machine learning
while StegAlyzerAS relies on known stego signatures and
identifiable patterns of specific steganography tools.

Most importantly, from columns 4 and 5 in Table III, we
observe that when delivering the same amount of secret data,the
2-LSB approach with a weak FEC (2LSB+FEC [15,13]) is
less likely to be detected by both steganalysis tools than
the traditional LSB approach with a strong FEC (LSB+FEC
[7,3]) or the mixed LSB+2-LSB approach with a medium
strength FEC (LSB+2-LSB+FEC [15,11]). While embedding
information in the 2-LSB can increase detection likelihood, so
can increased redundancy; the latter results in a higher number
of changes to an image to deliver the same amount of secret
data. We observe here that, due to the reduction in the level of
redundancy needed, the 2-LSB scheme can in fact out-perform
the traditional embedding method and the mixed LSB+2-LSB
method when used on photo-sharing sites. In fact, due to the
low redundancy required by 2-LSB, the detection likelihood
with StegAlyzerAS when using this approach is practically
identical with and without FEC.

Finally, we observe that the two steganalysis tools have a
false-negative rate of 40–50% in cases where only 10% of the
image capacity is used for secret embedding. Furthermore, as
seen in Tables IV and V, the false positive rates are also fairly
high (≈ 20%); given the millions of images uploaded on to
Facebook and Flickr daily, the number of false positives will
far outweigh the number of images correctly detected to have
secret content. The detection accuracy will be even lower if
lesser image capacity (say 5%) is used for secret embedding.
Thus, if users take care to not embed secret information in the
majority of the photographs that they upload, this suggests that
the likelihood of detection is very low.

Summary: In summary, our experiments show that 2-LSB
embedding decreases the observed BER in secret messages
hidden in images uploaded to Facebook. While embedding in a
higher order bit inherently increases the likelihood of detection



with steganalysis, the reduced BER with 2-LSB decreases the
level of redundancy required as compared to that required with
LSB or mixed LSB+2-LSB embedding; this in turn decreases
the likelihood of detection via steganalysis. Finally, we observe
that the state-of-the art steganalysis tools only offer 40%–
50% likelihood of detection in the common case wherein 10%
of the image capacity is used for steganographic embedding;
moreover, the false positive rates are about 20%. This suggests
that 2-LSB embedding is a practical method for embedding
secret content on images uploaded onto Facebook. We have
done several experiments on Flickr that show similar results
showcasing the efficacy of 2-LSB embedding. However, we do
not show those results here due to space limitations.

V. Enabling Private Communication
Besides enabling successful secret message recovery, there

is another fundamental requirement with regards to reliable
private communications: the secret messages must not be
recoverable by any party other than the legitimate recipients.
Towards fulfilling this, we use encryption in conjunction with
steganography for the pre-processing of the secret messages
to avoid the exposure of the secret. Encrypting secret mes-
sages requires the establishment of secret keys between the
communicating entities. In prior work, the existence of an out-
of-band channel is assumed [19], via which such keys are
established. However, in cases where censor authorities have
pervasive access to information, the availability of such an
out-of-band channel may be difficult (e.g., email, voice calls
and Internet-based communication may be monitored). In this
section, we first describe the censor’s capabilities as part of our
threat model; we then propose an approach for bootstrapping
the private communication without any out-of-band channel,
i.e., the covert channel is established by uploading images to
exchange keys. Subsequently, we discuss the security properties
provided by our approach.

A. Threat model

Censor abilities: A censor’s characteristics depend on factors
like motivation, resource and time in different contexts. The
capabilities of a government-sponsored censor are influenced
by the laws and policies. The threat model we present is similar
to that in [19] and is one that we believe is able to capture
the current capabilities of a censor. Nevertheless, censorship is
an arms race; thus, as the censor’s capabilities become more
advanced and sophisticated, efforts towards evading censorship
will also need to evolve in response.

We assume that the censor by default allows OSN access to
users, but can: a) monitor all network traffic, b) can inspect
all publicly available content on the OSN, and c) can access
privately shared content on the OSN (e.g., via subpoenas). We
believe that this assumption reflects the current state of censor
behaviors. If the censor blocks users from accessing a particular
OSN, users can communicate covertly on a different unblocked
OSN. Even if the censor is capable of altering OSN content, it
will be hard for it to determine what content to modify, since
it cannot reliably detect steganographic embedding in images.
Given this, we assume that the integrity of uploaded content is
preserved and is not manipulated by the censor; the only cause
of integrity loss is the processing on images done by the OSN
for orthogonal reasons (e.g., to save storage and bandwidth).

We assume that the OSN has no incentive to modify its image
processing with the sole aim of disrupting potential use of
steganography. Beyond these basic assumptions, the specific
capabilities of a censor depend on the effort it expends in
capturing and analyzing OSN content. We assume that the
censor’s abilities in doing so will ultimately be constrained
by cost (given the scale of OSN content). In other words, we
expect that it will be infeasible for a censor to analyze all
uploaded images on OSNs.

We also assume that the censor has unlimited access to
any steganalysis tool that is available and may develop its
own tool targeting specific steganographic schemes, including
our 2-LSB method. Note that we have shown in Section IV
that a steganalysis technique trained to detect 2-LSB based
embedding could have higher detection accuracy than common
tools, but the increase is not significant.

Users and OSN accounts: We assume the users are who
they claim to be; Alice’s account indeed belongs to Alice and
not to some malicious third party posing as Alice. Protection
against fake accounts is beyond the scope of this paper.

Finally, we assume that users do not post large volumes of
secret content i.e., they do not embed messages in a majority
of the images that they upload; this is unlikely in practice and
in turn would make their data susceptible to batched or pooled
steganalysis. Limits on the extents of secret embedding without
being vulnerable to steganalysis is discussed in [32].

B. Covert channel to circumvent the censor
Next, we seek to build a covert channel which can be used

by users to send/receive secret messages such that a censor can
neither determine the existence of such messages nor intercept
their content. To achieve this goal, we use cryptography in
conjunction with our proposed 2-LSB steganographic scheme
to embed secret messages in images uploaded to OSNs. As
shown in Section IV, the stego-ed images using our 2-LSB
scheme are detected only with low probability by the state of
the art steganalysis tools; this offers users a certain level of
deniability in the face of a censor’s accusations. Encryption
of the secret messages ensures that no one, except those who
have the requisite key, can read the content. The communicating
entities need to establish the secret keys before exchanging the
secret. In what follows, we propose a protocol for bootstrapping
the private communication with an in-band channel (i.e., via the
images posted on OSNs).

C. Bootstrapping the covert channel
In order to establish covert communication channels via

photo sharing sites, we propose that a user first embed her pub-
lic key (using steganography) in her profile photograph (without
loss of generality, we assume an OSN such as Facebook for
this discussion). By uploading new profile photos, the public
key can be changed.

Now, let us consider a scenario wherein users Alice and Bob

are friends on Facebook and have embedded their public keys
on their profile pictures. Alice and Bob also install our common
bootstrapping software. Now let us assume that Bob wishes to
initiate the establishment of a covert channel with Alice. In
what follows, we first describe the protocol in brief and then
describe the steps in greater detail.

Protocol overview: Given that Alice’s public key may or may
not be embedded in her profile photo, and Alice may or may



not realize Bob’s intent to build the covert channel, a handshake
is necessary here. Consequently, our key establishment is an
interactive procedure. First, Bob will need to alert Alice of his
intent to communicate. Alice will need to send a response to let
Bob know that she received his message. A session key for fu-
ture communication can be exchanged at this time as well. Bob

will need to send another confirmation to let Alice know that
the session key is agreed upon. All of these communications
are carried out covertly by embedding messages in uploaded
images. Once established, a secret conversation can last as long
as needed.

Protocol details: The bootstrapping phase consists of the
following steps.

1. First, the software on Bob’s device fetches Alice’s profile
photo and extracts the first Lk 2-LSB bits from the DCT
coefficients, where Lk corresponds to the length of the
key (the length is configured in the software). At this
point, Bob does not know if what he has is Alice’s public
key or is simply some arbitrary string, since Alice may
not have embedded a public key in her photo. The string
of length Lk that is extracted is called Kpu

A .
2. Bob next encrypts a signal (“request”) with Kpu

A and em-
beds it in an uploaded image. The request also contains
metadata that indicates the length of the message (the
2-LSB bits it consumes), and a nonce.

3. If Kpu
A is a random string, and not Alice’s public key as

assumed, Alice does not respond to Bob’s request. If Alice

has indeed embedded her public key in her profile photo,
she may extract the hidden message (depending on when
she views the image). At this point, she uses her private
key Kpr

A to decrypt the request in Bob’s image, thereby
learning of Bob’s intent to communicate.

4. If Alice trusts Bob (e.g., that he is not a user controlled by
the censor), Alice then retrieves Bob’s profile photo and
obtains his public key Kpu

B . Note that, since Bob sent her
a request, at this moment, Alice knows for certain that
Bob has included a valid key (Kpu

B ) in his profile image
and that she has not extracted a random string.

5. Alice then creates a signal (“ack”), attaches a symmetric
key ks and the nonce associated with Bob’s request. She
encrypts this content with Kpu

B . The (secret) encrypted
message is then embedded in an uploaded image.

6. Bob extracts the encrypted message from Alice’s image,
decrypts it using his private key Kpr

B , checks whether the
message is an ack, verifies the nonce, and extracts ks.
Note that a decryption failure at this stage indicates that
Alice did not respond to his request, and that this step
together with step 5 is necessary for Bob to confirm that
Alice received his message and is aware of his intention
of establishing the secret key.

7. Bob then encrypts a new signal (“ack2”) with ks and
embeds this in a new image, which he then uploads.

8. Alice extracts the secret from Bob’s image, decrypts the
message using ks, and obtains the signal “ack2”. At this
point, Alice has validated that Bob has the secret key ks,
and thus, the covert channel is established.

At the end of these steps, all the secret messages exchanged
between Alice and Bob are encrypted with ks. ks can also
be used as the seed to generate the pseudo-random series
of DCT coefficients chosen to carry the secret message. For

instance, the sequence of DCT coefficients that are changed,
can be generated by a pseudo-random number generator that
uses a concatenation of ks and the photo ID as the seed.
This ensures that the DCT coefficient sequence changed differs
across photos; one can expect this to lower the detection
probability.

Key selection: Recall that Alice’s public key Kpu
A is em-

bedded in her profile photo. For some cryptographic schemes,
the public key is only divisible by large primes (small prime
numbers such as 2, 3 or 5 are not factors of the key). This
may allow Bob, or even an adversary, to suspect that a public
key is embedded in a profile photograph. However, with many
state of the art cryptographic techniques (such as Elliptic Curve
Cryptography (ECC) [2]), the keys are divisible by small prime
numbers and thus, this problem does not arise. Nevertheless,
as identified in prior work [26], one should avoid using bad
public keys generated by key generation implementations that
do not use sufficient randomness.

D. Security properties

A Man-in-the-middle (MIM) attack could occur during a
key exchange, wherein an eavesdropper, say Chloe, somehow
intercepts the communication between Alice and Bob. Chloe

could send her own public key and mislead Bob into believing
that he has Alice’s public key (and similarly deceive Alice into
believing she has Bob’s public key). However, since we assume
that photo-sharing sites preserve the integrity of uploaded
content, the censor can launch a MIM attack only in one of
two ways: (i) it can compromise a user’s account and replace
the user’s profile photo, or (ii) it can intercept a user’s network
traffic when the user is uploading/downloading photos from
the photo-sharing site and modify photos on the fly. Preventing
compromises of user accounts is beyond the scope of this paper.
On the other hand, users can prevent the second type of MIM
attack by using HTTPS to upload/download content to/from the
photo-sharing sites. In fact, Facebook, Twitter, and Google+
use HTTPS by default. When users use HTTPS, the censor
will have to subvert users’ lookup of SSL certificates in order
to perform a MIM attack. Again, making HTTPS resilient to
such attacks is beyond the scope of this paper.

Detection of the existence of embedded key: As discussed
earlier, steganalysis tools are far from perfect. As seen in
Tables IV and V, the likelihood of false positives and detection
misses are high. In fact, if only 10% of the image capacity
is used for embedding secret information, our study suggests
that the tools yield a detection miss rate of about 50%. This,
combined with the high false positive rate, makes steganalysis
difficult, if not impossible, if encrypted content is hidden.

Forward and backward secrecy: Since the key (ks) is per-
conversation rather than per-user (i.e., a fresh key is established
for each conversation), our protocol ensures that undesired
users (and censors) are unable to uncover any additional infor-
mation from past or future conversations with ks. In contrast,
consider a Diffie Hellman-style key exchange, where every user
includes her public key component in her profile photo, and
either party can derive a shared key without any interactions.
In this case, the shared key between a pair of users would
be fixed across all of their conversations, hence putting their
past and future communications at risk if the shared key is
leaked. Also note that any user A’s public and private keys



(Kpu
A and Kpr

A ) can be updated periodically by changing A’s
profile photo. This will limit the effectiveness of a brute force
attack in discovering A’s private key (Kpr

A ).
Access and sharing patterns. For step 3 to work reliably,

Alice needs to check for the request signal in a sizeable fraction
of photos shared with her, but not necessarily all; Bob can retry
step 2 if he sees no response from Alice for a timeout period.
When Alice does access Bob’s photo containing the request
signal, this will not leak much information since Bob can share
that photo with all of his friends on the OSN, who will all also
access the photo. On the other hand, in response to receiving
a request from Bob, Alice does not need to immediately share
a photo in order to respond; she can embed an ack message
whenever she uploads a photo next.

E. Discussion

Finally, we discuss two issues related to making the boot-
strapping phase efficient.

Key length: In our implementation of the above key exchange
process, we use a publicly available implementation of the RSA
algorithm to generate the public key (of length 1024 bits). It
is widely known that generating a public key component with
Elliptic Curve Cryptography (ECC) may be a better alternative
to RSA [2]; with ECC, the key length is much shorter for
providing similar security. For example, a 160 bit key generated
with ECC provides equivalent security as a 1024 bit RSA
key. The reduction in the key size directly translates to the
embedding of a shorter secret message in the profile picture.
Since shorter messages are harder to detect, this in turn will
lead to a further decrease in the detection likelihood with
steganalysis tools.

Embedding multiple messages in the same image: If Bob

wants to send a “request” to other users besides Alice (step 2),
he can encrypt copies of the “request” using these users’ public
keys and embed all the ciphers back to back in the same image.
For instance, with a 160 bit key generated with ECC, if 10% of
the image capacity is to be used, 6 requests can be packed in an
image. Since the ciphers will have the same length, the entire
secret message is composed of segments of the same length.
After a recipient extracts the composite message (consisting of
the segments) from an image, he can decrypt each of these
segments using his private key. It does not matter that there
are segments which are not meant for him. As long as he
sees the signal “request” in one of these segments, he would
know that he is one of the intended recipients. In this way,
Bob can bootstrap the communication with multiple users at
the same time. A similar approach can be used for responding
to a request or an ack (in steps 5 and 7). We will consider such
implementations in future work.

VI. Conclusions
In this work, we build a covert communication channel

using uploaded photos on popular public photo-sharing sites.
While using steganography for this purpose had previously
received some attention, many nuances were ignored. Our in-
depth measurement study shows that the processing performed
by online sites on the uploaded photos destroys the secret
message in many cases. Our study also reveals the reasons
for this loss. Based on the understanding developed with our
study, we propose a new approach to ensure the integrity

of a hidden message, while at the same time maintaining a
low likelihood of detection via steganalysis. Finally, we also
propose and implement a protocol wherein users can establish
keys to encrypt the messages, via an in-band channel on the
photo sharing site.
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