
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract—The Ethernet switch is a primary building block for

today’s enterprise networks and data centers. As network
technologies converge upon a single Ethernet fabric, there is
ongoing pressure to improve the performance and efficiency of
the switch while maintaining flexibility and a rich set of packet
processing features. The OpenFlow [1] architecture aims to
provide flexibility and programmable packet processing to meet
these converging needs. Of the many ways to create an OpenFlow
switch, a popular choice is to make heavy use of Ternary Content
Addressable Memories (TCAMs) [2]. Unfortunately, TCAMs
can consume a considerable amount of power, and when used to
match flows in an OpenFlow switch, put a bound on switch
latency.

In this paper we propose enhancing an OpenFlow Ethernet
switch with per-port packet prediction circuitry in order to
simultaneously reduce latency and power consumption without
sacrificing rich policy-based forwarding enabled by the
OpenFlow architecture. Packet prediction exploits the temporal
locality in network communications to predict the flow
classification of incoming packets. When predictions are correct,
latency can be reduced, and significant power savings can be
achieved from bypassing the full lookup process. Simulation
studies using actual network traces indicate that correct
prediction rates of 97% are achievable using only a small amount
of prediction circuitry per port. These studies also show that
prediction circuitry can help reduce the power consumed by a
lookup process that includes a TCAM by 92% and
simultaneously reduce the latency of a cut-through switch by
66%.

Index Terms—Ethernet networks, packet switching, software
defined networking

I. INTRODUCTION
THERNET and IP communications have become the most
popular means of computer communications. As

Ethernet moves beyond 10 Gbps speeds and prices continue to
decline, there is a strong desire to use this commodity
technology in as many diverse computing environments as
possible. Unfortunately each environment demands a

Manuscript received July 9, 2011.
P. T. Congdon is with Tallac Networks, Rocklin, CA 95765 USA (phone:

916-765-4056; e-mail: paul.congdon@tallac.com).
P. Mohapatra is with the Department of Computer Science, University of

California Davis, Davis, CA 95616 USA (e-mail: prasant@cs.ucdavis.edu).
M. K. Farrens is with the Department of Computer Science, University of

California Davis, Davis, CA 95616 USA (e-mail: farrens@cs.ucdavis.edu).
V. Akella is with the Department of Electrical and Computer Engineering,

University of California Davis, Davis, CA 95616 USA (e-mail:
akella@ucdavis.edu)

different set of requirements and a one-size-fits-all approach
(to packet forwarding) does not adapt to all needs. The
OpenFlow architecture for Ethernet switches [1, 3] is
receiving considerable attention within the research
community as a means for catalyzing the exploration of new
applications for Ethernet switches. OpenFlow allows the
forwarding plane of switches to be reprogrammed by an
external controller, making it possible to adapt traditional
Ethernet switching to different environments. However,
certain environments have specific requirements, such as
extreme low latency and reduced power consumption, which
cannot be completely addressed through simple
reprogramming.

Methods for implementing fast and efficient lookups have
been extensively studied [4-6]. Traditional switching chips
often incorporate multiple tables to support simple layer-2 and
layer-3 lookups using address hashing and various data
structures stored in SRAM. OpenFlow switches leverage
these tables for basic forwarding, but when processing rules
related to a specific flow, they delay forwarding until a packet
flow identifier can be assembled and presented to a
classification engine. The classification engine is often
implemented using a Ternary Content Addressable Memory
(TCAM) [2, 7, 8]. TCAMs are popular because they allow the
switch to support a rich set of policy based features while
maintaining line rate forwarding across a large set of 10 or 100
Gbps Ethernet ports. TCAMs, however, are expensive, power
hungry devices, and their power consumption increases
linearly with the size of the structure; as much as 25% of the
total power required for a switching ASIC (see Fig. 5).

Many environments for this new class of OpenFlow enabled
Ethernet switch demand the lowest possible latency in
addition to rich packet processing. Unfortunately these two
objectives can be at odds with one another. Packet
classification (to at least the flow level) enables rich features
such as firewalling, intrusion prevention, connection rate
metering and load balancing. OpenFlow switches that
combine flow-based packet classifiers with TCAMs have the
flexibility to support these features. However, to meet strict
latency requirements, network managers often avoid these
features and deploy customized equipment with specialized
cut-through designs. Cut-through switches provide low
latency by allowing a packet to begin transmission on an
egress port before the packet has been completely received at
the ingress port. This approach is not as effective on an
OpenFlow switch that must wait for multiple protocol headers

Simultaneously Reducing Latency and Power
Consumption in OpenFlow Switches
Paul T. Congdon, Prasant Mohapatra, Matthew Farrens and Venkatesh Akella

E

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

to arrive in order to assemble a flow identifier. There is
simply no time in a cut-through switch for a rich set of
features to inspect transport or application level fields before
the packet is switched. Two current state-of-the-art low
latency Ethernet switches from Arista Networks [9] and Cisco
Systems [10] achieve latencies of 350ns and 190ns
respectively. While these latencies are impressive, they are
still nearly three times the latency of a minimum size Ethernet
packet at 10Gbps.

This paper proposes enhancements to simultaneously
reduce both switch power consumption and switch latency,
beyond that of cut-through switches, while maintaining the
flexibility and rich policy based forwarding of an OpenFlow
switch. The enhancements apply the architectural techniques
of value prediction and speculative execution to the problem
of packet switching by exploiting the temporal locality of
network traffic. Unique per-port circuitry predicts the flow
membership of a packet in order to bypass traditional flow-
based or TCAM lookups, and when possible, begin
speculative forwarding, thus simultaneously reducing both
switch latency and power consumption.

We demonstrate the effectiveness of the techniques by
simulating an enhanced OpenFlow switch using a variety of
workloads captured in actual network traces from different
parts of the network topology. The results show that correct
prediction rates of 97% are achievable and that it is possible to
reduce the power consumption of flow-based lookups between
92% and 98% depending upon the size of a TCAM. The
results also show that latency can be reduced by a factor of 3
over a conventional cut-through switch.

This paper makes the following contributions:
1) Improves upon the OpenFlow switch architecture by

providing a per-port optimization that simultaneously
reduces both switch latency and power consumption.

2) Provides a detailed architectural-level power model for a
flow-based Ethernet switch.

3) Provides a latency model for a flow-based Ethernet switch
that uses prediction to speculate on forwarding operations.

4) Defines low-latency methods of predicting flow
membership for packets as they are received.

The remainder of this paper is organized as follows.

Section II describes the switch model used and a description
of the prediction circuitry, while Section III describes how
bypassing the TCAM can reduce power and Section IV
explains how speculative forward can reduce latency. Section
V discusses the evaluation environment. Section VI describes
the results of those simulations. Section VII describes related
work and Section VIII provides the conclusion.

II. SWITCH ARCHITECTURE

A. Switch Architecture
There are many ways to create an Ethernet switch [11]. The

OpenFlow Ethernet switch architecture used in this paper
assumes line cards with physical media ports connected to a
switched backplane fabric. The architecture is similar to one

of many described in [11], but with an emphasis on flow-
based switching where the logic is implemented in a single
chip on the line card and takes advantage of a TCAM for flow
matching. The line cards are equipped with separate input and
output memory, lookup logic, backplane fabric interfaces and
per-port prediction circuitry. The lookup and policy logic
may involve multiple layer-2 and layer-3 address tables in
addition to a TCAM used to support per-flow forwarding
features. Fig. 1 shows the high-level switch architecture.

Packets are received at line rate from the physical media
ports and put into the input memory. While the packet is
being received into memory, a block of combinational logic
within the Media Access Controller (MAC), called the packet
parser, is extracting important fields from the packet to
generate a flow-key. A flow-key is the fundamental structure
used to lookup and determine how to forward the packet
according to OpenFlow rules. The flow-key and the
forwarding architecture of the switch are consistent with the
definition of a “Type 0” and “Type 1” OpenFlow switch [3].

A flow-key is a concatenation of critical fields from the
packet that uniquely identify the packet as being part of a
flow. It can be generalized as an n-tuple that is defined by a
set H = {H1, H2, …, Hn} of fields from the packet. All packets
that are part of a flow are subject to the same policy and
treatment by the switch. For a typical routing switch that
performs layer-2 bridging, layer-3 routing and transport level
filtering, a flow-key can be represented by a 9-tuple that
includes the following fields: VLAN ID, destination MAC
address, source MAC address, ethertype, IP protocol number,
source IP address, destination IP address, TCP/UDP source
port number and TCP/UDP destination port number. A flow-
key, in a large OpenFlow switch, includes an additional field
that indicates the source port of the received packet.

A flow table is a large database of flow-keys that is
searched by the lookup process in addition to traditional layer-
2 and layer-3 tables. This structure may be implemented in
software using SRAM and a fast network processor, or more
often, implemented in hardware by a TCAM. TCAMs are an
expensive, power hungry, high performance resource that
allows rapid wildcard searching. The TCAMs may be shared
by multiple input ports on the same line card, and
consequentially, may be subject to contention and further
arbitration delays. The process of classifying the packet and
searching the flow table has been well studied [12, 13], and is
known to be a time consuming and critical stage in the switch
pipeline.

The results of the lookup steps tell the switch where to
forward the packet across the switch fabric, and optionally,

Fig. 1. High-level switch architecture including packet prediction circuitry at
the input port

Switched
Backplane

Fabric

Port
MAC

Output
Memory

Input
Memory

Look-Up
&

Policy
Fabric

Tx

Fabric
Rx

Port
MAC

Output
Memory

Input
Memory

Look-Up
&

Policy
Fabric

Tx

Fabric
Rx

PredictionPrediction

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

what modifications to the packet may be required. In our
switch model, the receiving line card makes all necessary
modifications to the packet and initiates a transfer of the
packet across the fabric to the output memory on another line
card. Alternative switch architectures may make
modifications to the packet at the egress port or other parts of
the pipeline. The speed of the backplane fabric interface is
usually faster than the speed of the input port and in our model
the backplane does not represent a bottleneck. Once the
packet is received in the output memory it may immediately
begin transmission on the egress port.

In heavily loaded networks, packets may experience
queuing delays at the ingress and/or egress memory depending
upon the backplane transfer protocol and the aggregation of
traffic from multiple ingress ports. This queuing will reduce
the impact of our latency improvements; however power
savings can still be achieved. Under heavy load, even state-
of-the-art cut-through switches [9, 10] are unable to further
reduce latency due to queuing delays. In latency sensitive
environments, techniques such as congestion control [14] and
adaptive routing [15] are used to manage latency and mitigate
contention at hotspots across the network. These approaches
can be combined with uncongested individual switch latency
improvements, such as the one proposed here, to establish the
lowest possible switch latency.

B. Packet Prediction Circuitry
The switch architecture of Fig. 1 includes packet prediction

circuitry on each ingress port. The goal of the circuitry is to
predict the flow-key of a received packet as quickly as
possible, without requiring the use of the lookup process and
TCAM. Fig. 2 shows how a packet signature is created by
circuitry that snoops on the input memory bus as the packet is
streamed into memory. While the flow-key is being
assembled, significant bits from the packet are extracted and
used to generate a packet signature according to a prediction
method (see II.C). The packet signature is searched in a local
per-port prediction cache that is comprised of a signature
CAM, flow-key RAM and forwarding RAM. If exactly one

match is found, the packet is assumed to be part of the same
flow as a previously received packet with the same signature
and forwarding can begin immediately. This constitutes
speculative packet forwarding which reduces switch latency.
Such forwarding by the prediction circuitry involves applying
the same set of packet operations that would have been
obtained from the full lookup process. Since the prediction
circuitry is required on each input port of the switch, it is
worthwhile to find the smallest and most efficient
implementation possible.

The flow-key RAM in Fig. 2 holds the flow-key for the
most recent packet that has a matching signature. The flow-
key in the RAM is compared against the flow-key that has
been assembled by the packet parser in order to confirm if
there has been a match. This comparison is necessary to avoid
invoking the full lookup process on every packet, thus saving
power. The flow-key RAM is fundamentally a level 1 cache
for the master TCAM, referencing the most recent forwarding
instructions for packets of the matching flow.

Once a complete flow-key has been received and assembled
by the packet parser, there are three possible scenarios that
may occur with respect to the prediction logic and speculative
forwarding:
1) Prediction Hit: The flow-key matches a flow-key found

by the prediction logic. In this case, a correct prediction
has occurred and there is no need to take any further
action. No lookup or search is required of the master
TCAM and the power required to perform that search is
saved. The lowest possible latency is achieved because
packet forwarding has already started and the speculation
was correct.

2) Incorrect Prediction: A signature is found, but the flow-
key does not match. In this case, an incorrect prediction
has occurred and the current speculative transfer must be
aborted. The master TCAM must be searched to
determine the correct forwarding instructions and the
local prediction cache must be updated. The power for
the prediction cache searches and the partial packet
transfer is wasted.

3) Prediction Miss: No flow-key was found by the prediction
logic. In this case, the prediction cache did not find a
match and the full lookup process must be invoked. The
local prediction cache must be updated. The power
required for searching and updating the prediction cache
is wasted.

The prediction circuitry is effective because it exploits the
temporal locality within the stream of network packets. All
packets in a stream that are members of the same flow require
the same forwarding treatment by an Ethernet switch. The
observation that network communications exhibit strong
locality and that this may be used to optimize resource
utilization is not new [16]. There are differences of opinion as
to whether the temporal locality of Internet traffic is sufficient
to enable optimized forwarding using caching [17-19].
However, different parts of the network topology are exposed
to a smaller number of flows and are expected to have a

Fig. 2. The per-port packet prediction circuitry snoops packet data as it is
received by the input MAC to create a compressed packet signature and a
flow-key for validation

MAC

Input Memory

Packet
Parser

8 64

TCAM

...
...

Forwarding
RAM

X X 1 Packet
Signature

Forwarding
RAM

Flow Key
RAM

Signature
CAM

Match

Search

Packet
Forwarding

Circuitry

Flow Key

64

Data

Forwarding
Instructions

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

greater degree of locality than previously discovered by
studies of core Internet traffic. Recent data center traffic, for
example, has been observed to exhibit an ON-OFF pattern
with strong temporal locality among the packet trains [20]. A
brief study of the temporal locality in the network traces used
in this work is described in Section V.

C. Prediction Methods
There are many ways to construct a packet signature, but

since the prediction circuitry exists on each port of the switch,
finding the balance between implementation cost and
complexity is important. The basic approach is to compress
significant (i.e. frequently changing) bits of the received
packet into a signature used to search a prediction cache. The
significant bits may come from predefined offsets in the
packet or well known fields in the packet headers. Fig. 3
indicates which bit offsets in a flow-key vary the most
between subsequent flow-keys in the Server Trace (see
V.B.2). The other trace files obtained from different parts of
the network topology have a similar frequency distribution.
Combinations of these bits may be hashed to form portions of
the signature or they may be directly mapped. This paper
considers two different methods that tradeoff implementation
complexity for accuracy.

1) Direct Map
The extremely simple Direct Map method extracts bits from

predefined locations in the packet as it is arriving. The offset
locations have been chosen to include bit fields that vary the
most between subsequent flows as seen in Fig. 3. There is no
logic that parses the packet and adjusts the offsets according to
frame encapsulation or protocol. Bits are blindly extracted at
pre-determined offsets. As a consequence, bit offsets that
would normally align with the TCP port fields in an untagged
Ethernet packet will be unaligned if the packet is VLAN
tagged. Similarly these bit offsets may point to random
payload data if the packet is an IP fragment (which contains
no TCP header). For a practical implementation of the Direct
Map method a different set of offsets should be considered
based upon the port configuration.

As the bits arrive from fixed offsets, the circuitry builds a
partial signature to present as a key to the fully associative
prediction cache. Missing bits that have not yet arrived are
marked as don’t care conditions for the match. If no matching
entries are found, there are clearly no previous elements from

this flow in the cache and the packet must wait for the full
flow lookup to complete. If there is precisely one entry found,
then there is a chance that this entry is an exact match and the
speculative forwarding of the packet may start immediately.
This method forwards the packet as soon as possible, but can
experience a higher misprediction rate than methods that
perform more intelligent parsing.

2) Sub-Field Hash
The Sub-Field Hash method intelligently parses incoming

packets to extract precise sub-fields of packet headers and uses
a simple hashing algorithm to construct segments of the packet
signature. The goals of this method are to minimize the
number of incorrect predictions, but also to support low
latency by including a relatively aggressive eager approach to
searching the prediction cache. The popular DJB hash
function [21] is applied to sub-fields of the 29-byte flow-key
as they arrive. The DJB hash function was chosen because of
its simplicity, efficiency and distribution characteristics over
small fields. The small hash results are combined to create
partial signatures.

Similar to the Direct Map method, the prediction cache is
searched as soon as a partial signature has been formed; where
missing bits of the signature are marked as don’t care
conditions. The number of times the prediction cache is
searched depends upon the length of the packet signature and
the result of previous searches. A number of different packet
signature sizes have been chosen to evaluate this sensitivity.
The Sub-Field Hash method generates signatures of lengths 8,
16, 24 and 32 bits. For an 8-bit signature, the flow-key is
divided into two parts; the MAC header is hashed to create a
4-bit partial signature and the IP and TCP headers are used to
create another 4-bit quantity. These two quantities are
combined to create an 8-bit signature with which the
prediction cache is searched at most two times per packet.
Longer signature types allow a greater number of partial
signatures and thus may be more aggressive at speculating the
forwarding of the packet. However, they will also search the
cache more frequently, consuming more power. For example,
in the implementation the 16-bit signature is made up of 5
hashes and in the worst case will search the cache 5 times.
The 24-bit signature includes 9 hashes and the 32-bit signature
includes 11 hashes.

While long signatures have the potential to invoke a search
of the prediction cache a greater number of times and consume
more power, they are generally more accurate at predicting the
flow membership of a packet because there are a greater
number of bits in the signature to distinguish one flow from
another. It is important to minimize the number of incorrect
predictions to avoid wasting power from incorrect speculative
forwarding.

Other prediction methods are possible, but may require
further trade-offs between complexity and cost at each port of
the switch. For example, additional logic could enable
application specific prediction algorithms or complex history
traces. The Direct Map and Sub-Field Hash methods were
chosen because they are stateless and can be implemented
with simple combinational logic.

Fig 3. Frequency of bit variance in subsequent flow-keys showing which
bits are most significant to incorporate into a packet signature

Flow Key Bit Distribution
Server Trace

MAC DA MAC SA Etype/Proto IP DA IP SA sPort dPort

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

III. POWER REDUCTION FROM TCAM BYPASS
The proposed enhancements reduce power by avoiding

TCAM lookups when prediction and speculation are correct.

A. Switch Power Model
A power model is needed to evaluate the proposed

enhancements. Various switch power models have been
developed to support the analysis of power consumption at
system-wide or network-wide levels [22-24]. Since the
proposed enhancements are intended to be implemented in a
switch ASIC, a power model that includes bit-level transfer
energy is more appropriate [25]. In our model, we focus on the
complete port-to-port switching path from the ASIC
perspective. The forwarding process is divided into pipeline
stages and each stage is analyzed individually assuming that
packets are flowing at full line rate. We first consider a switch
without the prediction logic as seen in Fig. 4. Later we
replace the traditional lookup phase with a phase that includes
the prediction logic and bypass circuitry.

The four stages of the forwarding pipeline are identified as
follows:
1) Packet Receive (Rx): The Rx stage involves receiving the

packet from the physical media, extracting important
fields to build a flow-key and streaming the packet into
the input memory system.

2) Lookup: The Lookup stage involves searching the TCAM
for the received flow-key and retrieving the forwarding
instructions.

3) Packet Transfer (Xfer): The Xfer stage involves reading
the packet from the inbound memory, all of the logic
required to initiate a transfer across the fabric, driving the
fabric connections and crossbar, as well as writing the
packet into the remote outbound memory.

4) Packet Transmit (Tx): The Tx stage involves reading the
packet from the outbound memory and transmitting it on
the physical media.

The energy required to progress a packet through the switch

is simply the sum of these stages:

Epkt = Erx + Elookup + Exfer + Etx (1)

Each of the stages can be looked at independently with its

own set of individual components. The values used in the
individual equations are summarized in Table I.

Erx = pkt_size * (EMAC + Ebuf_wr) (2)
Elookup = ETCAM_search + Pin * Edata_rd +
 (1-Pin) * (ETCAM_wr + Edata_wr) (3)

Exfer = pkt_size * (Ebuf_rd + Efab + Ebuf_wr) (4)
Etx = pkt_size * (EMAC + Ebuf_rd) (5)

The energy to receive (Erx) and transmit (Etx) an individual
packet is dependent upon the packet size. In the Rx and Tx
stages, the per-bit energy of the MAC and
Serializer/Deserializer (SerDes) is given by EMAC. The SerDes
on an Ethernet link are continuously running and consuming
power regardless of frame transmission. New efforts within
the IEEE 802.3 working group are focused on reducing this
consumption of power, however a typical 10GbE SerDes
interface running at 3.125 Gb/s consumes about 150mW per
channel [26]. Power is also consumed while streaming the
received packet into and out of the buffer memory. The per-
bit energy to read and write the buffer is given by Ebuf_rd and
Ebuf_wr.

The energy consumed by the lookup stage (Elookup) is of
most interest since the prediction circuitry specifically aims to
reduce this component. This stage is dependent upon whether
a search of the TCAM is successful or not. If the flow-key is
found in the TCAM, then the associated data memory is read
to get the forwarding instructions. If the flow-key is not
found, then both the TCAM and associated data memory must
be updated. Let Pin be the probability that a flow-key is found
in the TCAM given that it is not found in the prediction cache.
The determination of this probability is actually quite complex
and dependent upon many factors related to the characteristics
of the traffic (e.g. temporal locality, duration of the flow,
number of flows). While this probability is quite difficult to
estimate, the significance of it is negligible when compared to
the power consumed by the TCAM search itself. This search is
always performed in a switch which does not have the
prediction optimization. ETCAM_search and ETCAM_wr are the
energy required to search and update the TCAM, and Edata_rd
and Edata_wr are the energy required to read and write the
associated TCAM flow memory and forwarding instructions,
respectively.

The energy consumed by the Xfer stage is important to
understand because it represents the cost penalty for incorrect
speculation. This energy can be significant because it involves
the use of several pairs of high speed SerDes and an external
crossbar fabric chip (Efab). The external fabric chip alone can
consume between 15W and 20W [27].

B. Switch Power Model with Prediction
The packet prediction circuitry reduces latency through

speculative switching and reduces power consumption by
avoiding the lookup stage entirely. The power saved by
avoiding searches of the TCAM may be offset by the power
wasted from incorrect speculation. If correct prediction rates
are high enough, the savings can be substantial. To determine
the energy required to progress a packet through the switch
architecture with prediction circuitry, the lookup stage is
replaced with a new prediction stage. The per-packet energy
is now given by:

Epkt = Erx + Epredict + Exfer + Etx (6)

Fig. 4. High-level switch architecture without prediction logic, showing the
four stages of the forwarding pipeline

Switched
Backplane

Fabric

Port
MAC

Output
Memory

Input
Memory

Look-Up
&

Policy
Fabric

Tx

Fabric
Rx

Port
MAC

Output
Memory

Input
Memory

Look-Up
&

Policy
Fabric

Tx

Fabric
Rx

Flow KeyFlow Key

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

The prediction phase energy is dependent upon the accuracy
of prediction and caching schemes. Let Phit be the probability
of a prediction cache hit, Pincorrect be the probability of an
incorrect prediction cache hit and Pmiss be the probability of a
prediction cache miss. The energy consumed by the
prediction phase (Epredict) is given by the following formula:

Epredict = Phit*Ecache_hit+Pincorrect*Ecache_incorrect+Pmiss*Ecache_miss (7)

Ecache_hit, Ecache_incorrect and Ecache_miss are the energy required
to search and maintain the prediction cache when an entry is
correctly found, incorrectly found or not found at all,
respectively. They are calculated using the following
equations:

Ecache_hit = E(S) * Ecache_search + Ecache_rd (8)
Ecache_incorrect = E(S)* Ecache_search + Ecache_rd +
 Exfer_min + Etx_min + Elookup + Ecache_wr (9)
Ecache_miss = E(S)* Ecache_search + Elookup + Ecache_wr (10)

With eager prediction methods the prediction cache is

searched with partial signatures multiple times until exactly
one or zero entries are found. Let S be a random variable
indicating the number of times the prediction cache is
searched for a particular packet. Then E(S) is the expected
number of searches in the prediction cache per packet. If an
entry is found (Ecache_hit), then the associated flow-key RAM is
read to retrieve the forwarding instructions. Ecache_search is the
energy required to search the signature CAM and Ecache_rd is
the energy required to read the associated flow-key and
forwarding RAM.

In the unfortunate scenario where an incorrect prediction
occurs (Ecache_incorrect), speculative forwarding begins because a
partial signature matches the prefix of a full signature in the
prediction cache. In this case, the energy for the prediction
and partial transfer is wasted. Let Exfer_min be the energy
needed to transfer the beginning of the packet across the fabric
and into the output memory. This energy is the same as (4),
but where the packet_size is set to the beginning portion of the
packet up to and including the offset for the last field of the
flow-key. In a similar fashion, let Etx_min be the energy needed
to transmit the partial fragment of the packet on the actual
output link before being aborted. The energy of a full TCAM
lookup from (3) is required in this scenario as well as the
energy required to update the prediction cache denoted as
Ecache_wr. If no packet signature is found (Ecache_miss) in the
prediction cache, then a full TCAM lookup and cache update
are required.

The parameters to the formulas (1) – (10) can be
categorized into four main functional components: TCAMs,
memory arrays, logic and I/O. The contribution to overall
power consumption by these components in a particular chip
depends upon the target configuration. For example, low-end
systems implemented with a single chip may have more power
consumption due to logic than I/O or a TCAM because of the
lack of a backplane and limited functionality. Higher-end
systems with high-performance backplanes, high-speed links

and large TCAMs may see a greater amount of energy
dissipated by the SerDes and the TCAM. Fig. 5 shows the
measured distribution of power for three different switching
ASICs in the HP ProCurve family of Ethernet switches. The
amount of power consumed by the TCAM becomes a
significant portion of the switch chip as the performance and
feature set address the high-end of the market.

C. Source of Power Modeling and Estimation
Evaluation parameters for the power model come from a

variety of sources. The energy estimates for the memory
structures, CAMs and TCAMs are performed using existing
power modeling tools. The energy for the SerDes, fabrics and
Ethernet MAC logic are taken from existing switch chip
implementations. Table I shows representative values for the
power model parameters.

The SerDes used for the MAC and backplane are the
biggest contributors to overall power consumption and cannot
be reduced by the proposed enhancements. Future switch
designs incorporating optical interconnects have the potential
to lessen this part of the power equation. Searching the
TCAM is the next significant power consumer and reducing
this contribution, along with overall latency, is the focus of
this work.

1) CAMs and TCAMs
The model for power consumption of the array structures

and CAMs is based on the well known cache and memory
TABLE I

POWER MODEL PARAMETERS
Parameter Description Model Source Representative Values (nJ)

Ecache_search Searching prediction CAM CACTI 0.003759 nJ (32 rows x 24 bits)

Ecache_wr

Updating flow key, forward
RAMs and cache signature CACTI 0.062691 nJ (32 rows x 24 bits, 87 bytes)

Ecache_rd

Reading the flow key and
forwarding RAMs CACTI 0.062217 nJ (32 rows x 240 bits)

ETCAM_search Searching the TCAM Sherwood 7.141493 nJ (8K rows x 240 bits)

ETCAM_wr Updating the TCAM on miss Sherwood 0.931197 nJ (8K rows x 240 bits)

Edata_wr

Updating the forwarding
instruction RAMs CACTI 0.365080 nJ (8K rows x 58 bytes)

Edata_rd

Reading the forwarding
instruction RAMs CACTI 0.387645 nJ (8K rows x 58 bytes)

EMAC

1GbE MAC and standard
SERDES

Reference
Implementation 97 nJ per 64 byte packet

Ebuf_wr

Writing to the packet buffer
memory CACTI 4.4993 nJ for 64 byte packet

Ebuf_rd

Reading the packet buffer
memory CACTI 4.5048 nJ for 64 byte packet

Efab

Driving two ports of the crossbar
fabric and SERDES

Reference
Implementation 96 nJ per 64 byte packet

Fig. 5. Functional component percentage breakdown of total ASIC power
measured in three different HP ProCurve switching ASICs ranging from low-
end, single chip switches to high-end multi-chip chassis designs

0%

20%

40%

60%

80%

100%

Low-end Med-range High-end
Switch ASIC Type

Switch ASIC Power Breakdown

TCAM
Logic & Processor
Buffers & Memory
SerDes & I/O

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

systems modeling tool CACTI [28]. CACTI is an integrated
cache and memory access time, cycle time, area, leakage, and
dynamic power model. A TCAM power modeling tool
developed by Sherwood and Agarwal [29] augments CACTI
and is used to calculate the power for TCAM searches, reads
and writes.

In the switch architecture there are two different fully
associative content-addressable memories that need to be
modeled; the signature CAM and the master TCAM. The
signature CAM is a very small fully associative memory with
2, 4, 8, 16 or 32 rows and a tag width of 8, 16, 24 or 32 bits.
The small CAM depths were chosen to keep the per-port cost
of the implementation low while exploring the sensitivity of
flow caching. The CAM width is dependent upon the
signature size, which was also chosen to be small in order to
limit costs and explore the sensitivity of representing a flow
key in as few bits as possible.

The master TCAM is a large structure that uses a 29 byte
flow-key as the search key. The key size is fixed by the
concatenation of standard fields from the packet header. The
TCAM can be segmented to reduce power consumption
during searches as described in various optimization schemes
[30-32]. The size of the TCAM can vary based upon the
number of simultaneous flows that the switch is attempting to
support. Depths of 8K, 16K, 32K, 64K and 128K were chosen
to cover a span of common implementations found in practice
today. A power consumption model for ETCAM_search is
calculated using the Sherwood TCAM tool. The results from
the Sherwood TCAM tool are validated against
implementations from NetLogics Inc. and the HP ProCurve
5400 family ASIC and were found to be with 15% of nominal
values.

2) Memory Arrays
The flow-key RAM associated with the prediction cache is

29 bytes wide in order to support the standard concatenation
of packet header fields that make up a flow-key. The width of
the forwarding instruction RAMs are implementation specific
and a width of 54 bytes was chosen to match an existing
known implementation. There is a shallow forwarding
instruction RAM associated with the prediction cache and a
deep RAM associated with the master TCAM. In all cases
these memories are modeled as having a single bank with a
single read/write port.

3) Fabrics and MACs
The calculation of Efab includes the power consumed by an

external fabric chip and the SerDes interfaces on the network
chip required to interface the line card to the backplane. There
are many different switch fabric architectures and a detailed
analysis of the power consumption of these architectures is
provided by Ye, Benini and Micheli [25]. This analysis
focuses mainly on the internal architecture of the fabric and
includes the power consumed by node switches, internal
buffers and interconnects wires. Reference implementations
[27], however, indicate that over 50% of the power for an
external chip is associated with the high-speed SerDes. For
example, 7.7W of the 15W total described in [25] are due to
the sixty four 3.25 Gbps SerDes. Using this reference as an

estimate and including the same SerDes estimate on the line
card, a measure for Efab is found to require approximately 96
nJ per minimum sized packet. Similar numbers are calculated
from information available on fabric chips from Dune
Networks [27].

The calculation of EMAC includes the power consumed by
the combinational logic needed to implement the Ethernet
MAC and the power needed by the SerDes. An Ethernet
MAC implementation will have variations across chips, but in
general consumes a small amount of energy in comparison to
the SerDes. A typical 1GbE SerDes implementation will
consume about 125 mW, or approximately 84 nJ per minimum
sized packet. An example Ethernet MAC in the HP ProCurve
mid-range ASIC consumes about 19 mW or approximately 13
nJ per minimum sized packet. Together these provide an
estimate for EMAC of 97 nJ per minimum sized packet.

IV. LATENCY REDUCTION FROM SPECULATIVE CUT-
THROUGH SWITCHING

The prediction enhancement speculates on the flow
membership of the next received packet allowing the
forwarding engine to apply a rich set of forwarding policies to
the packet while it is still being received. This allows switch
forwarding to begin with the lowest possible latency

A. Switch Latency Model
To understand how the prediction enhancement improves

latency, it is first necessary to develop a model for switch
latency. The switch architecture defined in Section II is
applicable to either a store-and-forward switch or a cut-
through switch. In a store-and-forward switch, the entire
packet is completely received on the ingress port before
lookup operations begin. In a cut-through switch, the lookup
begins as soon as enough of the packet has been received to
assemble a flow-key.

To increase throughput, the process of switching a packet
can be pipelined. While the lookup process is working on a
packet, the next packet can be copied from the ingress port to
the input memory, and the previous packet can be modified
and transferred to the output memory of the egress port. Fig. 6
shows the pipeline diagram for the store-and-forward switch.

In order for the switch to maintain line rate forwarding, no
stage of the pipeline can exceed the time it takes to receive a
packet from the wire. On a 10 Gbps Ethernet port there are
potentially 14.88 million minimum size packets arriving per
second; therefore, no stage can exceed 67.2 ns. A generalized
way to look at the minimum required pipeline stage length is
to normalize the stage to received bit times. A minimum size
Ethernet packet is 64 bytes, and is therefore received in 512
bit times as determined by the speed of the ingress link.

Fig. 6. Switch latency for a store-and-forward switch pipeline

Look-up Fabric
Transit

Packet
Rx

Packet
Tx

Look-up Fabric
Transit

Packet
Rx

Packet
Tx

Look-up Fabric
Transit

Packet
Rx

Packet
Tx

Switch Latency

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

The duration of the packet Rx and packet Tx stages of the
pipeline are directly tied to the physical media line rate. The
fabric transit and packet modification stage is faster than the
physical media line rate. Therefore, to forward at line rate, the
lookup stage and the fabric transit stage must be no longer
than the time it takes to receive a minimum sized packet. To
simplify the calculation of switch latency we assume the
lookup stage time will be a constant and equal to the amount
of time it takes to receive a minimum size packet.

Let Ksf be the number of bits in a minimum size Ethernet
packet (which is the constant 512). Let Rp be the received port
line rate in bps and let L be the length of the packet in bits.
Let Rf be the fabric interface transfer rate in bps and assume
that Rf > Rp. Switch latency is the amount of delay a packet
experiences inside the switch, and will be measured as the
amount of time between when the first bit of a packet is
received on the ingress port and the time the first bit is
transmitted on the egress port. The formula for store-and-
forward switch latency is then:

Store and Forward Latency = (L / Rp)+(Ksf / Rp)+(L / Rf) (11)

This formula represents the time taken to receive the packet
plus the time to perform the lookup stage plus the time to
make any modifications and transfer the packet across the
fabric. (Packet transmission on the egress port is assumed to
start immediately once the packet is in the output memory.)

To improve store-and-forward switch latency, two things
must change. First, the lookup process and packet
modification with transfer across the backplane must begin
before the current packet has been completely received.
Second, the transmission of the packet on the egress port must
also be allowed to begin before the current packet has been
completely received.

In the cut-through model of a switch without any prediction
the lookup process can begin no sooner than after the last bit
of the packet needed to construct a flow-key has been
received. Let D = {D1(H1), D2(H2), …, Dn(Hn)} be the set of
functions in the classification process that return the starting
bit displacement for the flow-key fields in H. Then Dn(Hn) is
the starting bit offset for the last field necessary to create the
n-tuple needed for the lookup. If Kct is defined as the number
of bits that must be received to construct the flow-key for the
lookup stage to begin then Kct is determined as:

Kct = Dn(Hn) + |Hn| (12)

Assuming that packet modification is part of the fabric

transfer stage and the transmission of the received cut-through
packet may begin as soon as the first bit has arrived in the
output memory, then the following formula for cut-through
switch latency is:

Cut-Through Latency = (Kct / Rp) + (Ksf / Rp) + 1/Rf (13)

This formula represents the time taken to receive enough of

the packet to construct the flow-key plus the time to perform
the lookup stage in order to maintain line rate plus the time to
optionally modify the packet and transfer the first bit of the
packet across the fabric. Packet transmission on the egress
port is assumed to start immediately once the first bit of the
packet is in the output memory. Fig. 7 shows the pipeline
diagram for a cut-through switch.

1) Further reductions to Switch Latency
The switch latency of both store-and-forward and cut-

through switches can be reduced by exploiting two key
concepts from computer architecture; value prediction and
speculative execution [33]. Value prediction attempts to
remove the limits on parallelism imposed by true data
dependencies, while speculation seeks to reduce the latency of
obtaining computed results. In an Ethernet switch, the lookup
stage is a data dependent operation that requires the reception
of enough packet data to construct a flow-key, and the
operations applied to the packet once the lookup completes
must endure the lookup latency before forwarding can begin.
Packet prediction and speculative switching remove this
barrier by exploiting the temporal locality of network traffic to
predict the data being received, allowing speculative packet
operations for the flow to begin before the lookup has
completed.

Switch latency for a packet predicting speculative switch is
limited by the time it takes to generate enough of the packet
signature to confirm a match in the prediction cache. Let S =
{S1, S2, … Sm} be a packet signature of length m that consists
of a set of bits that have been derived from the fields in H.
There are a set of functions F that derive bits Si through Sj of S
from the fields in H as they arrive from the link. Let Kp be the
number of bits received to form enough of S to find a match in

Fig. 7. Switch latency for a cut-through switch pipeline

Look-up Fabric
Transit

Packet
Rx

Packet
Tx

Look-up Fabric
Transit

Packet
Rx

Packet
Tx

Switch Latency

Fig. 8. Switch latency for a cut-through switch with packet prediction in the
forwarding pipeline

Packet
Rx

Look-up
Fabric
Transit

Packet
Tx

Packet
Rx

Look-up
Fabric
Transit

Packet
Tx

Switch Latency

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

the prediction cache. Then the latency for a packet predicting
speculative switch is as follows:

Prediction with Speculation Latency = (Kp/Rp)+1/Rf (14)

This formula represents the time taken to receive enough of

the packet to construct enough of the packet signature to find a
match in the prediction cache, plus the time to transfer the first
bit of the packet across the fabric. This results in the pipeline
diagram shown in Fig. 8.

B. Implementation Considerations
As with any pipeline employing speculation, there are

several complications and clean-up steps that may be required.
Once the entire flow-key has been received it is possible to
confirm the correctness of the speculation. Since it is possible
for the first bit of the packet to be transmitted on the egress
port before the results of the flow-key match are complete, the
current egress transmission may be incorrect. Such an
incorrect speculation requires that the packet transmission be
aborted in some cases. To accomplish this, the packet must be
corrupted by the transmitter before the last bit is sent.
(However, this may not always be necessary - in the case of a
layer 2 bridged network, a packet that is forwarded through
the wrong port would simply appear as an extraneous flood
and typically not cause an error.)

The reduction in latency for a given configuration of cache
size and signature size is directly related to the number of
concurrent flows and amount of temporal locality in those
flows. To maintain effectiveness, the scheme will require
more resources if applied to aggregated links in the core of the
network because there will likely be a greater number of
concurrent flows on those links. Similarly, the general lookup
process for switches attached to aggregated links will require
larger table sizes and larger TCAMs to support increased
concurrent flows, so the prediction scheme has similar scaling
properties.

V. EVALUATION

A. Experimental Set-up
In order to evaluate the effectiveness of the prediction

approach, a program was written that consumes actual traces
of network traffic and simulates the behavior of the proposed
OpenFlow switch architecture. Each packet received is
assumed to be exposed to the full flow-matching logic of the
OpenFlow switch.

B. Traffic Analysis on Representative Traces
The traces contain packet data from different network

environments and different parts of the network topology as
seen in Fig. 9. The highlighted ports in the figure show the
representative locations where trace files were captured.
Network ports that are closer to individual stations have fewer
multiplexed flows, and network ports that are in the core of
the network or at the Internet edge are likely to have a greater
number of multiplexed flows. Prediction methods are
expected to be most effective in the data center, near clusters
of message passing servers, where the total number of flows is
expected to be relatively small and low latency cut-through
switching will be most beneficial.

Four different trace datasets, described below, were used in
the simulations and a summary analysis of the trace data is
shown in Table II.

1) Router Traces from LBNL
Lawrence Berkeley National Laboratory (LBNL) maintains

11 GB of anonymized packet header traces from October 2004
through January 2005, which are available for download from
http://www.icir.org/enterprise-tracing/download.html. These
traces include enterprise campus LAN traffic from subnet
links connected directly to the site router. A thorough analysis
of these traces is available in [34].

2) Server Traces
The Server trace files were captured from the LAN

backbone of a network-engineering department at the Hewlett-
Packard Company in May 2008. The trace selected contains
only inbound traffic to a core switch with a backbone 10GbE
port connecting the engineering development servers. The
outbound traffic is not included in the trace, which more
accurately represents the type of traffic the prediction logic
would be exposed to in an implementation of the architecture

Fig. 9. Network topology containing representative trace capture points

…
…

Client LAN Server LAN MPI Cluster

Router Edge
Enterprise LAN

Network

To Backbone,
WAN &
Internet

TABLE II
TRACE DATA SET ANALYSIS

Trace
File

Packet
Count

Average
Packet Size TCP UDP other

Pin
(24x32)

E(S)
(24x32)

MPI-BT 237K 1161 100% 0% 0% 0.98 6.51

MPI-CG 237K 1243 100% 0% 0% 0.00 2.67

MPI-EP 1141 150 83% 15% 2% 0.43 4.25

MPI-FT 237K 1160 100% 0% 0% 0.00 4.52

MPI-IS 236K 1194 100% 0% 0% 0.97 6.42

MPI-LU 239K 899 100% 0% 0% 0.00 4.79

MPI-MG 237K 1169 100% 0% 0% 0.00 4.49

MPI-SP 236K 1238 100% 0% 0% 0.00 4.98

Router 2.2M 344 96% 2% 2% 0.80 5.93

Server 490K 198 55% 44% 1% 0.53 6.24

Client 250K 151 38% 40% 22% 0.83 5.89

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

10

in Section II.
3) Client Traces

The Client trace files were captured from a link to a
workgroup switch in the same engineering department. The
trace selected for analysis captures only the inbound activity
of a small number of engineering users, and therefore the
source addresses of the packets are predominantly client
stations. This trace has the highest percentage of traffic that is
neither TCP nor UDP as seen in Table II.

4) MPI Traces
The National Air and Space Administration (NASA)

maintain a set of benchmarks developed by the Numerical
Aerodynamic Simulation (NAS) organization in order to
analyze the performance of parallel computer systems. These
tools are called the NAS Parallel Benchmarks (NPB). The
benchmarks are recognized in the industry as a representative
suite of parallel applications. The traces collected for this
study are the ingress capture of an individual 1 GbE port
connected to one of the 16 compute nodes in a Linux Rocks
cluster. Individual trace files were captured for each
benchmark in the suite, and the inter-cluster communication

used was MPI over Ethernet. Complete details of the NPB
suite may be found at [35].

C. Temporal Locality of Network Traces
 Fig. 10 illustrates the temporal locality of the trace data sets

by comparing the gap between consecutive packets of the
same flow. The figure shows the percentage of packets that
have a particular spacing between a previous packet of the
same flow. The figure only shows the distribution of packet
spacing up to a gap of 10 packets, which covers approximately
75% of all packets in the traces. The remaining ~25% of the
packets lie in the long tail of the distribution. The measured
distribution of the packet flow gap in the trace datasets closely
matches the results observed in [16].

Traces that have been acquired from links that aggregate
fewer flows and are physically closer to end-stations have the
highest temporal locality (MPI and Client). The ability to
predict flow membership with a small per-port cache is
expected to be most effective on these traces.

VI. RESULTS
A complete set of simulation results for both power and

latency reductions were obtained for each combination of
cache size, signature size and trace file. In the following
figures a signature size of 32 bits is commonly used for
consistency and because it highlights notable aspects of the
proposed enhancements.

The ability to reduce latency and power is strongly
dependent upon the rate of correct predictions generated by a
prediction method. Fig. 11 shows Phit, Pincorrect and Pmiss for the
Sub-Field Hash method when run with all trace files. The
figure confirms that the prediction circuitry is more effective
when placed closer to servers in the data center. The MPI
traces have very high temporal locality, resulting in Phit rates
nearing 99%.

Fig. 12 compares the different prediction methods with the
most diverse Router trace using 32-bit signatures. The figure

Fig. 10. The packet gap analysis shows the distribution of spacing between
consecutive packets of the same flow up to a spacing of 10 packets.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10

Pe
rc

en
t o

f P
ac

ke
ts

Gap Between Packets of Same Flow

Packet Flow Gap Analysis
All Trace Files

client

server

router

mpi-avg

Fig. 11. Prediction rates for each trace data set using the Sub-Field Hash method with 32-bit signatures and varying prediction cache size

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

2 4 8 16 32 64

Prediction Cache Size

Correct Prediction (Phit)
Sub-Field Hash, 32-bit Signatures

MPI avg

Client
Router
Server

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

2 4 8 16 32 64

Prediction Cache Size

Incorrect Prediction (Pincorrect)
Sub-Field Hash, 32-bit Signatures

MPI avg
Client
Router
Server

0.00%
5.00%

10.00%
15.00%
20.00%
25.00%
30.00%
35.00%
40.00%

2 4 8 16 32 64

Prediction Cache Size

Prediction Cache Miss (Pmiss)
Sub-Field Hash, 32-bit Signatures

MPI avg
Client
Router
Server

Fig. 12. Prediction rates for each prediction method run against the Router trace with 32-bit signatures and varying prediction cache size

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

2 4 8 16 32 64Prediction Cache Size

Correct Prediction (Pin)
Router Trace - 32-Bit Signature

Direct
Map

Sub-Field
Hash

0.00%
5.00%

10.00%
15.00%
20.00%
25.00%
30.00%
35.00%
40.00%
45.00%
50.00%
55.00%
60.00%

2 4 8 16 32 64Prediction Cache Size

Incorrect Prediction (Pincorrect)
Router Trace - 32-Bit Signature

Direct
Map

Sub-Field
Hash

0.00%
5.00%

10.00%
15.00%
20.00%
25.00%
30.00%
35.00%
40.00%
45.00%
50.00%
55.00%
60.00%

2 4 8 16 32 64Prediction Cache Size

Prediction Cache Miss (Pmiss)
Router Trace - 32-Bit Signature

Direct
Map

Sub-Field
Hash

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

11

clearly shows that correct prediction rates nearing 97% are
possible even as the technique is placed deeper in the network
topology. It also shows that the methods have a high incorrect
prediction rate when the cache size is small. This is
understandable since both methods stop searching the
prediction cache under two conditions - when there is exactly
1 entry that matches the partial signature, or when there are no
entries that match. When the cache size is small it is more
likely that a small partial signature will match exactly 1 entry
because there is little diversity in the cache. Larger caches
support more diversity, reducing the chance of a false positive
match and thus the number of incorrect predictions.

A prediction cache miss occurs when a new flow is
established or the signature for an existing flow has been
removed from the cache. Fig. 12 shows that the Direct Map
method has a slightly lower prediction cache miss rate with
small caches (~20%) than the Sub-Field Hash method. This is
because the Direct Map method has a higher incorrect
prediction rate with lower cache sizes. Incorrect predictions
are not counted as cache misses - whether there is an incorrect
prediction or a cache miss, the same switch latency penalty is
paid, so the more speculative approach tends to benefit in the
overall latency calculations. The downside to the more
speculative Direct Map approach is that it potentially wastes
backplane resources and power, which in practice is not free.

The Sub-Field Hash method has lower incorrect predictions,
since it takes into account a greater number of bits when
creating a signature. This is particularly relevant when the
signature size is small and the cache is large as seen in Fig. 13.
As the number of bits used to represent a signature grows the
two methods perform similar.

Fig. 14 shows that the Direct Map method has lower

prediction cache misses on the Client trace than the Sub-Field
Hash method, but at the expense of greater incorrect
predictions. Recall that the Client trace has the highest mix of
non TCP/UDP traffic – the Client trace dataset has 18% ARP
packets and 2% other layer 2 frames, while the Server and
Router trace files have 99% and 98% IP traffic, respectively.
Since the Direct Map method simply extracts bits from
predetermined offsets, and those offsets are optimized for
TCP/UDP traffic, it is no surprise that the Direct Map method
has the higher number of false positive matches between the
two. The two figures show the effectiveness of hashing over
selecting predefined bits for all signature and cache sizes used
with the Client trace.

When considering how latency can be reduced, one would
expect that improved accuracy from the largest signature size
and cache size would be the most effective. However, for
latency reduction, the objective of packet prediction is to
begin forwarding the packet as soon as possible with the
highest probability that the speculation is correct. Fig. 15
shows the reduction in switch latency on the Server trace for
different packet prediction schemes as compared to a
conventional store-and-forward and cut-through switch.

The figure shows there is very little difference between
methods when it comes to latency reduction. This is because

Fig. 13. Difference between Direct Map and Sub-Field Hash methods when
making incorrect predictions on the Client trace.

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

2 4 8 16 32 64

Cache Size

Sub-Field Hash Incorrect Predictions
Client Trace

8-bit
16-bit
24-bit
32-bit

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

2 4 8 16 32 64

Cache Size

Direct Map Incorrect Predictions
Client Trace

8-bit
16-bit
24-bit
32-bit

Fig. 15. A comparison of the latency reduction achieved by each prediction
method on the Server traces using 32-bit signatures

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Direct Map Sub-Field Hash

La
te

nc
y

R
ed

uc
tio

n

Prediction Method

Fraction of Latency
Server Backbone Trace - 32-Bit Signature

Store-and-Forward

Cut-Through

2 Entry

4 Entry

8 Entry

16 Entry

32 Entry

64 Entry

Fig. 16. Direct Map method latency reduction for the Client, Server and
Router trace datasets showing increasing delays at larger cache sizes

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

2 4 8 16 32 64

La
te

nc
y

R
ed

uc
tio

n

Cache Size

Fraction of Latency over Store and Forward
Direct Map - 32 Bit Signature

Router

Client

Server

Fig. 14. A comparison of prediction cache misses on the Client trace. Cache
misses are preferred to incorrect predictions which need speculation clean-up.

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

2 4 8 16 32 64

Cache Size

Sub-Field Hash Cache Miss
Client Trace

8-bit
16-bit
24-bit
32-bit

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

2 4 8 16 32 64

Cache Size

Direct Map Cache Miss
Client Trace

8-bit
16-bit
24-bit
32-bit

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

12

both methods have similar correct prediction rates. Where the
methods differ is in the mix of incorrect predictions and cache
misses as seen in Fig. 13 and Fig. 14. These differences will
have a bigger impact on power reduction since incorrect
predictions require aborting backplane transfers which are
strictly a waste of power. The Direct Map method has the
lowest latency with a 64-entry cache - the switch latency for
this configuration is 0.13 times the latency of a store-and-
forward switch and 0.33 times the latency of a cut-through
switch. This corresponds to nearly a factor of 8 and a factor
of 3 reduction in latency, respectively.

Fig. 16 shows the Direct Map method latency reduction for
the Client, Server and Router trace datasets. It is interesting to
note that as the cache size increases the performance of the
Direct Map method degrades for the Router trace. This
phenomenon occurs because a larger number of stale entries
exist in the prediction cache, which only serve to further delay
the exact match of partial signatures.

The baseline power for an OpenFlow switch that uses a
TCAM for flow matching is highly dependent upon the size of
the TCAM. An OpenFlow switch can be optimized for
different locations in the network topology by selecting
different TCAM sizes. Locations where a large number of
flows are aggregated are better served by a large TCAM, and
locations in the topology that are closer to individual stations,
such as the MPI cluster or client workgroup, can get by with a
smaller TCAM.

As the size of the TCAM grows, the average energy
consumed by a flow match increases. Packet prediction
reduces this energy by avoiding the lookup process. Fig. 17
shows the per-packet energy savings over a switch without
prediction. Even with the smallest TCAM size evaluated, the
average energy consumed by the lookup phase for MPI traffic
is only 7% of the power consumed by a switch without
prediction. At the largest TCAM size considered, the average
energy for MPI traffic is only 1%.

The Client trace has the highest energy consumption of all
the sample datasets. This is primarily because it has the
highest incorrect prediction rate and incurs the most cost for
incorrect speculation. The lookup phase for the Client trace
consumes 68% of the power required for a switch without
prediction at the smaller TCAM size and 16% of the power

using the larger TCAM. Increasing the prediction cache depth
tends to increase the prediction accuracy, so it should be an
effective approach for reducing the load on the TCAM. The
larger prediction cache will consume more power, but its
increased effectiveness will offset the power required to
deploy a larger TCAM.

There are cases where the prediction circuitry results in a
switch that consumes more power than a switch without the
circuitry. Fig. 18 shows the smallest TCAM size evaluated
(8K) with the largest signature size (32-bits). Anytime the
prediction cache is less than 8 entries deep, the system suffers
too many cache misses and incorrect predictions to keep the
cost of speculation below that of a system without prediction.
This is true for all traces except the MPI traces which were
collected from a relatively small cluster and exhibit extreme
temporal locality. Clearly ASIC designers should not consider
cache sizes less than 8 entries and larger depths will better
support a greater number of simultaneous flows as seen in the
Server and Router traces.

Since the prediction enhancements ultimately aim to
simultaneously reduce both power and latency, the goal is to
find a configuration that optimizes both. Fig. 19 shows the
power reduction verses latency reduction for the Router trace
using the Sub-Field Hash method. Values located in the lower
right hand portion of the figure are best. Clearly 8-bit
signatures are not able to predict flows well enough to be
useful. As previously shown, 16 entry caches are a turning

Fig. 18. Power consumption of Sub-Field Hash method on all trace files
showing the breakeven point against a switch with no prediction

0

5

10

15

20

25

2 4 8 16 32 64

Av
g

nJ
/P

kt

Prediction Cache Size

Average nJ/Pkt vs Cache Size
32-bit Signatures, 8K TCAM

MPI avg

Client

Router

Server

No Prediction

Fig. 19. The packet gap analysis shows the distribution of spacing between
consecutive packets of the same flow up to a spacing of 10 packets.

2 Entry

4 Entry

8 Entry

16 Entry

32 Entry
64 Entry

0.1

1

10

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Po
w

er
 R

ed
uc

tio
n

M
ul

tip
lie

r

Latency Reduction Multiplier

Power Reduction vs Latency Reduction
Router Trace, Sub-Field Hash Method

8‐bit Signature

16‐bit Signature

24‐bit Signature

32‐bit Signature

Fig. 17. A comparison of the power reduction achieved by the Sub-Field
Hash method across all trace data sets

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

8K 16K 32K 64K 128K

Po
w

er
 R

ed
uc

tio
n

Number of TCAM Entries

Fraction of Power
24-bit signature, 32 entry cache

no prediction

client (32x24)

server (32x24)

router (32x24)

MPI average

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

13

point for the methods when reducing latency. Larger
signatures and larger cache sizes appear to be effective at
reducing power with only slight increases in latency.

In summary, the results show that even for the most diverse
Router trace, correct flow prediction rates approaching 97%
with a simultaneous reduction in latency by a factor of nearly
5 and a reduction in power of the lookup phase by a factor of 7
are achievable. While all parts of the network topology can
benefit from a switch with prediction, the high performance
computing cluster gains the most. The two methods perform
similarly for latency reduction, but the Sub-Field Hash method
has a slight performance advantage when also considering
power reduction because of its lower incorrect prediction rate.
Both methods are most effective with cache sizes around 16
entries. Larger signatures are more effective at reducing
power and signatures less that 16 bits are not worth
considering.

VII. RELATED WORK
This work is an extension of a previous contribution that

focused exclusively on latency reduction [36]. This work
includes additional trace data sets for MPI communication, the
Sub-Field Hash prediction method, a power model and the
ability to also reduce the power of the lookup process.

A. Reducing TCAM Power
Reducing the power consumption of network devices that

use TCAMs has been the focus of a number of different
studies [31, 32, 37]. A common technique in most previous
approaches is to segment the TCAM into blocks and only
search individual blocks as needed. Additional front end logic
is provided to locate the individual block that likely contains
the search entry. Power is saved by only driving current
through the lines of that individual block. The use of TCAM
segmentation and intelligent organization to reduce power
consumption during search is orthogonal to the prediction
enhancement and in fact is compatible with the approach that
further aims to reduce power by simply bypassing these
operations.

Mogul et al reduce TCAM lookups in an OpenFlow switch
by first searching for fully qualified flow-keys in a large hash
table [38]. This multi-layer scheme saves power and also
reduces pressure on the TCAM size. Kasnavi uses a multizone
pipeline cache to reduce power and exploit the temporal
locality of IP routed traffic [39]. These schemes are similar to
the prediction enhancements because they use caching to
reduce power, but neither attempt to simultaneously reduce
latency.

B. Latency Reduction using Prediction
Using prediction techniques to reduce latency and improve

communication performance has not been extensively studied.
There is no known prior work that has used compressed
packet content to facilitate prediction in parallel with the flow
classification process on a statistically multiplexed packet
switch.

The goal of reducing the number of pipeline stages in a

routing switch by using predictive switching was proposed in
[40]. The proposed technique looks at the forwarding history
of an ingress port to predict the egress port, irrespective of the
contents of the packet. The 2-D torus network for which this
prediction scheme was developed is a connection oriented
switch for specialized high performance computing
applications. The authors achieved 77% prediction accuracy
using the NAS parallel benchmarks.

Speculative techniques are proposed to reduce the latency
of setting up paths across a connection oriented crossbar fabric
in [41, 42]. In these works, fabric bandwidth is arbitrated
under the speculation that fabric virtual channel allocation will
typically succeed. All of this occurs after the decode and
routing stages (i.e. packet Rx and lookup stages). However, as
the richness of the forwarding policy increases, the complexity
and latency of decode and routing stages will begin to
dominate.

The comparison of predictive switching ideas with concepts
from advanced computer architecture is best described in [43].
Surendra et al show how the temporal locality of network
traffic can be exploited to improve instruction reuse and
reduce latency in network processors. Their proposal is to
have a separate instruction reuse buffer for each active flow
and to swap the processor context when a packet is received
from a different flow. The approach is conceptually similar to
our prediction enhancement in that the prediction cache holds
a set of forwarding instructions for packets from a particular
flow. The same temporal locality is used to select a context
and speculatively operate on a packet. However, they assume
the packet classification completes with 100% accuracy and
there is no speculation. They are focused on speeding up the
instructions that operate on the packet after the classification is
done, where our approach uses a cache in parallel to speculate
the results of the classification.

VIII. CONCLUSION
Enhancing an OpenFlow switch with per-port packet

prediction circuitry is an effective means for simultaneously
reducing power and switch latency without sacrificing
flexibility and rich packet processing. Correct prediction rates
approaching 97% are achievable with a moderate amount of
per-port circuitry. Two different prediction methods that
trade-off per-port complexity for accuracy where shown to be
effective. The more accurate Sub-Field Hash method is more
effective at reducing power consumption because of a lower
incorrect prediction rate while equivalent latency reduction
can be achieved even with the simplistic Direct Map method.
The results of simulations using real network data have shown
that packet prediction can reduce the latency of a traditional
store-and-forward switch by nearly a factor of 8 and reduce
the already low latency of a cut-through switch by a factor of
3. Depending upon the locality of the network traces, the
average energy required in the lookup phase of an OpenFlow-
based Ethernet switch can simultaneously be reduced as well.
While all parts of the network topology can benefit from a
switch with the proposed circuitry, the high performance
computing cluster gains the most.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

14

REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L.

Peterson, J. Rexford, S. Shenker, and J. Turner, "OpenFlow:
enabling innovation in campus networks," SIGCOMM Comput.
Commun. Rev., vol. 38, pp. 69-74, 2008.

[2] B. Salisbury, "TCAMs and OpenFlow - What Every SDN
Practitioner Must Know," SDN Central, 2012,
http://www.sdncentral.com/products-
technologies/sdn-openflow-tcam-need-to-
know/2012/07/

[3] B. Heller, "OpenFlow Switch Specification," OpenFlow
Consortium, 2008,
http://www.openflowswitch.org/documents/openflow-spec-
v0.8.9.pdf

[4] P. Gupta, S. Lin, and N. McKeown, "Routing lookups in hardware
at memory access speeds," in INFOCOM '98. Seventeenth Annual
Joint Conference of the IEEE Computer and Communications
Societies. Proceedings. IEEE, 1998, pp. 1240-1247 vol.3.

[5] H. H. Y. Tzeng and T. Przygienda, "On fast address-lookup
algorithms," Selected Areas in Communications, IEEE Journal on,
vol. 17, pp. 1067-1082, 1999.

[6] J. van Lunteren and T. Engbersen, "Fast and scalable packet
classification," Selected Areas in Communications, IEEE Journal
on, vol. 21, pp. 560-571, 2003.

[7] J. Liao, "SDN System Performance," 2012,
http://pica8.org/blogs/?p=201

[8] R. Ozdag, "Intel Ethernet Switch FM6000 Series - Software
Defined Neworking," Intel Corporation, 2012, p. 8.

[9] Arista, "7150 Series 1/10 GbE SFP Ultra Low Latency Switch,"
Arista Networks, Inc., 2012.

[10] Cisco, "Cisco Nexus 3548 Switch Architecture," San Jose, CA:
Cisco Systems, Inc., 2012, p. 12.

[11] D. Serpanos and T. Wolf, Architecture of Network Systems.
Boston: Morgan Kaufmann.

[12] P. Gupta and N. McKeown, "Algorithms for packet classification,"
Network, IEEE, vol. 15, pp. 24-32, March 2001 2001.

[13] D. Taylor, E., "Survey and taxonomy of packet classification
techniques," ACM Comput. Surv., vol. 37, pp. 238-275, 2005.

[14] G. Nychis, C. Fallin, T. Moscibroda, and O. Mutlu, "Next
generation on-chip networks: what kind of congestion control do
we need?," in Proceedings of the 9th ACM SIGCOMM Workshop
on Hot Topics in Networks Monterey, California: ACM.

[15] C. Minkenberg, M. Gusat, and G. Rodriguez, "Adaptive Routing in
Data Center Bridges," in High Performance Interconnects, 2009.
HOTI 2009. 17th IEEE Symposium on, 2009, pp. 33-41.

[16] R. Jain and S. Routhier, "Packet Trains--Measurements and a New
Model for Computer Network Traffic," Selected Areas in
Communications, IEEE Journal on, vol. 4, pp. 986-995, 1986.

[17] C. Partridge, "Locality and route caches," 1996,
http://www.caida.org/outreach/isma/9602/positions/partridge.html

[18] D. C. Feldmeier, "Improving gateway performance with a routing-
table cache," in INFOCOM '88. Networks: Evolution or
Revolution, Proceedings. Seventh Annual Joint Conference of the
IEEE Computer and Communcations Societies, IEEE, 1988, pp.
298-307.

[19] P. Newman, G. Minshall, T. Lyon, and L. Huston, "IP switching
and gigabit routers," Communications Magazine, IEEE, vol. 35,
pp. 64-69, 1997.

[20] T. Benson, A. Anand, A. Akella, and M. Zhang, "Understanding
Data Center Traffic Characteristics," in SIGCOMM 2009
Workshop on Enterprise Networking Barcelona, Spain:
Association for Computing Machinery, 2009.

[21] A. Partow, "General Purpose Hash Function Algorithms," 2013,
http://www.partow.net/programming/hashfunctions/index.html

[22] G. Ananthanarayanan and R. H. Katz, "Greening the switch," in
Proceedings of the 2008 conference on Power aware computing
and systems San Diego, California: USENIX Association, 2008.

[23] P. Mahadevan, P. Sharma, S. Banerjee, and P. Ranganathan, "A
power benchmarking framework for network devices,"
NETWORKING 2009, pp. 795-808, 2009.

[24] H.-S. Wang, L.-S. Peh, and S. Malik, "A power model for routers:
Modeling Alpha 21364 and InfiniBand routers," Micro, IEEE, vol.
23, pp. 26-35, 2003.

[25] T. T. Ye, L. Benini, and G. De Micheli, "Analysis of power
consumption on switch fabrics in network routers," in Design
Automation Conference, 2002. Proceedings. 39th, 2002, pp. 524-
529.

[26] K. Le, "SerDes power minimization allows SoC solutions," in EE
Times: TechInsights, 2002.

[27] A. D. Bovopoulos, "Dune Fabric Power,"
ptcongdon@ucdavis.edu, Ed. Davis, CA, 2009.

[28] N. Jouppi, "CACTI," HPLabs, 2008,
http://www.hpl.hp.com/research/cacti/

[29] B. Agrawal and T. Sherwood, "Modeling TCAM power for next
generation network devices," in Performance Analysis of Systems
and Software, 2006 IEEE International Symposium on, 2006, pp.
120-129.

[30] Z. Kai, H. Chengchen, L. Hongbin, and L. Bin, "An ultra high
throughput and power efficient TCAM-based IP lookup engine," in
INFOCOM 2004. Twenty-third AnnualJoint Conference of the
IEEE Computer and Communications Societies, 2004, pp. 1984-
1994 vol.3.

[31] V. C. Ravikumar, "EaseCAM: An Energy and Storage Efficient
TCAM-Based Router Architecture for IP Lookup," IEEE Trans.
Comput., vol. 54, pp. 521-533, 2005.

[32] F. Zane, N. Girija, and A. Basu, "Coolcams: power-efficient
TCAMs for forwarding engines," in INFOCOM 2003. Twenty-
Second Annual Joint Conference of the IEEE Computer and
Communications Societies. IEEE, 2003, pp. 42-52 vol.1.

[33] J. L. Hennessy and D. Patterson, Computer Architecture: A
Quantitative Approach, Fourth Edition ed. San Francisco, CA
USA: Morgan Kaufmann Publishers Inc., 2006.

[34] R. Pang, M. Allman, M. Bennett, J. Lee, P. Vern, and B. Tierney,
"A first look at modern enterprise traffic," in Proceedings of the
Internet Measurement Conference 2005 on Internet Measurement
Conference Berkeley, CA: USENIX Association, 2005.

[35] D. Bailey, T. Harris, W. Saphir, and R. van der Wijngaart, "The
NAS Parallel Benchmarks 2.0," Report NAS95-020 NASA Ames
Research Center, Moffett Field, CA1995.

[36] P. Congdon, M. Farrens, and P. Mohapatra, "Packet Prediction for
Speculative Cut-Through Switching," in ANCS-2008 San Jose,
CA, 2008, p. 10.

[37] R. Panigrahy and S. Sharma, "Reducing TCAM Power
Consumption and Increasing Throughput," in Proceedings of the
10th Symposium on High Performance Interconnects HOT
Interconnects (HotI'02): IEEE Computer Society, 2002.

[38] J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, A. R.
Curtis, and S. Banerjee, "DevoFlow: cost-effective flow
management for high performance enterprise networks," in
Proceedings of the Ninth ACM SIGCOMM Workshop on Hot
Topics in Networks Monterey, California: ACM.

[39] S. Kasnavi, P. Berube, V. Gaudet, and J. Amaral, "A Multizone
Pipelined Cache for IP Routing," NETWORKING 2005.
Networking Technologies, Services, and Protocols; Performance
of Computer and Communication Networks; Mobile and Wireless
Communications Systems, vol. 3462, pp. 187-198, 2005.

[40] T. Yoshinaga, S. Kamakura, and M. Koibuchi, "Predictive
Switching in 2-D Torus Routers," in Proceedings of the
International Workshop on Innovative Architecture for Future
Generation High Performance Processors and Systems: IEEE
Computer Society, 2006.

[41] Z. Ding, R. Hoare, A. Jones, D. Li, S. Shao, S. Tung, J. Zheng, and
R. Melhem, "Switch Design to Enable Predictive Multiplexed
Switching in Multiprocessor Networks," in Parallel and
Distributed Processing Symposium, 2005. Proceedings. 19th IEEE
International, 2005, pp. 100a-100a.

[42] L.-S. Peh and D. W. J., "A Delay Model and Speculative
Architecture for Pipelined Routers," in Proceedings of the 7th
International Symposium on High-Performance Computer
Architecture: IEEE Computer Society, 2001.

[43] G. Surendra, S. Banerjee, and S. K. Nandy, "On the effectiveness
of flow aggregation in improving instruction reuse in network
processing applications," Int. J. Parallel Program., vol. 31, pp.
469-487, 2003.

