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Abstract—Mobile sensing is becoming a popular paradigm to collect information from and outsource tasks to mobile users. These
applications deal with lot of personal information, e.g., identity and location. Therefore, we need to pay a deeper attention to privacy
and anonymity. However, the knowledge of the data source is desired to evaluate the trustworthiness of the sensing data. Anonymity
and trust become two conflicting objectives in mobile sensing. In this paper, we propose ARTSense, a framework to solve the
problem of “trust without identity” in mobile sensing. Our solution consists of a privacy-preserving provenance model, a data trust
assessment scheme and an anonymous reputation management protocol. In contrast to other recent solutions, our scheme does not
require a trusted third party and both positive and negative reputation updates can be enforced. In the trust assessment, we consider
contextual factors that dynamically affects the trustworthiness of the sensing data as well as the mutual support and conflict among data
from difference sources. Security analysis shows that ARTSense achieves our desired anonymity and security goals. Our prototype
implementation on Android demonstrates that ARTSense incurs minimal computation overhead on mobile devices, and simulation
results justify that ARTSense captures the trust of information and reputation of participants accurately.

Index Terms—Mobile Sensing, Location Privacy, Anonymity, Data Trust, Reputation.

1 INTRODUCTION

In recent years, we have seen the massive prevalence
of mobile computing devices such as smartphones and
tablet computers. These devices usually come with mul-
tiple embedded sensors, such as camera, microphone,
GPS, accelerometer, digital compass and gyroscope. Be-
cause of these advancements, the mobile sensing model,
also known as participatory sensing and urban sensing,
is becoming popular. Participants use their personal
mobile devices to gather data about nearby environment
and make them available for large-scale applications.
Two examples of mobile sensing applications are Gig-
walk [1] developed by a startup company and mCrowd
[2] developed by University of Massachusetts Amherst.
They provide a marketplace for sensing tasks that can
be performed from smartphones. A requester of data
can create tasks that use the general public to capture
geo-tagged images, videos, audio snippets, or fill out
surveys. Mobile users who have installed the client apps
on their smartphones can submit their data and get re-
warded. For example, Microsoft Bing has been collecting
photos using Gigwalk for panoramic 3D photosynthesis
of businesses and restaurants in Bing Map. Moreover,
a notable number of other mobile sensing applications
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have also emerged for collecting more specific informa-
tion such as traffic [3], [4], noise pollution [5], cyclist
experiences [6], and consumer pricing information [7].
Sharing sensed data tagged with spatio-temporal in-
formation could reveal a lot of personal information,
such as a user’s identity, personal activities, political
views, health status, etc. [8], which poses threats to the
participating users. Therefore, mobile sensing requires a
deeper attention to privacy and anonymity, and a mech-
anism to preserve users’ location privacy and anonymity
is mandatory. Another dimension of data security in
mobile sensing is the reliability of the sensed data. In
mobile sensing applications, data originates from sensors
controlled by other people, and any participant with
an appropriately configured device can easily submit
falsified data, hence data trustworthiness becomes more
crucial than the traditional wireless sensor networks.
There is an inherent conflict between trust and privacy.
If a mobile sensing system provides full anonymity, it is
difficult to guarantee the trustworthiness of submitted
data. Finding a solution that achieves both trust and
anonymity is a major challenge in such systems [9].
There have been plenty of research efforts that have
investigated privacy techniques for anonymous data
collection in location based services (LBS) and partic-
ularly in mobile sensing systems. Most of other work
which studied trust models did not consider the privacy
requirements. In this paper, we are trying to solve the
problem of “trust without identity” in mobile sensing
networks. Compared with a few other existing solutions
to the similar problem, our scheme does not require a
trusted third party and both positive and negative rep-
utation updates can be enforced while maintaining the



desired user anonymity. In addition, we do not perform
our trust assessment based on only user reputations but
also other contextual factors that may dynamically affect
the trustworthiness of the sensing data as well as the
level of mutual support and conflict among sensing data
received from difference sources. We also introduce a
report flooding attack that has never been discussed in
the context of mobile sensing, and proposed a way to
utilize an anonymous blacklisting technique to defend
against such attacks.

To summarize, the contributions of our work include:

1) A novel provenance model for mobile sensing ap-
plications is developed which serves as the basis
of sensing data trust assessment while maintaining
the appropriate level of user anonymity.

2) A trust assessment algorithm is proposed to com-
pute the trust of sensing reports based on anony-
mous user reputation levels, privacy-preserving
contexts such as location, time and other contextual
factors, as well as mutual support and conflict
among multiple sensing data.

3) An anonymous reputation management mecha-
nism is presented to maintain the anonymity prop-
erties while also enforce positive or negative user
reputation updates.

4) The Report Flooding attack is introduced and how
an anonymous blacklisting scheme can be used
in our scheme is discussed to defend again such
attacks.

The rest of the paper is organized as follows. We
highlight the related work of data security in mobile
sensing in Section 2. In Section 3, we give an overview of
the system model including a formal definition of trust
and reputation. The threat model will also be detailed
in this section. We then present our proposed ARTSense
scheme in Section 4. The security analysis of our scheme
is given in Section 5 and performance evaluations based
on prototype implementation and simulation experi-
ments are presented in Section 6. We give a discussion
of several additional privacy and security concerns in
Section 7. Finally, Section 8 concludes the paper and talks
about our future work.

2 RELATED WORK

Privacy preserving techniques have been extensively
studied in the context of LBS. A group of well-known
techniques in preserving user privacy is the spatial
and temporal cloaking technique [10], [11], where a
participant’s location at a specific time is blurred in a
cloaked area or cloaked time interval, while satisfying
the privacy requirements. Most of these techniques are
based on k-anonymity [12], where the location of a user
is cloaked among k — 1 other users.

In addition to the studies about privacy in the context
of LBS, a few pieces of recent work [13]-[16] have specif-
ically studied the privacy in mobile sensing. In [13], the
concept of participatory privacy regulation is introduced.

In [14]-[16], different approaches are proposed, which
focus on how participants upload the collected data to
the server without revealing their identities. Most of
them are based on cloaking techniques for protecting the
location privacy of participants.

There have been numerous trust systems proposed
toward the data reliability in mobile ad hoc networks,
traditional wireless sensor networks as well as mo-
bile sensing networks, for example, [17]-[19]. These
approaches mainly focus on how the trustworthiness
of the data shared in the network can be evaluated
and how the reputation of the network entities which
process the data can be maintained. For mobile sensing
applications in particular, Huang et al [20] proposed a
reputation system that employs the Gompertz function
for computing device reputation score as a reflection
of the trustworthiness of the contributed data. None
of these solutions considered the high requirement for
privacy and anonymity in the context of mobile sensing.

More recently, several privacy-aware reputation
schemes [21]-[23] have also been proposed in the
context of mobile sensing. In [21], the authors presented
a scheme that utilizes multiple pseudonyms for each
user and reputation values are transferred between
different pseudonyms that belong to the same user.
This scheme requires a trusted server to handle the
reputation transfers between multiple pseudonyms of
the same user and maintain the mappings between
the real user identity and their pseudonyms. In
[22], the authors proposed a similar solution named
IncogniSense, which generates periodic pseudonyms by
utilizing blind signatures and dynamically cloaks exact
reputation values into reputation groups. It eliminates
the assumption that the reputation and pseudonym
manager must be trusted. However, as a separate party
in the system, it still incurs additional management
overhead. Another solution based on blind signature
techniques was proposed by Li et al [23]. The authors
looked at the problem from an incentive point of
view, aiming to allow mobile users to earn credits
by contributing data without leaking which data they
have contributed. Therefore, they do not consider
the necessity of penalizing malicious users in their
privacy-aware incentive model.

In contrast to the existing solutions, our system does
not require a trusted third party and both positive
and negative reputation updates can be enforced while
maintaining the appropriate level of user anonymity. In
addition, we developed a novel provenance model for
mobile sensing applications which serves as the basis
of our sensing data trust assessment. From the trust
analysis perspective, our system is different from the
above mentioned schemes in that we do not only base
our trust assessment on user reputation values but also
other dynamic contextual factors that may affect the
trustworthiness of the sensing data as well as the mutual
support and conflict among sensing data received from
difference sources. A preliminary result of this effort was
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presented in [24].

3 PROBLEM FORMATION
3.1

Different mobile sensing applications may have different
system models. To make it more specific, we consider
a typical mobile sensing architecture, which is used by
Gigwalk and mCrowd. This architecture is illustrated in
Fig. 1. First of all, applications are distributed to the
participants” mobile devices through App Store or other
application marketplaces (Step 1). Some initialization
work, e.g., user registration and privacy settings, should
be done at this stage too.

Data consumers (such as Microsoft Bing in our ex-
ample) can create sensing tasks and data requirements
(Step 2), and then distribute them to the mobile phones
in the vicinity of the site of interest (Step 3). The sensing
data collected by the phones of participants are reported
(through WiFi or cellular networks) to a central applica-
tion server (hereafter referred to as the “server”) (Step 4).
On the server, the data are analyzed, processed (Step 5)
and made available to the data consumers (Step 6). The
data consumer may give feedback (e.g., credit, service
fees, etc.) to the server (Step 7). Finally, the server will
process the feedback (Step 8) and also give feedback
(either rewards or penalties) to the participants (Step
9). Data consumers’ trust and privacy is not under our
consideration, so we think of them as a part of the server
instead of a separated party. In particular, we will focus
on what needs to be sent in Step 4, how trust assessment
can be done in Step 5, the reputation feedback polices
and mechanism in Step 9, and most importantly, how
participants’ privacy is protected in the whole process.

In such a mobile sensing network, the network iden-
tifiers, e.g., IP addresses, could reveal the identities or
locations of the participants [25]. At the communication
level of the network system, we assume a suitable anony-
mous network such as Onion Routing and Mix networks
is applied to offer the desirable privacy protection. At
the application level, we assume spatial and temporal
cloaking techniques are applied to allow participants to
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adjust time/location resolution for individual reports.
The details of how these techniques can be used have
been discussed extensively and they are out of the scope
of this paper.

3.2 Definitions of Trust and Reputation

A crucial part of the system is the assessment of the
reliability and correctness of the sensing data reported by
the participants. We use the term “trust” to represent the
level of confidence about the reliability and correctness
of the reported sensing data. Another crucial part of the
system is reputation management, including reputation
demonstration and reputation update.

“Trust” and “reputation” are often used interchange-
ably in a network trust or reputation model. We follow
the definitions in [19] and use them as separated con-
cepts. Trust is a value associated with the reported sens-
ing data and reputation is a value associated with the
participants. In addition, for privacy protection purpose,
we introduce a new term “reputation level” in contrast
to “reputation”. Before diving into the details of our
scheme, we first give formal definitions for these terms.

DEFINITION 1: Trust of Sensing Reports: The trust
of a sensing report 7, denoted as 7'(r), is the probability
of r being correct, as perceived by the server.

DEFINITION 2: Reputation of Participants: The rep-
utation of a participant P;, denoted as R(P;), is the
synthesized probability that the past sensing reports sent
by P; are correct, as perceived by the server. The server
maintains a reputation database which has the ID of each
participant and the corresponding reputation. When a
new participant registers with the server, the server
creates a unique ID and initializes an initial reputation
Ry for the new participant in the reputation database.
Ry can be set as a value in [0, 0.5], so that newcomer
attackers can maximally get a neutral reputation.

DEFINITION 3: Reputation Level of Participants:
The reputation level of a participant P;, denoted as
R(P;), is a discrete approximation of reputation gener-
ated by the server based on R(FP;) and granted to the
participant P;. It is used by P; to demonstrate his/her
reputation to the server without revealing his/her accu-
rate reputation. An example of mapping R(P;) of 8.15
to R(P;) would be rounding off the decimal and getting
a result of 8. A backward mapping from R(P;) to R(P;)
should be impossible.

3.3 Threat Model

For the server side, we consider the server not trustwor-
thy for protecting participants’” privacy. Any information
learned by the server might be leaked to a malicious
server administration personnel behind the server. How-
ever, we assume the server can be trusted in terms
of its functionalities. Malicious personnel behind the
server may exploit the data collected by the application
server but no one should be able to control how the
application server performs its jobs, which includes user



registration, key management, issuing credentials, task
distribution, trust assessment and reputation manage-
ment. As we described in Section 3.1, we assume spatial
and temporal cloaking techniques are applied so that
each individual sensing report is at least k-anonymous
to the server. Nevertheless, if the reports submitted by
a participant are linkable, e.g., the same pseudonym is
used, the attacker can profile and analyze the location
traces, which could reveal the identity of the sender or at
least significantly reduce the possible anonymity set [8].
Thus, unlinkability of the sensing reports sent by a single
participant is an important desired security property of
our solution.

For the participants side, we allow anyone with an
appropriate device that gets the application installed to
register as a participant. An existing participant is free
to abandon his/her account and register himself/herself
as a new user (newcomer attack). A registered par-
ticipant has the right to refuse to provide any real-
identity information or accurate location and time in the
sensing reports. A misbehaving participant may produce
false sensing data or send false data randomly with
certain probability or for certain tasks (on-off attacks).
An adversary may also exploit to gain unfair reputation
or lie about his/her reputation level. Furthermore, we
allow multiple adversaries to collusively send the same
false data to deceive the server, but we assume majority
of the reports are good.

Since securing provenance is not the focus of this
work, we assume provenance information is generated
by a trusted middleware and the transmission of prove-
nance is protected by a provenance security technique
[26]. We assume user authentication is done properly
when the communication between a participant and
the server does not need to be anonymous. Attacks
via the communication channels and DoS attacks (e.g.,
eavesdropping, traffic jamming, etc.) are out of the scope
of this paper.

4 THE ARTSENSE SCHEME

The name of our scheme “ARTSense” indicates that
we aim to achieve three objectives - “Anonymity”,
“Reputation” and “Trust” - in mobile sensing. The en-
tire framework consists of three components: provenance
model, sensing report trust assessment and anonymous repu-
tation management. We present each of these components
in detail in this section.

4.1 Provenance Model

A sensing report consists of two parts, namely the
payload and the provenance. The payload could be
any format of sensing data, e.g., text, voice, picture,
video, etc. The provenance is meta-data that describes
the origin of the report, which is assumed to be automat-
ically generated by a trusted middleware. We divide the
provenance into two parts: user provenance and contextual
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provenance. Figure 2 illustrates the structure of a sensing
report and our provenance model.

1. User Provenance: Considering anonymity, a partici-
pant’s ID should not be in the user provenance so that no
one including the server can associate the participant’s
identity with the other information in the report. Instead,
participants need to put their Blinded ID (BID) in the user
provenance. A participant’s BID acts like a pseudonym
and could change randomly with every sensing report.
In addition, a Reputation Certificate (RC) needs to be
included. It is a certificate granted by the server which
contains the sender’s reputation level and is signed by
the server. In fact, each RC is an RC pair, where one
contains the user ID and the other does not. Here in
the user provenance, the RC without the user ID is the
one we are including. The participants demonstrate their
reputation levels to the server via this anonymous RC.
The reputation level is used as one of the factors in
the trust assessment. The other RC which contains the
user ID is used to construct the BID and ensure the
security of the framework. How the BID and RC pair are
generated and used is a key component of our scheme.
We elaborate more on the details in Section 4.3.

2. Contextual Provenance: The contextual provenance
is a description of the sensing environment. It contains
attributes such as sensing time, sensing location, and
other optional contextual information. These contextual
attributes usually have a big influence on the trust of the
sensing reports.

According to a survey done by Christin et. al. [27],
virtually all mobile sensing applications collect time and
location information, thus underpinning the importance
of these two factors. One thing to be noted is, time
and location are also the two factors that are closely
associated with participants” privacy. Since we assume
spatial/temporal cloaking techniques are used on each
individual sensing report, these two factors in the con-
textual provenance may not contain precise information.

In addition to time and location, we believe that other
contextual factors may also largely affect the reliability
and correctness of the sensing data. These contextual
factors could be the type of data, type of mobile de-
vice, battery level of the mobile device, participant’s
traveling speed, weather condition, etc. For instance, we
consider a picture or a video clip better than a text-
only description. Inaccurate sensing reports tend to be
generated when a participant is using an older version



of a mobile device or traveling at a very fast speed. The
level of influence of such factors are very specific to the
actual application scenario. We define such factors as the
milieu factors. Mobile sensing applications may require
different milieu factors to be included in the contextual
provenance as property-value annotations.

4.2 Sensing Report Trust Assessment

ARM is an important component of the entire mobile
sensing system, it provides a foundation to achieve our
ultimate goal of the this paper, i.e., trust assessment for
the sensing reports. Before talking about the details of
our privacy preserving reputation management mecha-
nism. We first describe our approach to assess the trust
of sensing reports.

When a report is received, the server first validates the
anonymous RC in the user provenance by checking:

1) The RC has been signed by the server.

2) The RC is issued for the current task.

If the validation is passed, the server obtains the rep-
utation level R(P;) of the sender P;. The server cannot
associate R(P;) with P; because many participants could
have the same reputation level. Though R(P;) is not
accurate, it gives the server a rough idea of how much
the sender can be trusted.

A sensing report from a location faraway from the ex-
pected location is usually not as accurate as a report from
a nearby location. We call the expected location and the
actual location indicated in the contextual provenance
the target location (denoted as L) and the sensing location
(denoted as L) respectively. We denote |Ls; — L,| as
the distance between them. Spatial cloaking techniques
may obfuscate the sensing location. In other words, the
location provided in the contextual provenance might
be a small area instead of an exact location point. We
call this area as the cloaking area and denote D, as its
diameter. In this case, we use the central point of the
cloaking area as the sensing location. We then formally
define the location distance factor (denoted as O) as:

O = ¢ Do, (l—ef‘LFLfl'a) 1)

where « is the location sensitivity parameter set by the sys-
tem which controls the weight of the location factor’s in-
fluence on the trust of sensing reports. The 1—e~1Fs—Lil-@
part of the equation makes © equal to 0 when |Ls — L
equals to 0 and © approaches 1 when |L, — L,| is large.
The e~P<@ part accounts for the uncertainty caused by
the cloaking area. A maximum sensing distance and a
maximum cloaking diameter can be set, so that if |Ls—L;]|
exceeds the maximum sensing distance or the reported
D, exceeds the maximum cloaking diameter, the sensing
report will be discarded.

Time is another critical factor. Reports sensed at the
expected time usually have the best quality. We call the
expected time of the sensing task and the actual time
contained in the contextual provenance the target time
and the sensing time. We denote |Ts —T}| as the time gap

TABLE 1
Sensor mode and traveling mode weighting parameters

Data Type Adt
Text 1.00
Voice 1.05
Picture 1.20
Video 1.30
Traveling Mode Atm
Standstill 1.0

Walking 0.98
Cycling 0.95
Driving @ < 30 mph | 0.94
Driving @ > 30 mph | 0.92

between them. When temporal cloaking techniques are
used, we call the resulting time interval as the cloaking
interval and denote S. as the length of the cloaking
interval. Again, we use the middle point of the cloaking
interval as the sensing time if time is cloaked. We define
the time gap factor (denoted as Q) as:

O =g 5B, (1-— eflTthl-B) 2)

where 3 is the time sensitivity parameter which controls
the weight of the time factor’s influence on the trust of
reports. Similar to the location factor, a maximum time
gap and a maximum cloaking interval can be set.

In addition to the location and time, other milieu
factors in the contextual provenance could be highly
important and might affect the report quality, too. How-
ever, how much a particular milieu factor affects the
report quality is really specific to the sensing task.
There is not a universal way to compute the importance
level of a particular milieu factor for different mobile
sensing applications or under different circumstances
for the same application. Without loss of generality, we
leave the milieu factor selection approach open to the
actual system designers. We suggest system designers
to carefully select the milieu factors to be required in
the contextual provenance and define a weight (denoted
as A) for each possible alternative of a milieu factor
value. As an illustrating example, Table 1 shows a list
of weights for different data types (A\q;) and traveling
modes (A:). When a sensing report is received, the
server is able to calculate a synthesized milieu factor weight
(denoted as A) based on ) of each milieu factor. A simple
way to do so is to get the product of all A’s.

We can calculate the base trust (denoted as Ty(r)) of
the sensing report based on the reputation level and the
synthesized milieu factor weight as follows:

Ty(r) = min{R(P,)-(1-06,)- (1 - Q) A, 1}  (3)

The base trust is merely a value we calculate based
on the provenance. It is an important reference to us
when a single report is received. However, in most
cases, multiple sensing reports might be received for one
sensing task. Different reports for the same task may be
either mutually supportive or conflicting. Similar reports
are considered supportive to each other, while conflicting
reports compromise the trustworthiness of each other.



Therefore, we can adjust trust based on the amount of
supports and conflicts the reports get from each other.
We group all the sensing reports for a particular sensing
task in a collection C' before the sensing task expires.
For data similarity measurement, there has been lots
of work done in the field of data mining [28]. We assume
any two sensing reports r and r’ within a collection have
a similarity score of S(r,r’) which ranges from —1 to
1, where —1 means completely conflicting and 1 means
exactly the same. Now what we really care about is
how to actually utilize the similarity scores to adjust the
report trust. We assign a similarity factor A, to sensing
report r which belongs to a collection C, as follows:
Zr,'r’ECT,r;&r’ S(Tv 7”') — C}
A, = G ce T Ly 4)
where |C,| is the number of sensing reports in the
collection C., and v is the similarity weighting parameter
that controls the weight of the similarity adjustment.

The rationale behind the term e~ 71 is that the more
reports are in the collection C,, the better idea we would
have about what is right and what is wrong. Thus,
we increase the influence of the similarity factor as the
number of report in a collection increases, but the rate of
this increment should be slowed down and never exceed
a threshold when the number of report becomes large.

Each sensing report is assigned with a similarity fac-
tor. A negative similarity factor means there are more
conflicts in the collection and a positive similarity factor
means there are more supports. Finally, we can obtain
the final trust (denoted as T;(r)) of the sensing report r
as follows:

Ty(r) = Ty(r)(1 + Ap) ©)

Comparing the final trust 7 (r) and the original repu-
tation level R(P,), it is easy for the server to generate a
reputation feedback level fr. Similar to the reputation level,
fr cannot be an accurate number, otherwise the server
can associate the fr with the original report later when
fr is being redeemed by the participant (more details in
Section 4.3). Our suggestion is to predefine a number
of discrete fr levels based on the difference between
Tf(r) and R(P,), and the number of fz levels should
not be too many in order to minimize the probability
that the server can associate a fr with its original report.
There are many ways of doing so. A general guideline
is, positive fr should be given if Ty(r) > R(P,), and
vice versa. Also, negative feedbacks should affect the
reputation more than positive feedbacks. This tallies
with our intuition that a reputation can only be built
up with a long time of consistent good behaviors, but a
few bad incidences could ruin the reputation drastically.
Table 2 gives an example solution.

4.3 Anonymous Reputation Management

An Anonymous Reputation Management (ARM) scheme
for mobile sensing applications needs to have the follow-
ing attributes:

TABLE 2
Predefined reputation feedback levels

Tf(r)_R(Pr) fr
(0.5, 1] 0.02
[0.1, 0.5] 0.01
[-0.1, 0.1] 0
[-0.5, -0.1) 0.025
[-1, 0.5) 0.05
TABLE 3

List of notations

AlB Concatenation of messages A and B
Ksp Public key of the server

Kss Private key of the server

{M}Kk,, | Message M encrypted by Ksp
Mk, Message M signed by Ks

Al Sensing reports do not contain identity information
and the server cannot associate a report with a
particular participant by any means.

Multiple sensing reports from the same participant
are not linkable.

A participant’s reputation is determined by his/her
past behaviors, and participants do not have con-
trol over the reputation update process.
Participants can demonstrate their reputation levels
to the server without revealing their identities and
they cannot lie about their reputation levels.

A2

A3

A4

During a user registration, participants normally need
to provide their personal information such as name,
contact and payment information. Therefore, the user ID
can be considered as the real-identity of a participant. To
achieve A1, many anonymity schemes uses pseudonyms.
Nevertheless, a stable pseudonym makes the reports
from the same participant linkable and thus violates A2.
If a participant does not change his/her pseudonym
frequently enough, the real-identity could still be re-
vealed by analyzing the location traces. A3 and A4 are
challenging because the reputation is associated with the
user ID in the reputation database and anonymity makes
it hard to enforce the participants to follow the protocols.
To solve these issues, our approach utilizes the Blind
Signature technique [29] and make the report submission
and reputation update as two separated processes. We
illustrate the entire sensing task cycle in Figure 3. There
are five crucial steps in this cycle, which are indicated as
@ - @ in Figure 3. We now describe each of these steps
in detail and the notations we use are listed in Table 3.

1. Issue of Reputation Certificate (server side): First
of all, when a participant P; decides to take a sensing
task, he/she needs to register with the server for this task
before he/she sends out a sensing report. The participant
does this by sending a Task Registration Request (TRR)
which contains his/her user ID P; and the correspond-
ing Task ID TID. Task registration does not violate
anonymity because the server would only know who
wants to participate, but would not be able to link them
with their actual sensing reports.



P- TID :5—> P;| TID TaSk

R(P) | TID 4—‘—.: | Re)ITD ]

P|R(P )| TID 4: P|R( )|TID

Payload

. I

Participant P;

Application
Server

Reputation
Database

Reputation ?
RP)pew

D Signed by Kspnv ' Encrypted by K, spub

Fig. 3. Anillustration of the anonymous report submission
and reputation management in a sensing task cycle

The server maintain a task registration table. When a
TRR is received, the server registers the participant F;
for task TID by putting the tuple (P;, TID) into the
task registration table. After task registration, the server
obtains P,;’s reputation level R(P;) based on his/her
most recent reputation R(F;) (R for new participants).
A pair of RCs are created by the server, where one RC
contains P; (denoted as RC;) and the other does not
(denoted as RCy).

RC; = [P\R( )|TID} ©6)

RCy = [R(P)[TID] @)

Both RC; and RCj contain R(P;) and TID and both
of them are signed by the server. RCy is the anonymous
RC that will be put in the user provenance by the
participant, and RC; is necessary for constructing the
BID (explained in next step). Whenever a participant
wants to participate in a new task, he/she has to obtain
a refreshed RC pair for this specific task. T'ID is used to
check if the RCy was issued for the current task when a
sensing report is submitted.

2. Construction of Blinded ID (user side): As we
described in Section4.1, every user provenance contains
a Blinded ID (BID) of the sender. To construct the BID,
the participant needs his/her RC; and a random number
b. b is chosen by the participant such that b is relatively
prime to the server’s public modulo N. Then, b is raised
to the public exponent e modulo N, and the result b°
(mod N) is used as a blinding factor. BID is the product
of RC; and the blinding factor:

BID = RC; - b°(mod N) 8)

Every time a participant submits a report to the server,
he/she can choose a different random number b, and

thus making the BID different. Therefore, the BID cannot
be used by the server to link reports from the same
participant.

3.Generation of Reputation Feedback Coupon (server
side): After assessing the trust of a sensing report, the
server generates the reputation feedback level fr for the
sender (as described in Section 4.2). Then, a Reputation
Feedback Coupon (RFC) is generated as follows:

RFC = [BID} . ‘ [{ fR}KSJROO} . )

where fr is encrypted by the server’s public key so that
the participant cannot tell if it is a negative or positive
feedback.

4. Ublinding RFC (user side): With the received RFC,
the original report sender can obtain an Unblinded RFC
(URFC) by removing the blinding factor based on the
characteristics of blind signatures. The resulting URFC
will be as follows:

URFC = {RC’,;]KJ {Ja} |G| 0)
After getting the URFC, the participant chooses to wait
a random period of time before the URFC is expired (if
there is an expiration time), and then sends the URFC to
the server to redeem it. The UFRC is signed by K, so
that no participant can forge a valid URFC at this stage.
5. Redemption of URFC (server side): When the
server receives a URFC, a security check must be done
on the URFC to make sure it passes the following
requirements:
1) The private-key signatures and public-key encryp-
tions are valid.
2) The two copies of R(P;) and TID extracted from
RC; and RCj are consistent.
3) No URFC with the same P; and TID has been
redeemed before.
4) The URFC is not expired (optional).
If the URFC passes the validation, the server extracts P,
and fr from the URFC and updates the corresponding
entry in the reputation table. Now we can see that if
an accurate value of fr was used in an RFC, the server
would be able to use it to associate P; with the original
sensing report.

4.4 Report Flooding

A subtle attack that our above construction is susceptible
to is when a single adversary sends more than one
reports for a specific task using the same RC{ obtained
from the task registration, and only redeem one of the
URFCs received for those reports. We call this kind of
attacks the Report Flooding attack.

The trust assessment could be biased by a report flood-
ing attack. However, since the server knows how many
reports are supposed to be received based on the task
registration table, it is able to detect such attacks when
the number of received reports exceeds the registered
task applicants. The server can then choose to discard



the reports and re-distribute the task when the exceeded
amount of reports is larger than a certain threshold.
Therefore, attackers cannot gain unfair reputation from
doing so.

Due to anonymity, when such an attack happens, the
server is not be able to tell who the attacker is. If an
attacker launches such an attack every time a particular
task is re-distributed, it becomes a DoS attack. In the rest
of this section, we would like to discuss the possibility of
detecting the source of such attacks with an anonymous
blacklisting technique and how an anonymous blacklist-
ing scheme can be plugged into ARTSense. Considering
the fact that the computing resources in a mobile com-
puting environment is often limited and an anonymous
blacklisting technique usually introduces high overhead
to the system, it is up to the system designer to decide
if this additional functionality is necessary.

An anonymous blacklisting scheme works in a way
that users (participants) authenticate themselves anony-
mously with the server, the server is able to revoke
access from any users that misbehave without knowing
their real identities or credentials. There are a number of
anonymous blacklisting schemes in literature [30]. A par-
ticular scheme, BLAC [31], eliminates the requirement of
a trusted third party, which makes it a better choice for
our application scenario over the other schemes.

In BLAC, a ticket is presented by a user to the server
during each execution of the authentication protocol,
in order to prove that he/she is a legitimate user and
he/she is not on the blacklist maintained by the server.
A ticket is an output of an non-invertible mapping of
the user’s unique credentials. The tickets from the same
user are unlinkable by taking as input some randomness
so that the server cannot tell if two authentications
are from the same user. More importantly, based on
non-interactive Signature Proof of Knowledge protocols, a
ticket is made to be provable for its correctness. That
is, whether a ticket belong to the claiming user can
be verified by the server without knowing the iden-
tity/credential of the user. A blacklist is a list of tickets
for which the users are judged as having misbehaved by
the server during the authenticated session. Due to space
limitations, we omit the construction details of BLAC.

To plug BLAC into ARTSense and protest against
report flooding, a unique credential should be given to
each participant who registers for a particularity task in
addition to RCy and RC'. This credential is equivalent to
the private credential issued in the registration protocol
of BLAC. Before submitting a report to the server, a
participant needs to run the anonymous authentication
protocol of BLAC and prove to the server that he/she
is not on the blacklist. Notice that the blacklist now is
not for misbehaving users. Instead, each task should
have a separated instance of blacklist which maintains
the tickets of those users who have submitted a report
for this particular task. In this case, once a participant
submitted a report to the server, the server immediately
adds his/her authentication ticket to the blacklist for

that particular task. The security properties of the BLAC
authentication protocol assures that a participant cannot
authenticate himself/herself successfully more than once
and thus submit more than one report for the same task.

BLAC is often criticized due to the fact that it scales
linearly in the size of the blacklist [30]. It becomes
impractical for many real-world applications because
a blacklist of a thousand users makes it take several
seconds to get a user authenticated. For large service
providers with millions of users, the performance of
BLAC is unacceptable. However, it would be rather rare
that a single mobile sensing task requires that many
participants. Therefore, each blacklist in our case would
be only a short list of the participants most of the time.
This makes the performance of BLAC acceptable with
the way we utilize it.

5 SECURITY ANALYSIS

In this section, we will analyze and prove that the
proposed ARM protocol can achieve our goals Al-A4
and the mechanism itself is secure.

Proposition 1. The server cannot see the user ID from a
sensing report. (Al)

Every time a participant P; sends a sensing report,
the BID is included in the user provenance instead of
the real user ID P;. According to the characteristics of
the Blind Signature technique, no information about P,
can be extracted from BID by the server.

Proposition 2. The server cannot correlate the user ID with
the original sensing report when URFC is redeemed. (Al)

When a URFC is sent to the server for reputation
redemption, the server can extract P;, R(Pi), fr and
TID. P; was blinded in BID and could not be seen by
the server in the original sensing report. Based on the
definition of R(P;) and fg, many different reports for
the task 71D would have the same R(P;) and fg. Thus,
neither of them can be used by the server to correlate P;
with the original sensing report.

Proposition 3. The server cannot link multiple reports sent
from the same participant. (A2)

A participant can choose a different blinding ran-
dom number b for each sensing report he/she sends
when BID is constructed. This makes BID for the same
participant different for different sensing reports. The
server cannot find any linkage between these BIDs due
to the randomness of b. RCy cannot be used to link
reports from the same participant either, because RCj
only contains R(P;) and TID. Based on the definition of
R(P;), many different participants may have the same
R(P)) in their RC, for task TID.

Proposition 4. A participant cannot redeem a URFC
multiple times or redeem multiple URFCs for the same task
without being detected. (A3)

When the server receives a URFC for redemption, it
extracts P, and TID. If it has seen the same P; and
T1D before, which indicates that either the participant



is trying to redeem a URFC multiple times or the partic-
ipant is trying to redeem multiple URFCs received from
sending multiple reports for the same task. Both cases
should be disallowed. If this happens, the participant is
considered to have malicious intent and the server can
apply a penalty on the participant’s reputation.

Proposition 5. A participant cannot redeem another collu-
sive participant’s URFC in order to get an unfair reputation
update without being detected. (A3)

According to how reputation feedback levels are given
in our system, when two participants send the same
good reports, the participant with lower reputation level
tends to get a higher reputation feedback level. Two col-
lusive participants may want to switch their URFCs for
redemption in order to unfairly promote the reputation
of the participant who already gained higher reputation.
If two entire URFCs are switched and redeemed. The
user ID in the RC; can tell the server that the user
is trying to redeem someone else’s URFC. If only the

[{ fr} K., |RCO} p part of the two URFCs are switched,

the inconsistency of R(Pi)’s in RC; and RCy will again
warn the server about the malicious behavior.

Proposition 6. A participant cannot refuse to redeem a
URFC for participated tasks without being detected. (A3)

An adversary who intentionally sends false data might
refuse to redeem the URFCs because he/she knows
most probably the feedback would be negative. A good
participant who has obtained a high reputation might
also never want to redeem any more URFCs to pre-
vent his/her reputation from being decreased. Since the
server has the task registration table, it can easily find out
which registered participant(s) never redeemed a URFC
for a particular task. To prevent this from happening, the
server can choose to apply a reputation penalty higher
than the worst negative feedback level.

Proposition 7. The server can give both positive and
negative reputation feedback to participants. (A3)

First, the fr in an RFC or URFC is encrypted by
the server with its public key K,, a participant cannot
decrypt {fr}, and see if fp is a positive or negative
feedback level. More importantly, according to Proposi-
tion 6, refusing to redeem a URFC will incur a bigger
loss on the reputation than the worst negative feedback
level.

Proposition 8. A participant cannot forge a URFC or an
RC without being detected. (A3 & A4)

After a participant unblinds an RFC, the server’s
signature remains on the RC; part and the {fr}x,,|RCo
part has its original signature from the server. Since only
the server has the access to K, a participant cannot
forge a URFC. A RC; and RCy pair is also signed by
K5 before they are issued to a participant, thus no
participant can forge an RC.

Proposition 9. A participant cannot demonstrate a higher
reputation level in a sensing report with another collusive
participant’s RC without being detected. (A4)

Since RCj does not contain P;, it is possible for a
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participant to obtain another participant’'s RCy with
a higher reputation level and use it in his/her own
sensing report. Due to the anonymity, the server cannot
detect it from the sensing report. However, when the
participant redeems the URFC, the server compares RC;
and RCjy. Since RC; contains P;, it is impossible for a
participant to use another participant’s RC;. Therefore,
if a participant has used another participant’s RC, with
a higher reputation level, the R(Pi)’s extracted from RC;
and RCy of the URFC will be inconsistent.

6 PERFORMANCE EVALUATION
6.1

We implemented a prototype client application on An-
droid with Java to test the client side’s performance,
since the computational resources needed is critical for
a mobile application. For each complete task cycle, there
are two major phases a mobile client needs to execute:
(1) sending a sensing report and (2) processing a RFC
for later redemption. The blinding and unblinding are
the two cryptographic operations that consume most of
the computational resources on the client side for these
two phases receptively. Therefore, we aim to measure
the running time and energy consumption for a client
application to construct a blinded ID (step @ in Figure

3) and to unblind a RFC (step @ in Figure 3). Our
experiments are carried out on a Samsung Nexus S
device equipped with 1GHz processor, 512MB RAM, and
running Android OS 4.1.1. The PowerTutor tool [32] is
used to obtain the energy consumption measurement
results. We use RSA blind signature [33] in our imple-
mentation. To study the impact of RSA key size on the
performance of our client application, we test three key
size settings representing three different security levels:
1024-bit, 2048-bit, and 3072-bit.

Figure 4 shows the results of our experiments. The
results are based on 500 runs of the blinding and un-
blinding phases on the mobile device.

It is expected that the computational time and energy
consumption increases with the key size since larger
key size introduce more complexity to the blinding and
unblinding computations. Under the three different key
settings, the average computational time never exceeds

Prototype Implementation



30 ms for both blinding and unblinding phases, which is
considered very low. However, the energy consumption
of both phases is fairly low. Based on our testing result,
a fully charged battery for a Samsung Nexus S phone
(1500mAh) can support over ten thousand blinding plus
unblinding operations when the 2048 bit key size is used.

There are two reasons that the blinding phase requires
more computational resources than the counterpart un-
blinding phase: (1) the modular exponentiation involved
in the blinding computation makes it slightly more
expensive than the unblinding computation; (2) the input
data of the blinding computation (i.e., RC;) is larger than
the input data of the unblinding computation (i.e., BID).

6.2 Simulation Setup

We implemented our scheme with Java simulation to
measure the performance and accuracy of our trust
assessment and reputation management. Since the com-
munication links are not our concern, we implemented
the server and participants on a single Linux machine.

In our simulation tests, we define good participant as
a participant that always sends correct sensing reports.
However, an adversary does not necessarily always send
false sensing reports. They may launch on-off attacks
by sending correct reports in order to gain reputation
and then only send false reports randomly or at a
specific time. We define the nature of an adversary as
the probability of the adversary sending correct reports.
When an adversary sends a false report, we set the data
to be completely opposite to the correct report and all
the false reports support each other. In this case, we are
looking at the worst case that all adversaries collusively
send data to cause the biggest possible disturbance to
the system.

Table 5 lists our default parameter settings. When each
participant sends a sensing report, we generate a random
sensing location and sensing time within the maximum
sensing distance and maximum time gap. It should be
noted that these maximum threshold values are to be
pre-defined based on the specific needs of the actual
application. For example, a traffic sensing application
may require the maximum sensing distance to be a hun-
dred meters while a noise pollution sensing application
may loosen such requirement. It is actually the location
and time sensitivity parameters that determines the trust
scores when the these maximum threshold values are set.
Therefore, the location and time sensitivity parameters
(ov and B) must be adjusted accordingly in order for the
resulting trust scores to be in a reasonable range. The
maximum sensing distance and maximum time gap in
Table 5 are set for the ease of calculation and the location
and time sensitivity parameters are then adjusted and se-
lected. The maximum cloaking factor (mcf) determines
the size of the maximum cloaking diameter and max-
imum cloaking interval with respect to the maximum
sensing distance and maximum time gap. A mcf of 2 in
Table 5 means we allow each participant to cloak his/her
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TABLE 5
Default parameter settings

Parameter Value
Number of participants for each task 100
Number of adversaries in the participants | 10
Nature of adversaries 0
Initial reputation (Ro) 0.5
Maximum sensing distance 10
Maximum time gap 10
Maximum cloaking factor (mcf) 2
Location sensitivity parameter (a) 0.2
Time sensitivity parameter (3) 0.2
Similarity weighting parameter (v) 0.5

location (time) to be in a cloaking area (cloaking interval)
whose diameter (length) is maximumly two times of the
maximum sensing distance (maximum time gap). The
similarity weighting parameter () controls the influence
of the conflict and support level getting from other
sensing reports. Similar to « and $, v must be carefully
chosen based on the other dynamics in the actual mobile
sensing application in order for the resulting trust scores
to be in a reasonable range. The impact of the choices of
a, B and v is evaluated and presented in Section 6.6.

In addition to the listed parameter settings, we gen-
erate a random synthesized milieu factor weight (A) in
the range of 0.8 — 1.2 to simulate the influence of the
dynamic milieu factors on the report quality.

6.3 False Positive and False Negative Rates

First of all, to measure the accuracy of our sensing
report trust assessment, we carried out a series of tests
to see the false positive (FP) and false negative (FN)
rates of our trust assessment with our default settings.
FP means a report is actually correct but the calculated
trust is lower than an alarm threshold. On the contrary,
FN means the calculated trust for a false report is higher
than the alarm threshold. The alarm threshold is a trust
level below which we will consider the sensing report
untrustworthy. It can be set based on the needs of
the specific application. We tested FP and FN rates for
reports received from a participant with different nature
for various alarm thresholds and the results are shown
in Table 4. Each of these values is a result based on
testing 10000 sensing reports. In the table, () means
the alarm threshold is . We can see the overall FP and
FN rates are very low (approximately 0 when the alarm
threshold is set to be 0.5). The FP and FN rates increase
for more strict alarm thresholds (i.e., FP with a higher
alarm threshold or FN with a lower alarm threshold).
However, we can see FN rate is still close to 0 even when
the alarm threshold is 0.2. That means, when a sensing
report is false, there is a very minimal probability that
its trust value is going to be higher than 0.2. FP rates are
generally higher than its counterpart FN rates, due to the
randomness introduced by the contextual provenance,
but definitely within an acceptable range.

Table 4 only shows the false positive and false neg-
ative rates under the default parameter settings. One
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TABLE 4
False positive rates and false negative rates with default settings

Nature FP (0.5) | FN(0.5) | FP (0.6) | FN (0.4) | FP(0.7) | FN (0.3) | FP (0.8) | FN (0.2)
T (good participant) ~ 0 N.A. 0.31% N.A. 1.82% N.A. 4.49% N.A.
0.8 ~ 0 ~ 0 0.34% ~ 0 1.86% ~ 0 4.68% ~ 0
0.5 0.02% ~ 0 0.71% ~ 0 2.52% ~ 0 5.72% 0.01%
0.2 0.05% ~ 0 1.01% ~ 0 2.95% ~ 0 711% 0.12%
0 N.A. ~ 0 N.A. ~ 0 N.A. ~ 0 N.A. 0.23%
—6—Ad Ratio = 10/100 —&-Ad Ratio = 20/100 —o—Ad Ratio = 10/100 —&-Ad Ratio = 20/100
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Fig. 5. Impact of an adversary’s nature on reputation and
trust

can imagine that when the system settings change, our
calculated trust and reputation would change, too. In the
rest of this section, we will show how some important
system parameters would affect trust and reputation.
In each test, we vary certain parameters to see their
impacts, and we will specify these parameters. For other
parameters we do not specifically mention, they are set
as the default values.

6.4 Impact of Adversary’s Nature

First, we want to see how an adversary’s nature affects
his/her reputation and his/her reports’ trust. We have
four adversaries with a nature value of 0, 0.2, 0.5 and
0.8 respectively. To test the worst case, we assume all of
them have gained a reputation value of 1 before the test.
A total number of 100 tasks for this test were run.
Figure 5 (a) shows how the reputation of an adversary
changes as the number of tasks increases. When an
adversary has a nature of 0 (i.e., always reports false
data), his/her reputation drops down very quickly until
a level very close to 0. An adversary who randomly
sends correct data (with nature 0.2, 0.5 and 0.8) can slow
down this dropping process. However, eventually the
reputation still drops down to a very low level even if
false data are sent with a small probability (the 0.8-nature
curve). This is because negative feedback levels have
larger influence on the reputation. We set both reputation
feedback levels to be relatively small in order to prevent
that one single task affects the reputation too much.
Next, we examine the computed trust values of the
sensing reports sent by adversaries. Figure 5 (b) shows
the result. The 0-nature curve indicates that reports from
an adversary with nature of 0 have a non-zero trust at
the beginning when the reputation is still high, and the

(a) Reputation of a particular ad- (b) Trust of sensing reports from
versary with varying adversary a particular adversary with vary-
ratio ing adversary ratio

Fig. 6. Impact of adversary ratio on reputation and trust

curve stays at 0 after a couple of tasks. The trust of
reports from adversaries with nature 0.2, 0.5 and 0.8
fluctuates because of the mixture of correct and false
reports. As expected, the higher nature an adversary has,
the higher probability that his/her reports will get a high
trust value.

6.5 Impact of Adversary Ratio

In our next test, we set the nature of all adversaries
to be 0, which is the worst case and we vary the ratio
of adversaries in the network by setting the number of
adversaries as 10 to 60, out of 100 participants.

The result for the reputation updates is shown in
Figure 6 (a). It is clear that as the ratio of adversaries
increases, the reputation for a particular adversary drops
down more slowly. This is because we let the adversaries
collude and their reports gain more supports from each
other. When there is more adversaries than good partic-
ipants, an adversary could maintain a high reputation
level. However, as long as good participants are more
than adversaries in the network, an adversary’s report
will get a negative reputation feedback with a high
probability. Even when 40 out of 100 participants are
colluding, their reputation still keeps decreasing until
reaching a level close to 0.

Again, for the same settings, we test the trust assess-
ment and our result is shown in Figure 6 (b). The curves
follow the similar trend as Figure 6 (a). However, the
trust curves fluctuate much more than the reputation
curves, which is the expected result. The reason is the
contextual provenance and the similarity factor affect
the trust of an individual report much more than they
would affect the overall reputation. The randomness of
these factors in our test makes the trust values of two
consecutive sensing reports from the same adversary



~-0,B=5,y=05
~-q,$=20,y=0.5
—a,B=5r=07

Sl W&

1 Number of Events 100 1

—=-a,B=10,y=0.5
—a,B=5r=06

.2 —-=-qa,B=5y=05
——a,B=20,y=0.5

Reputation

Participants 50

(a) Reputation of a good partici- (b) Trust of sensing reports from
pant with varying «, 8 and ~ 50 good participants with vary-
ing o, B and

Fig. 7. Impact of o, 8 and ~ on reputation and trust

may differ a lot. This is particularly obvious when the
ratio of colluding adversaries are high.

6.6

The location sensitivity parameter «, time sensitivity
parameter 8 and similarity weighting parameter ~ are
crucial to our framework. We want to investigate how
these parameters affect trust and reputation. o and g
could decrease the trust of a sensing report because of
unideal sensing location and time. v could increase and
decrease the trust of a sensing report depending on the
amount of support and/or conflict it gets from other
reports. The reputation of a good participant and the
trust of his/her sensing reports could better demonstrate
the effects varying «, 8 and ~. Hence, we look at the
reputation of a good participant and the trust of good
sensing reports. Furthermore, since o and § work in a
similar way, we vary them together to see their impacts.
Again, to test the worst case, we assume the good
participant has an initial reputation of 0. We examine
how different «, 5 and v values would affect the rep-
utation updates. As shown in Figure 7 (a), when 7 is
large (the a, 8 = 0.2, v =1 curve) or when a and f
is small (the o, 8 = 0.05, v = 0.5 curve), the report
similarity overwhelms the randomness in the contextual
provenance and therefore the good participant always
gets positive feedback. When «, 8 becomes larger or
~ becomes smaller, the randomness of the contextual
provenance starts to appear. Hence, a portion of the
sensing reports may get negative feedback due to the
negative impacts from the contextual provenance. If the
application is sensitive to the context, it is expected that
reports with an unideal contextual provenance decrease
the senders’ reputation. That is why the reputation of a
good participant goes up and down on some curves.
To show the impacts of a, f and v on individual
sensing reports clearly, we look at one task and we let
50 good participants that have a reputation of one at
random sensing locations and times send their sensing
reports. Figure 7 (b) shows how ¢, 3 and v affect the trust
of these sensing reports. It is clear large o and 3 magnify
the impacts of the randomness of location and time
factors. When ~ is large, the similarity factor has bigger

Impact of o, 5 and v
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influence on the trust and this makes the randomness
of location and time less prominent. Therefore, based on
the time and location sensitivity of the system, proper a
and 3 values should be carefully chosen and a proper ~
value needs to be set in order to prevent the similarity
factor from having too little or too much influence.

6.7

We use a similar approach to test how the maximum
cloaking factor (mcf) affects out trust and reputation
assessment. When mcf is larger, participants may use
larger cloaking area or cloaking interval for their reports
to achieve a better location privacy. However, in this
case, there is higher uncertainty involved in the location
distance and time gap. Based on Eqn 1 and Eqn 2, the
location distance factor or time gap factor becomes small
when there is high uncertainty and thus we rely more
on the other milieu factors and the similarity factor. This
is why we observe less fluctuation on both reputation
and trust evaluation caused by the location and time in
Figure 8. Therefore we can conclude that better location
privacy leads to less accuracy in the reputation and trust
evaluation. mcf should be carefully chosen in order to
maximize the capability of participants to cloak their
location or time while get accurate trust and reputation
assessments.

Impact of Maximum Cloaking Factor

7 DISCUSSION
7.1 Anonymity Set

Our system enforces the application server to follow the
protocol. Each sensing task is published to all partic-
ipants. All participants are free to participate in any
tasks and are expected to receive an RFC whenever
they contribute. Therefore, we eliminates the possibility
that the application server becomes malicious in terms
of functionality and intentionally limits (or partitions)
a task assignment to a single participant, thereby elim-
inating the k-anonymity. However, we do realize that
our solution is depending upon a redundant number of
participants. Like most of the other k-anonymity based
privacy protection schemes, the size of the anonymity set
is crucial and it works well only if the user base is large
so that there is a redundant number of participants who



have the same reputation levels. Due to such reason, our
approach works the best for sensing tasks which require
fairly large number of participants in a particular area,
for example, traffic sensing.

For a system with a large user base, assuming majority
of the users are good participants including both new
or longtime users, there should be a redundant number
of users with reputation levels from average to high.
Therefore, we argue that the anonymity of good and
new participants can be well protected by using our
approach. Data has shown that a number of commercial
mobile sensing applications like Gigwalk [1] and Waze
[3] have already gained huge user bases and they are still
undergoing a big growth [34]. We believe more similar
applications with even larger user bases are soon going
to be emerged.

7.2 Sybil Attacks

Many reputation systems are vulnerable to Sybil attacks,
i.e, an attacker obtains multiple identities. The main
incentive for a Sybil attack in traditional reputation
systems like eBay is to have the multiple identities
collectively promote each other’s reputation. However,
there is no direct interactions between users in mobile
sensing applications. Therefore, Sybil attacks cannot take
advantage of the mutual ratings.

Since users do not interact with each other in mobile
sensing, Sybil accounts cannot promote each other’s rep-
utation as in traditional reputation systems like eBay. The
main incentive for Sybil attacks now becomes sending
false data collusively to disrupt the trust and reputation
calculation. We have shown that our system is collusion-
resilient if the number of good reports exceeds the
number of false reports.

To further mitigate Sybil attacks, the user registration
process needs to enforce people to provide some scarce
resources they process in order to get their unique cre-
dentials, so that people cannot freely register unlimited
number of accounts. For mobile application scenarios
like what we are considering in this paper, a good choice
of unique resource that are required could be a phone
number or an unique mobile device IMEI number.

8 CONCLUSION

Trust and anonymity are two conflicting objectives in a
mobile sensing application. In this work, we proposed
the ARTSense framework to achieve both of them at the
same time without requiring a trusted third party. First,
we proposed a novel provenance model which serves as
the basis of our trust assessment for the sensing reports.
To achieve anonymity, our ARM protocol separates the
data reporting process and reputation update process.
No user identity information is revealed in each individ-
ual sensing report, and furthermore, the server cannot
associate multiple reports from the same participant
because of the usage of Blind IDs. Our reputation feed-
back and redemption process enforces measuring user
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reputation without violating anonymity and it allows
both positive and negative reputation feedback. Our
entire framework is proven to be able to achieve the
pre-defined anonymity and security requirements, and
resilient to malicious behaviors such as newcomer, on-off
and collusion attacks. Our prototype implementation on
Android shows that it only requires minimal computa-
tional overhead to run ARTSense on mobile devices. Our
simulation results confirmed that with proper choices of
the system parameters, different mobile sensing appli-
cations can be accommodated, and both user reputation
and data trust can be accurately captured.
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