
Long-term Privacy Profiling through Smartphone
Sensors

Ningning Cheng, Shaxun Chen, Parth Pathak, Prasant Mohapatra
Department of Computer Science, University of California, Davis,

Email: {nincheng, sxch, phpathak, pmohapatra}@ucdavis.edu

Abstract—Smartphones are closely coupled with their users
and smartphone sensors can perceive users’ private information.
The existing studies in this area focus on user activity recognition
and short-term context detection. In this paper, we show that
smartphone sensors are able to profile users’ long-term privacy
and more sensitive information. We present the techniques of
discovering users’ spending level by merely using smartphone
sensors. We do not access users’ contacts, calendar, or call log,
so that the profiling is performed in a non-intrusive manner. This
paper is an alert towards the public that the privacy leakage could
be far worse than imagination by just carrying smartphones.

I. INTRODUCTION

Smartphones have become an indispensable part in our
daily lives. People use smartphones to interact with friends
and family, purchase online merchandise, and search for
interested information. On the other hand, today’s smartphones
are equipped with a rich set of sensors, such as ambient
light sensor, proximity sensor, accelerometers, gyroscopes and
digital compass. GPS is also referred to as the positioning
sensor. These sensors are able to get significant personal
information from their owners.

Some existing studies have paid attention to the privacy
leakage from smartphone sensors [1]–[3]. For example, An-
guita et al proposed a smartphone-based platform that can
detect user activities such as sitting, walking, going upstairs
and downstairs [2]. Keally et al focused on profiling the
environment users currently stay in, such as home, office,
and bar [4]. However, they mainly focus on user activity
recognition and short-term context detection. Smartphones are
much more powerful. It is possible to expose more sensitive
information by just habitually carrying them everyday.

In this paper, we present the technique which can profile a
user’s long-term privacy: spending level. Compared to users’
instant activities and current location/environment, spending
level is long-term private information and typically more
sensitive.

On the other hand, long-term privacy is much more difficult
to profile. A transient human activity is physical movements
of human body and thus closely related to the motion sensor
readings. Short-term context (like having a meeting or staying
in a bar) is slightly more complex, because it has higher
abstract level. Long-term context, such as spending level to
be discussed in this paper, is at an even-higher level, whose
relationship to the raw sensor data is more indirect and subtle.
Therefore, the profiling of such long-term privacy is highly
challenging.

Our method avoids the usage of sensitive smartphone sen-
sors such as camera and microphone. We also do not visit
contacts, calendar and call logs in the phone. The GPS access
is intentionally minimized as well. As a result, our method
performs the profiling in a non-intrusive manner and is battery-
efficient. To the best of our knowledge, our paper is the first
effort to profile user’s spending level merely using smartphone
sensors.

The purpose of this paper is to raise an alert towards the
users and the public that if a smartphone app is malicious, the

privacy leakage could be far worse than imagination. Even if
never using a banking/finance app or shopping recommenda-
tion app, a user’s spending level and financial status could still
be leaked. Users usually treat their financial documents in a
discreet manner, but if they are unaware of such abilities of
smartphone sensors, their privacy can also be in danger.

We conduct extensive experiments to evaluate our proposed
method using real-world data. Smartphone sensor readings
from 9 volunteers during two months are used in our evalua-
tion. The results show that our method can effectively profile
smartphone users’ long-term privacy without users’ intended
input.

The rest of the paper is organized as follows. We survey the
related work in Section II. The details of our methods used
to profile spending level is described in Section III. Section
IV evaluates our work and Section V discusses related issues.
Section VI concludes the paper.

II. RELATED WORK

Embedded with multiple motion sensors, smartphones have
been intensively utilized for detecting a variety of daily
activities such as sitting, standing, walking, and running, going
upstairs/downstairs [5], [6]. Anguita et al introduced a light
weighted SVM on smartphones for activity recognition [2].
Kwapisz et al used three data mining techniques, decision tree
(J48), logistic regression and multilayer neural networks, to
detect daily activities [7].

Walking detection, as a subset of activity recognition, has
been explored extensively [8]. The techniques include peak
detection [9], dynamic time warping [10], frequency analysis
[11] and machine learning [2] [7]. Generally speaking, ma-
chine learning based methods tend to have higher accuracy
but are more computational expensive and battery consuming.
Driving recognition is relatively less studied. Johnson et al pro-
posed to use accelerometer and gyroscope to detect aggressive
driving [12].

Short-term context detection mainly focus on users’ sur-
rounding environment [3], including physical working envi-
ronment recognition [13], and home/office detection [4] [14].
Some researchers are interested in inferring social interactions
such as discover an individual or groups of people [15].
The Reality Mining utilizes the bluetooth signals to discover
proximity social groups and friendship relationships [15].

A number of studies have been done to record users’
traces using their smartphones. Google Now logs the trace by
utilizing Android’s locations service when “report location” is
switched on. In LifeMap, a location context provider utilizes
aggregated information from accelerometer, digital compass,
WiFi, and GPS [1] to provide room-level traces. However,
these studies record all the traces without differentiating the
purpose of the trip.

Our work is substantially different from aforementioned
work in that: first, we aim at long-term user profiling instead
of instant activities or environment recognition; second, we
avoid the use of sensitive sensors/information such as calendar,

call log, camera or microphone and limit the access of GPS,
which makes the profiling process less intrusive and more
power-efficient; third, we propose getting-off-car detection
and loading-merchandise detection, which is able to identify
shopping trips out of other user traces.

III. USER SPENDING LEVEL PROFILING

A. Overview

In this paper, we define spending level as the average price
level of the merchandise that a user purchases. Informally
speaking, a user who has high spending level tends to buy
upscale products, while a user with low spending level prefers
to buy less expensive commodities. User spending level is very
sensitive privacy information. People may be aware of their
privacy leakage when the information is shown explicitly, such
as using financial apps, shopping apps or banking apps, and
hence use them in a discreet manner. However, few has raised
alert that their financial status could also be leaked from their
routine behaviors simply by carrying the smartphone, even
without installing any apps mentioned above.

The purpose of this section is to quantify users’ spending
level by merely using smartphone sensors in a non-intrusive
manner. Our method works as follows. First, we try to detect
the user’s action of getting off the car, based on which we
learn the supermarkets, grocery stores and shopping centers
the user frequently go to. Then, we match these places to a
review system (e.g., Yelp) to get their price level information.
Combining the places, visiting frequency and price level as
input, we are able to determine the spending level of the user.

B. Getting-Off-Car Detection

Getting-off-car detection is achieved by identifying the tran-
sition from driving to walking using smartphones’ motion
sensors. Only when such a transition is detected, we activate
the smartphone’s location service.

Existing works on users’ trace profiling or location discover-
ing are based on continuous GPS readings, some of which also
utilize smartphone’s WiFi hotspot based location service [1].
In our method, instead, we first detect the getting-off-car event
through motion sensor readings, and then detect the location
where the user get off the car.

We use this method for two reasons. First, the power
consumption of sampling motion sensors is much lower than
accessing GPS, which is very important in covert profiling
(see Section V-B). In our method, we only need to activate
the location service for a very short period of time once
the getting-off-car event is detected. Second, in U.S., most
people drive their cars for intended shopping. Indiscriminately
recording user’s trace is not very helpful to determine the
shopping places, because people may just go for a walk and it
happens to be close to or inside a mall. Besides, we prefer
to use grocery purchase, especially relatively big grocery
purchases to perform the profiling (Grocery purchases are
essential for all the users, thus can better reveal the spending
level. Big purchase also helps rule out outliers). Therefore,
in our method, we make use of the transportation method,
combining with stay duration and loading detection (which
will be discussed later), to help detect the events of shopping
more accurately.

Getting-off-car is detected when a driving pattern is fol-
lowed by a walking pattern. It is based on the fact that most
users walk after getting off their cars. A walking pattern is a
series of stepfalls which results in a periodic change of the
motion sensor signal. Fig. 1 shows an example of the walk
signal read from 3 axes of the smartphone accelerometer. In
the figure, x-axis is the index of sensor readings (sampling

rate is 20Hz) and y-axis shows the acceleration. When driving
a car, periodic signals are less significant, which can stem
from pavement patterns, engine vibration, imperfection of car
wheels and other factors. A typical accelerometer reading from
driving is shown in Fig. 2.

First, we apply a low pass filter to the sensor data:

~Oti = α ~Ati + (1− α) ~Ati−1
(1)

where ~A is the accelerometer vector which has three
components x, y and z, standing for accelerations along
three axes respectively (we read them from Android
TYPE LINEAR ACCELERATION, in which gravity has al-
ready been removed), ~O is the filter’s output, ti (i ∈ Z+)
are temporal index of sampled sensor data. Here we use
exponentially-weighted moving average as a low-pass filter.
α in Equation 1 is a smoothing factor (0 ≤ α ≤ 1) defined as

α =
∆t

T +∆t
(2)

where ∆t stands for ti − ti−1. T is a time constant. The
larger T is, the more high-frequency components are filtered
out. The best T will be determined by experiments (please
refer to Section IV-A).

The output of the filtered walking signal and driving signal
is shown in Fig. 3 and Fig. 4 respectively (here T is set to
7∆t). We can see that the walking signal still exhibits signifi-
cant periodic pattern while the driving signal becomes close to
a straight line. Inspired by it, we use the following heuristics
to identify the state of driving. If the original accelerometer
signal has non-negligible value, but after filtering, it is close to
zero, we assume the user is driving. We carefully investigate
two months’ sensor data from 9 volunteers, among all the
cases that have near-zero low-frequency component (such as
sitting, standing still, driving and when the phone is not carried
by the user), only driving has non-negligible high frequency
components. Therefore, this heuristics is simple but effective.

For the walking detection, in order to tolerate smartphone
angle change during users’ actions, we first calculate the
acceleration magnitude by Equation 3 instead of using the
value of a single axis.

Oti =

√

(
−→
O x

ti
)2 + (

−→
O y

ti
)2 + (

−→
O z

ti
)2 (3)

where
−→
Ox

ti
is the x component of

−→
O ti , and similarly for

−→
O y

ti

and
−→
O z

ti
. Then we take derivative of O. As we know, O reaches

its local minimum or maximum when O’s derivative equals
zero. If for all i, ti − ti−1 is a constant (i.e. sensor sampling
rate does not change), we can use the following approximation
to calculate the derivative of O [16]:

O
′

ti
=

1

8
[2Oti + Oti−1

− Oti−3
− 2Oti−4

] (4)

O
′

ti
is a discrete function of t, which can be presented as

a sequence of points on the plain. We use line segments to
join all the adjacent point pairs and denote the new function
as O

′

t. Define Hn as the nth non-negative root of the equation

O
′

t = 0, such that |O(Hn)| > 3m/s2. In fact, Hn indicates the
values of t making O reaches its local minimum (trough) and
maximum (crest), given that small wave troughs and crests are
filtered out. Then we calculate:

Sj = Hj − Hj−2 (5)

−15

−10

−5

0

5

10

15

A
c
c
e

 (
m

s
2
)

x−axis y−axis z−axis

0 20 40 60 80 100

Fig. 1. The x-axis, y-axis and z-axis of acceleration data during walking.

−15

−10

−5

0

5

10

15

A
c
c
e

 (
m

s
2
)

x−axis y−axis z−axis

0 20 40 60 80 100

Fig. 2. The x-axis, y-axis and z-axis of acceleration data during driving.

−15

−10

−5

0

5

10

15

A
c
c
e

_
fi
lt
e

re
d

 (
m

s
2
)

x−axis y−axis z−axis

0 20 40 60 80 100

Fig. 3. The x-axis, y-axis and z-axis of filtered data during walking.

−15

−10

−5

0

5

10

15

A
c
c
e

_
fi
lt
e

re
d

 (
m

s
2
)

x−axis y−axis z−axis

0 20 40 60 80 100

Fig. 4. The x-axis, y-axis and z-axis of filtered data during driving.

If the signal is from a walking user, Sj presents the time
duration of one step. We compare the difference of five
consecutive step durations. If their differences are within a
threshold Ts and each Sj falls into [0.4, 0.7] (Inman et al [17]
investigated a large number of adults, and pointed out that
most of them has a step frequency of 100 to 120 per minute,
which translates to 0.5s to 0.6s per step), the state of walking
is assumed. The choice of Ts is determined in Section IV-A.

We have discussed the detection of driving and walking
respectively. If the state of driving is followed by walking,
a getting-off-car event is reported. The method we use in
this subsection is intuitive and based on numerical analysis
of motion sensor readings. Compared with machine learning
methods [2] [7], our method provides comparable accuracy
but is much lower in computational complexity, thus saves
battery power (Section V-B discusses the importance of battery
efficiency for covert privacy profiling).

C. Location Mapping & Shopping Detection

As soon as a getting-off-car event is detected, we activate
the location service of the smartphone. The current location (a
(latitude, longitude) pair) is recorded. We note this location
as Li. Then the location service is turned off to save energy.

Based on Li, point of interest (POI) can be determined
through location mapping services. Take Google Places for
example, using (latitude, longitude) as input, it will return
the best match or a list of the POI. Through the type field of
the response, we can determine the type of POI. If it is not a
business zone (e.g., type is park, residence community, etc.)
or it happen to be the user’s home or working location (we
will discuss the determination of users’ home and working
location in Section V-A), it will not be used in spending level
profiling. Otherwise, the response is recorded as Ri for future
use, and the loading detection will be performed as follows.

Starting from 15 minutes and ending at 120 minutes after
a getting-off-car event is observed, we detect loading event
using the motion sensors of the smartphone. The loading event
is the repetitive action that a user takes the items from the
shopping cart and puts them into the car trunk. As mentioned
previously, for user spending level estimation, we are inter-
ested in grocery shopping, especially relatively big grocery
purchase (see Section III-B). In these cases, it is very likely a

100

150

200

250

300

350

Index

G
y
ro

_
x
_

a
x
is

(r

a
d

s
)

0 20 40 60 80 100

Fig. 5. The x-axis of gyroscope data when loading grocery.

user will use a shopping cart and then take the merchandise
home in their car trunk. Therefore, we propose to detect
loading events to help identify users’ shopping behavior. We
do not detect loading events in the first 15 minutes (after
getting-off-car event) because quick shopping or relatively
small purchases are not of our interest.

In a loading event, users usually bend over to take the items
from the cart and then turn over to put them into the trunk,
which will typically repeat multiple times. Figure 5 shows the
reading of the gyroscope when a user is loading merchandise
to his car trunk (x-axis is sensor reading index and y-axis
stands for angular acceleration). We can see a periodic pattern
of the signal envelope in the plot. However, the loading action
can vary from user to user. Different user may have their
own habitual movements. Besides, the place of the smartphone
(e.g., in pants pocket or in chest pocket) and the vehicle type
may also affect patterns extracted from sensor readings. Since
loading event is much more complex than walking and driving,
we will detect it using a SVM (support vector machine).

As mentioned before, machine learning based methods are
more energy expensive than directly performing numerical
analysis on sensor readings. However, we would like to point
out that in our method, the getting-off-car detection needs
to be performed all day long, while the loading detection
is only activated for a maximum of 105 minutes after each

getting-off-car event. Therefore, the efforts above to reduce
the power consumption of walking and driving detection are
still important. For the loading detection, we sacrifice a little
battery life to achieve satisfactory accuracy.

Due to space limit, we do not detail the implementation
of our SVM but only present its input and output. In our

approach, the input of the SVM are
−→
Ax,

−→
Ay ,

−→
A z ,

−→
O x,

−→
O y,

−→
O z ,

−→
Gx,

−→
Gy ,

−→
Gz and δC, where

−→
Ax is the x component

of accelerometer reading,
−→
Ox is low-pass filtered

−→
Ax,

−→
Gx

is the x component of gyroscope reading (similarly for y
and z components), δC is the change of compass reading.
We put emphasis on gyroscope and compass readings in that
the loading process contains significant bending and turning
actions. For each aforementioned entry, we sample 10 times a
second, and use 2.5 seconds’ data as one instance. That is, for
each instance, it contains 250 attributes (10*25). In the training
phase, each instance has a label, which is either loading or
not-loading. In the prediction phase, sensor readings collected
in real-time will be input into the SVM. Two consecutive
samples are overlapped by 50 percent. That is, there are 8
inputs in every ten seconds. For each input instance, a label
will be assigned, which is the output of the SVM. In our
settings, within each ten-second time slot, if more than 50%
of the predicted labels are loading, we assume the user is
loading merchandise within this period of time. The accuracy
of our method will be evaluated in Section IV-B.

After a loading event is assumed, we keep detecting until
during any continuous 30 seconds, the loading labels are below
20% of all the predictions. If a driving event is detected or the
120-minutes limit has been reached, the loading detection also
terminates. All the detected loading time is added together,
noted as Ti (loading time spent in location Li) for future use.

D. Spending Level Calculation

Based on the information obtained above, we now describe
our spending level estimation method. For each getting-off-
car event, if it is not followed by a loading event (within a
period of time), we simply omit it. Otherwise, the loading time
is noted as Ti and the response from the location mapping
service is noted as Ri (please refer to Section III-C); we use
them to estimate user spending level.

If Ri only contains a single POI, we denote its price level as
Pi. If Ri contains a list of POIs, we pick up the stores in the list
with the type grocery or type supermarket and calculate their
average price level as Pi. The rationale is that in a single mall,
there usually will not be many grocery stores or supermarkets,
and it is most likely the user has shopped in a grocery store
or supermarket because repeated loading actions are detected.
If the list length is more than one and contains no grocery
store or supermarket, we use the average price level of all the
businesses in Ri to determine Pi. We do this based on the fact
that co-located stores tend to have close price levels [18]. The
price level of a business can be directly retrieved from the
price level field of Google Places response. However, the fact
is that, in Google Places, this field is blank for quite a few
businesses. In our method, we retrieve the location name field
from Google Places, and then match the name in Yelp and get
its price range value, because Yelp has more complete price
information. The spending level is calculated as follows:

SL =

∑

i T
i · P i

∑

i T
i

(6)

where SL stands for spending level. i is the ith getting-off-
car event detected from a certain user. The basic idea is that the

number of items bought should be approximately proportional
to the loading time, and we use the number of items as the
weight of each store. If no loading action is detected after
a getting-off-car event, Ti is 0. Given that Pi is a variable
between 1 and 4 (corresponding to $ and $$$$ in Yelp), the
calculated SL is also a value between 1 and 4. The larger SL,
the higher the user’s spending level is. When i increases (i.e.,
sensor data is collected for a sufficiently long time), SL can
report the user’s spending level more accurately.

IV. EVALUATION

In this section, we use real-world data to evaluate our
proposed method. We develop an Android app which can
collect smartphone sensor readings in the background. The
accelerometer, gyroscope and digital compass readings are
sampled at the rate of 20Hz, and GPS reading is only logged
when getting-off-car event is detected.

We have nine volunteers, all of whom use an Android
smartphone as their primary cellphone. The models include
Samsung Nexus S, Galaxy Note 2, Galaxy S4, HTC One,
and LG G2. Android version varies from 4.0.2 to 4.4.2. We
installed the app on their phones and it runs on startup.
The volunteers tagged all the important activities such as
getting-off-car event and loading event (wrote down the time
and type of the event). Some of the walking, running, sitting
and bicycling states are also tagged. They also agree to share
the names of the grocery stores they shopped at and the
number of items they bought from these stores during these
two months.

A. Accuracy of Getting-off-car Detection

Getting-off-car detection is an important step in our spend-
ing level profiling mehod. It is also the key of the energy-
efficient shopping place discovery. In this part, we first evalu-
ate the accuracy of our method on walking detection, and then
we present the result of getting-off-car detection.

We cut 210 ten-second fragments of sensor readings from
9 volunteers’ (approximately 24 fragments from each), in
which 90 are tagged as walking, and the rest 120 are
other activities (such as sitting, bicycling, loading and driv-
ing, etc.). We apply our approach (T is set to 7∆t) and
vary the parameter Ts (time difference between consecu-
tive steps, see Section III-B). The ROC plot of our walk-
ing detection method is shown in Figure 6. Here, y-axis
shows true positive rate(TPR), which is defined as: TPR =
(True Positive)/(True Positive+FalseNegative), and x-
axis stands for false positive rate (FPR), which is FPR =
(False Positive)/(False Positive+ TrueNegative).

In this test, true positives stand for the data instances that
are in fact walking and our method reports correctly; false
negatives are the walking data instances our method fails to
report; In an ROC plot, the dots in upper left corner implies
good accuracy. The different values of Ts are labeled besides
the dots in the plot (unit: millisecond). As we can see, when
Ts is small, false positive rate is low but we miss quite a
few real walking instances. When Ts is relatively large, we
can detect most of walking cases, but also include more false
positives. Combining the results, we choose Ts = 200ms (TPR
= 0.9, FPR = 0.083). Its detection accuracy is 91%, which can
be derived as: ACC = (TPR + (1 − FPR) · N/P)/(1 +
N/P), where N/P is the ratio of the number negatives over
the number of positives in the original data set. We will set
Ts = 200ms hereinafter unless otherwise specified.

Next, we test the accuracy of our getting-off-car detection
method. There are 78 positives and 159 negatives in our test
data set (evenly from 9 volunteers). We vary the value of T ,

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

50

100
150
200 250 300 350

False Positive Rate

T
ru

e
 P

o
s
it
iv

e
 R

a
te

Fig. 6. The accuracy of walking detection.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

1

2

3

4

5

6

7 8

9

10

11

12

13

14 15

False Positive Rate

T
ru

e
 P

o
s
it
iv

e
 R

a
te

Fig. 7. The accuracy of getting-off-car detection.

0.0 0.2 0.4 0.6 0.8 1.0

S
V

M
 n

o
n

_
o
ve

rl
a

p
S

V
M

C
4

.5

Accuracy

Fig. 8. Loading accuracy comparison.

which indicates the cutoff frequency of the low-pass sensor
filter (see Section III-B), and the ROC plot is shown as Figure
7. The number besides the dots in the plot is the multiples of
∆t. For example, 5 means T = 5∆t. When T has a small
value, due to unfiltered random acceleration and sensor noise,
it is difficult to successfully recognize walking and driving,
which results in a low true positive rate of getting-off-car
detection. When T is large, signals tend to be oversmoothed,
so that more negative signals will be recognized as driving,
which increases the false positives. We choose T = 7∆t for
our method to balance two effects hereinafter. When T = 7∆t,
TPR is 0.867 and FPR is 0.093, so the accuracy will be 88.6%.

From the experiment results above, we can see that although
our method is based on straightforward numerical analysis on
raw sensor readings, it can achieve a satisfactory detection
accuracy, which is sufficient for our succeeding processing.

B. Performance of Spending Level Profiling

Now we move on to evaluate the overall performance of
our spending level profiling method. We first take a look at
the accuracy of our SVM-based loading detection (see Section
III-C). We collect first 3 weeks’ data from our 9 volunteers
(data set I). Among these data, we have 40 tagged loading
events, which are used as the training samples of our SVM.
In the following five and a half weeks (data set II), there are 82
tagged loading events. Our trained SVM successfully detected
68 of them on-the-fly. The accuracy is plotted as the second
bar in Figure 8.

As comparison, we also perform two off-line experiments.
First, we train a C4.5 decision tree using the same training
data and same attributes as our SVM. The result (prediction
accuracy) is shown as the first bar in Figure 8. We can see
that our SVM has superior performance over the decision tree.
Second, we also use 40 loading events to train our SVM, but
all of these 40 events are from 3 volunteers. Then we use
this trained SVM to detect the loading events from other 6
volunteers. The accuracy is shown as the third bar in Figure
8, which is only slightly lower than the second bar. This result
illustrates that our method is not user-sensitive. It does not
need to be trained for every single individual.

In our method, after a getting-off-car event, if a loading
event is detected, we assume the user is shopping (probably
at a grocery store), and the GPS reading when getting off the
car is used for store mapping. Table I lists the most frequent
stores our volunteers shop at. The first column is the name of
store as well as its price level (retrieved from Yelp). The second
column lists the number of visits (tagged by volunteers) and
the third column is the number of correct detections reported

TABLE I
GROCERY SHOPPING DETECTION

Store Name Visiting Times Detected Times
Save Mart ($) 12 10
Safeway ($$) 9 8
Walmart ($) 9 9
Trader Joe’s ($$) 8 5
Target ($$) 7 7
Whole Foods ($$$) 5 3

by our method. We can see that, in most cases, our method
can precisely identify the store a user is shopping at.

Our method also detects the loading time (if a loading event
is found) in order to infer the number of bought items. Figure
9 plots the detected loading time (y-axis) vs. the number of
items bought (x-axis). Each dot in the figure represents a
detected loading event. We did not ask our volunteer to record
their real loading time, because it is too troublesome and the
timing action may introduce extra noise to sensor readings
(of the loading action). Moreover, the rationale behind our
method is that we assume the user spending level has positive
correlations to stores’ price level, and the weight of each store
is determined by the number of items bought in this store. So
we are more interested in the relationship between the detected
loading time and the number of item bought. In Figure 9, we
can see that the dots are distributed along the diagonal and
exhibits an approximate positive linear relationship between
two variables mentioned above.

Finally, we calculate SL for each volunteer using our
method (by Equation 6), and then calculate each volunteer’s
real spending level (also use Equation 6, but substitute the
number of items for Ti, and count in all the shop visits reported
by the volunteers instead of only the detected ones). The
average estimation error between SL and real spending level

is 19%, where the error is defined as
|SL−real spending level|

real spending level
.

This result demonstrates that the accuracy of our spending
level profiling is satisfactory, especially considering that we do
not access any banking, billing, email or message information.

We would like to mention that in data set II, there are
in total 436 getting-off-car events, and only 82 of them are
grocery shopping. For the rest 354, most of them occur in the
volunteers’ home or working locations which do not trigger
the loading detection (see Section III-C). The average time
that the loading detection algorithm runs is only 21 minutes
per getting-off-car event. So energy-wise, walking and driving
detection which runs all day long matters much more than the
loading detection algorithm.

0 10 20 30 40

0

20

40

60

80

100

120

Number of items

T
im

e
 (

s
)

Fig. 9. The result of loading time estimation.

V. DISCUSSION

A. Detection of Home and Working Location

In our shopping profiling, home and working locations are
excluded to save energy or improve accuracy (see Section
III-C). In fact, the detection of home/working locations is
relatively easy. Google Now can perform such detection au-
tomatically, in which users’ historical traces and WiFi access
point information are used. If Google Now is turned off, we
can also detect home/working locations based on our getting-
off-car detection technique. Each time a getting-off-car event
is detected, we turn on the GPS and log its reading. Since
users’ visits to these two places should be far more often than
other places, we can compare the getting-off-car locations and
pick them out. We only need to find two most frequent places
and exclude them, without differentiating which is home and
which is the working location.

B. Feasibility of Covert Privacy-Profiling

In an Android device, an app can run in the background
sampling sensor readings. In order to collect sensor data
all day long, it needs to run on device startup, which is
easy in Android. The Android memory management system
sometimes kills background apps to release memory. What
the app needs to do to prevent from being killed is showing a
message (any content) in the Android notification bar (drop-
down area). Therefore, it is relatively easy for a malicious
app to pretend as a good one and collect sensor readings
continuously in the background.

When a user installs an app, a list of access requests will
be prompted for users’ approval. If an app requests to access
users’ identity, calendar, contacts, call log or messages, it
may raise users’ alert. But our method does not access these
sensitive information, as well as the microphone and camera.
We only use access motion sensors and location service, which
is very normal in the app store.

If a smartphone’s battery drains much faster than normal
when an app is running in the background, the user may also
raise awareness. Therefore, in our method, we minimize the
usage of GPS, which is very power-consuming. We also use
lightweight algorithms to detect walking and driving, instead
of machine learning based approaches, in order to save energy.

In Section IV, we mention that all the sensor data are logged
and stored. However, it is for the purpose of performance
evaluation. When used for privacy profiling, our method does
not need to store all sensor readings. Walking, driving and
loading detection are all performed on-the-fly. Only the detec-
tion results and timestamps are stored (or sent out wirelessly).

C. Privacy Profiling through Website Access Pattern

It is also possible to profile users’ spending level through
the analysis of users’ website access pattern. However, in
order to obtain users’ website access information, we need to
either sniff smartphone’s network traffic or visit web browsing
history, both of which are not accessible by third party apps.
On the contrary, our sensor-based method, as discussed above,
does not require any special access privilege, and is easy to
perform but difficult to be detected.

VI. CONCLUSION

In this paper, we propose to profile users’ spending level
through smartphone sensors. We do not access smartphones’
microphone, camera, users’ call log, calendar, contacts or mes-
sages; GPS usage is also minimized. Therefore, our method is
performed in a non-intrusive manner and is energy-efficient.
Our work demonstrates that users’ long-term privacy can be
invaded through smartphone sensors in a way that users are
completely not aware of.

REFERENCES

[1] J. Chon and H. Cha, “Lifemap: A smartphone-based context provider
for location-based services,” IEEE Pervasive Computing, vol. 10, no. 2,
pp. 58–67, 2011.

[2] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz, “Human
activity recognition on smartphones using a multiclass hardware-friendly
support vector machine,” in Ambient Assisted Living and Home Care.
Springer, 2012, pp. 216–223.

[3] S. A. Hoseini-Tabatabaei, A. Gluhak, and R. Tafazolli, “A survey on
smartphone-based systems for opportunistic user context recognition,”
ACM Computing Surveys (CSUR), vol. 45, no. 3, p. 27, 2013.

[4] M. Keally, G. Zhou, G. Xing, J. Wu, and A. Pyles, “Pbn: towards practi-
cal activity recognition using smartphone-based body sensor networks,”
in Proceedings of the 9th ACM Conference on Embedded Networked
Sensor Systems. ACM, 2011, pp. 246–259.

[5] N. Ravi, N. Dandekar, P. Mysore, and M. L. Littman, “Activity recog-
nition from accelerometer data,” in AAAI, vol. 5, 2005, pp. 1541–1546.

[6] T. Choudhury, S. Consolvo, B. Harrison, J. Hightower, A. LaMarca,
L. LeGrand, A. Rahimi, A. Rea, G. Bordello, B. Hemingway et al., “The
mobile sensing platform: An embedded activity recognition system,”
Pervasive Computing, IEEE, vol. 7, no. 2, pp. 32–41, 2008.

[7] J. R. Kwapisz, G. M. Weiss, and S. A. Moore, “Activity recognition us-
ing cell phone accelerometers,” ACM SigKDD Explorations Newsletter,
vol. 12, no. 2, pp. 74–82, 2010.

[8] A. Brajdic and R. Harle, “Walk detection and step counting on uncon-
strained smartphones,” in Proceedings of the 2013 ACM international
joint conference on Pervasive and ubiquitous computing. ACM, 2013,
pp. 225–234.

[9] R. Libby, “A simple method for reliable footstep detection in embedded
sensor platforms,” 2008.

[10] L. Rong, D. Zhiguo, Z. Jianzhong, and L. Ming, “Identification of
individual walking patterns using gait acceleration,” in 2007 1st Interna-
tional Conference on Bioinformatics and Biomedical Engineering, 2007,
pp. 543–546.

[11] P. Barralon, N. Vuillerme, and N. Noury, “Walk detection with a
kinematic sensor: Frequency and wavelet comparison,” in Engineering
in Medicine and Biology Society, 2006. EMBS’06. 28th Annual Interna-
tional Conference of the IEEE. IEEE, 2006, pp. 1711–1714.

[12] D. A. Johnson and M. M. Trivedi, “Driving style recognition using a
smartphone as a sensor platform,” in Intelligent Transportation Systems
(ITSC), 2011 14th International IEEE Conference on. IEEE, 2011, pp.
1609–1615.

[13] T. Stiefmeier, D. Roggen, G. Ogris, P. Lukowicz, and G. Tröster,
“Wearable activity tracking in car manufacturing,” IEEE Pervasive
Computing, vol. 7, no. 2, pp. 42–50, 2008.

[14] A. Rai, Z. Yan, D. Chakraborty, T. K. Wijaya, and K. Aberer, “Mining
complex activities in the wild via a single smartphone accelerometer,”
in Proceedings of the Sixth International Workshop on Knowledge
Discovery from Sensor Data. ACM, 2012, pp. 43–51.

[15] N. Eagle and A. Pentland, “Reality mining: sensing complex social
systems,” Personal and ubiquitous computing, vol. 10, no. 4, pp. 255–
268, 2006.

[16] H. Ying, C. Silex, A. Schnitzer, S. Leonhardt, and M. Schiek, “Auto-
matic step detection in the accelerometer signal,” in 4th International
Workshop on Wearable and Implantable Body Sensor Networks (BSN
2007). Springer, 2007, pp. 80–85.

[17] V. T. Inman, H. J. Ralston, and F. Todd, Human walking. Williams &
Wilkins, 1981.

[18] S. J. Hoch, B.-D. Kim, A. L. Montgomery, and P. E. Rossi, “Determi-
nants of store-level price elasticity,” Journal of marketing Research, pp.
17–29, 1995.

