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Abstract—The Ethernet switch is a primary building block for 

today’s enterprise networks and data centers. As network 
technologies converge upon a single Ethernet fabric, there is 
ongoing pressure to improve the performance and efficiency of 
the switch while maintaining flexibility and a rich set of packet 
processing features. The OpenFlow [1] architecture aims to 
provide flexibility and programmable packet processing to meet 
these converging needs. Of the many ways to create an OpenFlow 
switch, a popular choice is to make heavy use of Ternary Content 
Addressable Memories (TCAMs) [2].  Unfortunately, TCAMs 
can consume a considerable amount of power, and when used to 
match flows in an OpenFlow switch, put a bound on switch 
latency.   

In this paper we propose enhancing an OpenFlow Ethernet 
switch with per-port packet prediction circuitry in order to 
simultaneously reduce latency and power consumption without 
sacrificing rich policy-based forwarding enabled by the 
OpenFlow architecture.  Packet prediction exploits the temporal 
locality in network communications to predict the flow 
classification of incoming packets.  When predictions are correct, 
latency can be reduced, and significant power savings can be 
achieved from bypassing the full lookup process. Simulation 
studies using actual network traces indicate that correct 
prediction rates of 97% are achievable using only a small amount 
of prediction circuitry per port.  These studies also show that 
prediction circuitry can help reduce the power consumed by a 
lookup process that includes a TCAM by 92% and 
simultaneously reduce the latency of a cut-through switch by 
66%.      
 

Index Terms—Ethernet networks, packet switching, software 
defined networking 
 

I. INTRODUCTION 
THERNET and IP communications have become the most 
popular means of computer communications.   As 

Ethernet moves beyond 10 Gbps speeds and prices continue to 
decline, there is a strong desire to use this commodity 
technology in as many diverse computing environments as 
possible.  Unfortunately each environment demands a 
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different set of requirements and a one-size-fits-all approach 
(to packet forwarding) does not adapt to all needs.   The 
OpenFlow architecture for Ethernet switches [1, 3] is 
receiving considerable attention within the research 
community  as a means for catalyzing the exploration of new 
applications for Ethernet switches.    OpenFlow allows the 
forwarding plane of switches to be reprogrammed by an 
external controller, making it possible to adapt traditional 
Ethernet switching to different environments. However, 
certain environments have specific requirements, such as 
extreme low latency and reduced power consumption, which 
cannot be completely addressed through simple 
reprogramming.  

Methods for implementing fast and efficient lookups have 
been extensively studied [4-6].  Traditional switching chips 
often incorporate multiple tables to support simple layer-2 and 
layer-3 lookups using address hashing and various data 
structures stored in SRAM.  OpenFlow switches leverage 
these tables for basic forwarding, but when processing rules 
related to a specific flow, they delay forwarding until a packet 
flow identifier can be assembled and presented to a 
classification engine.  The classification engine is often 
implemented using a Ternary Content Addressable Memory 
(TCAM) [2, 7, 8].  TCAMs are popular because they allow the 
switch to support a rich set of policy based features while 
maintaining line rate forwarding across a large set of 10 or 100 
Gbps Ethernet ports.  TCAMs, however, are expensive, power 
hungry devices, and their power consumption increases 
linearly with the size of the structure; as much as 25% of the 
total power required for a switching ASIC (see Fig. 5). 

Many environments for this new class of OpenFlow enabled 
Ethernet switch demand the lowest possible latency in 
addition to rich packet processing.  Unfortunately these two 
objectives can be at odds with one another.  Packet 
classification (to at least the flow level) enables rich features 
such as firewalling, intrusion prevention, connection rate 
metering and load balancing. OpenFlow switches that 
combine flow-based packet classifiers with TCAMs have the 
flexibility to support these features.  However, to meet strict 
latency requirements, network managers often avoid these 
features and deploy customized equipment with specialized 
cut-through designs.  Cut-through switches provide low 
latency by allowing a packet to begin transmission on an 
egress port before the packet has been completely received at 
the ingress port.  This approach is not as effective on an 
OpenFlow switch that must wait for multiple protocol headers 
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to arrive in order to assemble a flow identifier.  There is 
simply no time in a cut-through switch for a rich set of 
features to inspect transport or application level fields before 
the packet is switched.  Two current state-of-the-art low 
latency Ethernet switches from Arista Networks [9] and Cisco 
Systems [10] achieve latencies of 350ns and 190ns 
respectively.  While these latencies are impressive, they are 
still nearly three times the latency of a minimum size Ethernet 
packet at 10Gbps. 

This paper proposes enhancements to simultaneously 
reduce both switch power consumption and switch latency, 
beyond that of cut-through switches, while maintaining the 
flexibility and rich policy based forwarding of an OpenFlow 
switch.  The enhancements apply the architectural techniques 
of value prediction and speculative execution to the problem 
of packet switching by exploiting the temporal locality of 
network traffic. Unique per-port circuitry predicts the flow 
membership of a packet in order to bypass traditional flow-
based or TCAM lookups, and when possible, begin 
speculative forwarding, thus simultaneously reducing both 
switch latency and power consumption.  

We demonstrate the effectiveness of the techniques by 
simulating an enhanced OpenFlow switch using a variety of 
workloads captured in actual network traces from different 
parts of the network topology.  The results show that correct 
prediction rates of 97% are achievable and that it is possible to 
reduce the power consumption of flow-based lookups between 
92% and 98% depending upon the size of a TCAM.  The 
results also show that latency can be reduced by a factor of 3 
over a conventional cut-through switch.   

This paper makes the following contributions: 
1) Improves upon the OpenFlow switch architecture by 

providing a per-port optimization that simultaneously 
reduces both switch latency and power consumption. 

2) Provides a detailed architectural-level power model for a 
flow-based Ethernet switch. 

3) Provides a latency model for a flow-based Ethernet switch 
that uses prediction to speculate on forwarding operations. 

4) Defines low-latency methods of predicting flow 
membership for packets as they are received. 

   
The remainder of this paper is organized as follows.  

Section II describes the switch model used and a description 
of the prediction circuitry, while Section III describes how 
bypassing the TCAM can reduce power and Section IV 
explains how speculative forward can reduce latency. Section 
V discusses the evaluation environment. Section VI describes 
the results of those simulations.   Section VII describes related 
work and Section VIII provides the conclusion. 

II. SWITCH ARCHITECTURE 

A. Switch Architecture 
There are many ways to create an Ethernet switch [11].  The 

OpenFlow Ethernet switch architecture used in this paper 
assumes line cards with physical media ports connected to a 
switched backplane fabric.  The architecture is similar to one 

of many described in [11], but with an emphasis on flow-
based switching where the logic is implemented in a single 
chip on the line card and takes advantage of a TCAM for flow 
matching. The line cards are equipped with separate input and 
output memory, lookup logic, backplane fabric interfaces and 
per-port prediction circuitry.   The lookup and policy logic 
may involve multiple layer-2 and layer-3 address tables in 
addition to a TCAM used to support per-flow forwarding 
features.  Fig. 1 shows the high-level switch architecture. 

Packets are received at line rate from the physical media 
ports and put into the input memory.  While the packet is 
being received into memory, a block of combinational logic 
within the Media Access Controller (MAC), called the packet 
parser, is extracting important fields from the packet to 
generate a flow-key. A flow-key is the fundamental structure 
used to lookup and determine how to forward the packet 
according to OpenFlow rules.  The flow-key and the 
forwarding architecture of the switch are consistent with the 
definition of a “Type 0” and “Type 1” OpenFlow switch [3].   

A flow-key is a concatenation of critical fields from the 
packet that uniquely identify the packet as being part of a 
flow.   It can be generalized as an n-tuple that is defined by a 
set H = {H1, H2, …, Hn} of fields from the packet.  All packets 
that are part of a flow are subject to the same policy and 
treatment by the switch.  For a typical routing switch that 
performs layer-2 bridging, layer-3 routing and transport level 
filtering, a flow-key can be represented by a 9-tuple that 
includes the following fields: VLAN ID, destination MAC 
address, source MAC address, ethertype, IP protocol number, 
source IP address, destination IP address, TCP/UDP source 
port number and TCP/UDP destination port number. A flow-
key, in a large OpenFlow switch, includes an additional field 
that indicates the source port of the received packet. 

A flow table is a large database of flow-keys that is 
searched by the lookup process in addition to traditional layer-
2 and layer-3 tables.  This structure may be implemented in 
software using SRAM and a fast network processor, or more 
often, implemented in hardware by a TCAM.  TCAMs are an 
expensive, power hungry, high performance resource that 
allows rapid wildcard searching.  The TCAMs may be shared 
by multiple input ports on the same line card, and 
consequentially, may be subject to contention and further 
arbitration delays.  The process of classifying the packet and 
searching the flow table has been well studied [12, 13], and is 
known to be a time consuming and critical stage in the switch 
pipeline. 

The results of the lookup steps tell the switch where to 
forward the packet across the switch fabric, and optionally, 

Fig. 1.  High-level switch architecture including packet prediction circuitry at
the input port 
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what modifications to the packet may be required.  In our 
switch model, the receiving line card makes all necessary 
modifications to the packet and initiates a transfer of the 
packet across the fabric to the output memory on another line 
card.  Alternative switch architectures may make 
modifications to the packet at the egress port or other parts of 
the pipeline. The speed of the backplane fabric interface is 
usually faster than the speed of the input port and in our model 
the backplane does not represent a bottleneck.  Once the 
packet is received in the output memory it may immediately 
begin transmission on the egress port.   

In heavily loaded networks, packets may experience 
queuing delays at the ingress and/or egress memory depending 
upon the backplane transfer protocol and the aggregation of 
traffic from multiple ingress ports. This queuing will reduce 
the impact of our latency improvements; however power 
savings can still be achieved.  Under heavy load, even state-
of-the-art cut-through switches [9, 10] are unable to further 
reduce latency due to queuing delays.  In latency sensitive 
environments, techniques such as congestion control [14] and 
adaptive routing [15] are used to manage latency and mitigate 
contention at hotspots across the network. These approaches 
can be combined with uncongested individual switch latency 
improvements, such as the one proposed here, to establish the 
lowest possible switch latency.  

B. Packet Prediction Circuitry 
The switch architecture of Fig. 1 includes packet prediction 

circuitry on each ingress port.  The goal of the circuitry is to 
predict the flow-key of a received packet as quickly as 
possible, without requiring the use of the lookup process and 
TCAM.  Fig. 2 shows how a packet signature is created by 
circuitry that snoops on the input memory bus as the packet is 
streamed into memory.  While the flow-key is being 
assembled, significant bits from the packet are extracted and 
used to generate a packet signature according to a prediction 
method (see II.C).  The packet signature is searched in a local 
per-port prediction cache that is comprised of a signature 
CAM, flow-key RAM and forwarding RAM.  If exactly one 

match is found, the packet is assumed to be part of the same 
flow as a previously received packet with the same signature 
and forwarding can begin immediately. This constitutes 
speculative packet forwarding which reduces switch latency.  
Such forwarding by the prediction circuitry involves applying 
the same set of packet operations that would have been 
obtained from the full lookup process. Since the prediction 
circuitry is required on each input port of the switch, it is 
worthwhile to find the smallest and most efficient 
implementation possible.   

The flow-key RAM in Fig. 2 holds the flow-key for the 
most recent packet that has a matching signature.  The flow-
key in the RAM is compared against the flow-key that has 
been assembled by the packet parser in order to confirm if 
there has been a match.  This comparison is necessary to avoid 
invoking the full lookup process on every packet, thus saving 
power. The flow-key RAM is fundamentally a level 1 cache 
for the master TCAM, referencing the most recent forwarding 
instructions for packets of the matching flow. 

Once a complete flow-key has been received and assembled 
by the packet parser, there are three possible scenarios that 
may occur with respect to the prediction logic and speculative 
forwarding: 
1) Prediction Hit: The flow-key matches a flow-key found 

by the prediction logic. In this case, a correct prediction 
has occurred and there is no need to take any further 
action.  No lookup or search is required of the master 
TCAM and the power required to perform that search is 
saved.  The lowest possible latency is achieved because 
packet forwarding has already started and the speculation 
was correct. 

2) Incorrect Prediction: A signature is found, but the flow-
key does not match.  In this case, an incorrect prediction 
has occurred and the current speculative transfer must be 
aborted.  The master TCAM must be searched to 
determine the correct forwarding instructions and the 
local prediction cache must be updated.   The power for 
the prediction cache searches and the partial packet 
transfer is wasted. 

3) Prediction Miss: No flow-key was found by the prediction 
logic.  In this case, the prediction cache did not find a 
match and the full lookup process must be invoked.  The 
local prediction cache must be updated.  The power 
required for searching and updating the prediction cache 
is wasted.  
 

The prediction circuitry is effective because it exploits the 
temporal locality within the stream of network packets.  All 
packets in a stream that are members of the same flow require 
the same forwarding treatment by an Ethernet switch. The 
observation that network communications exhibit strong 
locality and that this may be used to optimize resource 
utilization is not new [16].  There are differences of opinion as 
to whether the temporal locality of Internet traffic is sufficient 
to enable optimized forwarding using caching [17-19].  
However, different parts of the network topology are exposed 
to a smaller number of flows and are expected to have a 

Fig. 2.  The per-port packet prediction circuitry snoops packet data as it is
received by the input MAC to create a compressed packet signature and a
flow-key for validation 
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greater degree of locality than previously discovered by 
studies of core Internet traffic. Recent data center traffic, for 
example, has been observed to exhibit an ON-OFF pattern 
with strong temporal locality among the packet trains [20].  A 
brief study of the temporal locality in the network traces used 
in this work is described in Section V.   

C. Prediction Methods 
There are many ways to construct a packet signature, but 

since the prediction circuitry exists on each port of the switch, 
finding the balance between implementation cost and 
complexity is important. The basic approach is to compress 
significant (i.e. frequently changing) bits of the received 
packet into a signature used to search a prediction cache.  The 
significant bits may come from predefined offsets in the 
packet or well known fields in the packet headers. Fig. 3 
indicates which bit offsets in a flow-key vary the most 
between subsequent flow-keys in the Server Trace (see 
V.B.2).  The other trace files obtained from different parts of 
the network topology have a similar frequency distribution. 
Combinations of these bits may be hashed to form portions of 
the signature or they may be directly mapped.  This paper 
considers two different methods that tradeoff implementation 
complexity for accuracy.   

1) Direct Map 
The extremely simple Direct Map method extracts bits from 

predefined locations in the packet as it is arriving.  The offset 
locations have been chosen to include bit fields that vary the 
most between subsequent flows as seen in Fig. 3.  There is no 
logic that parses the packet and adjusts the offsets according to 
frame encapsulation or protocol.  Bits are blindly extracted at 
pre-determined offsets.  As a consequence, bit offsets that 
would normally align with the TCP port fields in an untagged 
Ethernet packet will be unaligned if the packet is VLAN 
tagged.  Similarly these bit offsets may point to random 
payload data if the packet is an IP fragment (which contains 
no TCP header).  For a practical implementation of the Direct 
Map method a different set of offsets should be considered 
based upon the port configuration. 

As the bits arrive from fixed offsets, the circuitry builds a 
partial signature to present as a key to the fully associative 
prediction cache.  Missing bits that have not yet arrived are 
marked as don’t care conditions for the match.  If no matching 
entries are found, there are clearly no previous elements from 

this flow in the cache and the packet must wait for the full 
flow lookup to complete.  If there is precisely one entry found, 
then there is a chance that this entry is an exact match and the 
speculative forwarding of the packet may start immediately.  
This method forwards the packet as soon as possible, but can 
experience a higher misprediction rate than methods that 
perform more intelligent parsing. 

2) Sub-Field Hash 
The Sub-Field Hash method intelligently parses incoming 

packets to extract precise sub-fields of packet headers and uses 
a simple hashing algorithm to construct segments of the packet 
signature.  The goals of this method are to minimize the 
number of incorrect predictions, but also to support low 
latency by including a relatively aggressive eager approach to 
searching the prediction cache.  The popular DJB hash 
function [21] is applied to sub-fields of the 29-byte flow-key 
as they arrive. The DJB hash function was chosen because of 
its simplicity, efficiency and distribution characteristics over 
small fields. The small hash results are combined to create 
partial signatures.   

Similar to the Direct Map method, the prediction cache is 
searched as soon as a partial signature has been formed; where 
missing bits of the signature are marked as don’t care 
conditions. The number of times the prediction cache is 
searched depends upon the length of the packet signature and 
the result of previous searches. A number of different packet 
signature sizes have been chosen to evaluate this sensitivity. 
The Sub-Field Hash method generates signatures of lengths 8, 
16, 24 and 32 bits.  For an 8-bit signature, the flow-key is 
divided into two parts; the MAC header is hashed to create a 
4-bit partial signature and the IP and TCP headers are used to 
create another 4-bit quantity.  These two quantities are 
combined to create an 8-bit signature with which the 
prediction cache is searched at most two times per packet.  
Longer signature types allow a greater number of partial 
signatures and thus may be more aggressive at speculating the 
forwarding of the packet.  However, they will also search the 
cache more frequently, consuming more power.   For example, 
in the implementation the 16-bit signature is made up of 5 
hashes and in the worst case will search the cache 5 times.  
The 24-bit signature includes 9 hashes and the 32-bit signature 
includes 11 hashes. 

While long signatures have the potential to invoke a search 
of the prediction cache a greater number of times and consume 
more power, they are generally more accurate at predicting the 
flow membership of a packet because there are a greater 
number of bits in the signature to distinguish one flow from 
another.  It is important to minimize the number of incorrect 
predictions to avoid wasting power from incorrect speculative 
forwarding.  

Other prediction methods are possible, but may require 
further trade-offs between complexity and cost at each port of 
the switch. For example, additional logic could enable 
application specific prediction algorithms or complex history 
traces.  The Direct Map and Sub-Field Hash methods were 
chosen because they are stateless and can be implemented 
with simple combinational logic. 

 
Fig 3. Frequency of bit variance in subsequent flow-keys showing which 
bits are most significant to incorporate into a packet signature

Flow Key Bit Distribution
Server Trace 
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III. POWER REDUCTION FROM TCAM BYPASS 
The proposed enhancements reduce power by avoiding 

TCAM lookups when prediction and speculation are correct. 

A. Switch Power Model 
A power model is needed to evaluate the proposed 

enhancements. Various switch power models have been 
developed to support the analysis of power consumption at 
system-wide or network-wide levels [22-24].  Since the 
proposed enhancements are intended to be implemented in a 
switch ASIC, a power model that includes bit-level transfer 
energy is more appropriate [25]. In our model, we focus on the 
complete port-to-port switching path from the ASIC 
perspective.  The forwarding process is divided into pipeline 
stages and each stage is analyzed individually assuming that 
packets are flowing at full line rate.  We first consider a switch 
without the prediction logic as seen in Fig. 4.  Later we 
replace the traditional lookup phase with a phase that includes 
the prediction logic and bypass circuitry. 

The four stages of the forwarding pipeline are identified as 
follows: 
1) Packet Receive (Rx): The Rx stage involves receiving the 

packet from the physical media, extracting important 
fields to build a flow-key and streaming the packet into 
the input memory system. 

2) Lookup: The Lookup stage involves searching the TCAM 
for the received flow-key and retrieving the forwarding 
instructions. 

3) Packet Transfer (Xfer): The Xfer stage involves reading 
the packet from the inbound memory, all of the logic 
required to initiate a transfer across the fabric, driving the 
fabric connections and crossbar, as well as writing the 
packet into the remote outbound memory.  

4) Packet Transmit (Tx): The Tx stage involves reading the 
packet from the outbound memory and transmitting it on 
the physical media. 

 
The energy required to progress a packet through the switch 

is simply the sum of these stages: 
 

Epkt = Erx + Elookup + Exfer + Etx (1) 
 
Each of the stages can be looked at independently with its 

own set of individual components.  The values used in the 
individual equations are summarized in Table I.   
 
Erx = pkt_size * (EMAC + Ebuf_wr) (2) 
Elookup = ETCAM_search + Pin * Edata_rd +  
              (1-Pin) * (ETCAM_wr + Edata_wr)  (3)  

Exfer = pkt_size * (Ebuf_rd + Efab + Ebuf_wr) (4)  
Etx = pkt_size * (EMAC + Ebuf_rd) (5)  
 

The energy to receive (Erx) and transmit (Etx) an individual 
packet is dependent upon the packet size.  In the Rx and Tx 
stages, the per-bit energy of the MAC and 
Serializer/Deserializer (SerDes) is given by EMAC.  The SerDes 
on an Ethernet link are continuously running and consuming 
power regardless of frame transmission.  New efforts within 
the IEEE 802.3 working group are focused on reducing this 
consumption of power, however a typical 10GbE SerDes 
interface running at 3.125 Gb/s consumes about 150mW per 
channel [26].   Power is also consumed while streaming the 
received packet into and out of the buffer memory.  The per-
bit energy to read and write the buffer is given by Ebuf_rd and 
Ebuf_wr. 

The energy consumed by the lookup stage (Elookup) is of 
most interest since the prediction circuitry specifically aims to 
reduce this component.  This stage is dependent upon whether 
a search of the TCAM is successful or not.  If the flow-key is 
found in the TCAM, then the associated data memory is read 
to get the forwarding instructions.  If the flow-key is not 
found, then both the TCAM and associated data memory must 
be updated. Let Pin be the probability that a flow-key is found 
in the TCAM given that it is not found in the prediction cache.  
The determination of this probability is actually quite complex 
and dependent upon many factors related to the characteristics 
of the traffic (e.g. temporal locality, duration of the flow, 
number of flows).  While this probability is quite difficult to 
estimate, the significance of it is negligible when compared to 
the power consumed by the TCAM search itself. This search is 
always performed in a switch which does not have the 
prediction optimization. ETCAM_search and ETCAM_wr are the 
energy required to search and update the TCAM, and Edata_rd 
and Edata_wr are the energy required to read and write the 
associated TCAM flow memory and forwarding instructions, 
respectively.    

The energy consumed by the Xfer stage is important to 
understand because it represents the cost penalty for incorrect 
speculation. This energy can be significant because it involves 
the use of several pairs of high speed SerDes and an external 
crossbar fabric chip (Efab).  The external fabric chip alone can 
consume between 15W and 20W [27].   

B. Switch Power Model with Prediction 
The packet prediction circuitry reduces latency through 

speculative switching and reduces power consumption by 
avoiding the lookup stage entirely.   The power saved by 
avoiding searches of the TCAM may be offset by the power 
wasted from incorrect speculation.   If correct prediction rates 
are high enough, the savings can be substantial.  To determine 
the energy required to progress a packet through the switch 
architecture with prediction circuitry, the lookup stage is 
replaced with a new prediction stage.  The per-packet energy 
is now given by: 
 
Epkt = Erx + Epredict + Exfer + Etx (6)  

Fig. 4.  High-level switch architecture without prediction logic, showing the
four stages of the forwarding pipeline 
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The prediction phase energy is dependent upon the accuracy 
of prediction and caching schemes.  Let Phit be the probability 
of a prediction cache hit, Pincorrect be the probability of an 
incorrect prediction cache hit and Pmiss be the probability of a 
prediction cache miss.  The energy consumed by the 
prediction phase (Epredict) is given by the following formula: 

 
Epredict = Phit*Ecache_hit+Pincorrect*Ecache_incorrect+Pmiss*Ecache_miss (7) 
 

Ecache_hit, Ecache_incorrect and Ecache_miss are the energy required 
to search and maintain the prediction cache when an entry is 
correctly found, incorrectly found or not found at all, 
respectively.   They are calculated using the following 
equations: 

 
Ecache_hit = E(S) * Ecache_search + Ecache_rd (8) 
Ecache_incorrect = E(S)* Ecache_search + Ecache_rd + 
                        Exfer_min + Etx_min + Elookup + Ecache_wr  (9) 
Ecache_miss = E(S)* Ecache_search + Elookup + Ecache_wr (10) 

 
With eager prediction methods the prediction cache is 

searched with partial signatures multiple times until exactly 
one or zero entries are found.  Let S be a random variable 
indicating the number of times the prediction cache is 
searched for a particular packet.  Then E(S) is the expected 
number of searches in the prediction cache per packet.  If an 
entry is found (Ecache_hit), then the associated flow-key RAM is 
read to retrieve the forwarding instructions.  Ecache_search is the 
energy required to search the signature CAM and Ecache_rd is 
the energy required to read the associated flow-key and 
forwarding RAM. 

In the unfortunate scenario where an incorrect prediction 
occurs (Ecache_incorrect), speculative forwarding begins because a 
partial signature matches the prefix of a full signature in the 
prediction cache.  In this case, the energy for the prediction 
and partial transfer is wasted.  Let Exfer_min be the energy 
needed to transfer the beginning of the packet across the fabric 
and into the output memory.  This energy is the same as (4), 
but where the packet_size is set to the beginning portion of the 
packet up to and including the offset for the last field of the 
flow-key.  In a similar fashion, let Etx_min be the energy needed 
to transmit the partial fragment of the packet on the actual 
output link before being aborted. The energy of a full TCAM 
lookup from (3) is required in this scenario as well as the 
energy required to update the prediction cache denoted as 
Ecache_wr. If no packet signature is found (Ecache_miss) in the 
prediction cache, then a full TCAM lookup and cache update 
are required.   

The parameters to the formulas (1) – (10) can be 
categorized into four main functional components: TCAMs, 
memory arrays, logic and I/O.  The contribution to overall 
power consumption by these components in a particular chip 
depends upon the target configuration.  For example, low-end 
systems implemented with a single chip may have more power 
consumption due to logic than I/O or a TCAM because of the 
lack of a backplane and limited functionality. Higher-end 
systems with high-performance backplanes, high-speed links 

and large TCAMs may see a greater amount of energy 
dissipated by the SerDes and the TCAM.  Fig. 5 shows the 
measured distribution of power for three different switching 
ASICs in the HP ProCurve family of Ethernet switches.  The 
amount of power consumed by the TCAM becomes a 
significant portion of the switch chip as the performance and 
feature set address the high-end of the market. 

C. Source of Power Modeling and Estimation 
Evaluation parameters for the power model come from a 

variety of sources. The energy estimates for the memory 
structures, CAMs and TCAMs are performed using existing 
power modeling tools.  The energy for the SerDes, fabrics and 
Ethernet MAC logic are taken from existing switch chip 
implementations.  Table I shows representative values for the 
power model parameters.  

The SerDes used for the MAC and backplane are the 
biggest contributors to overall power consumption and cannot 
be reduced by the proposed enhancements.  Future switch 
designs incorporating optical interconnects have the potential 
to lessen this part of the power equation.  Searching the 
TCAM is the next significant power consumer and reducing 
this contribution, along with overall latency, is the focus of 
this work. 

1) CAMs and TCAMs 
The model for power consumption of the array structures 

and CAMs is based on the well known cache and memory 
TABLE I 

POWER MODEL PARAMETERS 
Parameter Description Model Source Representative Values (nJ)

Ecache_search Searching prediction CAM CACTI 0.003759 nJ (32 rows x 24 bits)

Ecache_wr

Updating flow key, forward 
RAMs and cache signature CACTI 0.062691 nJ (32 rows x 24 bits, 87 bytes)

Ecache_rd

Reading the flow key and 
forwarding RAMs CACTI 0.062217 nJ (32 rows x 240 bits)

ETCAM_search Searching the TCAM Sherwood 7.141493 nJ (8K rows x 240 bits)

ETCAM_wr Updating the TCAM on miss Sherwood 0.931197 nJ (8K rows x 240 bits)

Edata_wr

Updating the forwarding 
instruction RAMs CACTI 0.365080 nJ (8K rows x 58 bytes)

Edata_rd

Reading the forwarding 
instruction RAMs CACTI 0.387645 nJ (8K rows x 58 bytes)

EMAC

1GbE MAC and standard 
SERDES

Reference 
Implementation 97 nJ per 64 byte packet 

Ebuf_wr

Writing to the packet buffer 
memory CACTI 4.4993 nJ for 64 byte packet 

Ebuf_rd

Reading the packet buffer 
memory CACTI 4.5048 nJ for 64 byte packet 

Efab

Driving two ports of the crossbar 
fabric and SERDES

Reference 
Implementation 96 nJ per 64 byte packet 

 
Fig. 5.  Functional component percentage breakdown of total ASIC power
measured in three different HP ProCurve switching ASICs ranging from low-
end, single chip switches to high-end multi-chip chassis designs 

0%

20%

40%

60%

80%

100%

Low-end Med-range High-end
Switch ASIC Type

Switch ASIC Power Breakdown

TCAM
Logic & Processor
Buffers & Memory
SerDes & I/O



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

7

systems modeling tool CACTI [28].  CACTI is an integrated 
cache and memory access time, cycle time, area, leakage, and 
dynamic power model. A TCAM power modeling tool 
developed by Sherwood and Agarwal [29] augments CACTI 
and is used to calculate the power for TCAM searches, reads 
and writes.   

In the switch architecture there are two different fully 
associative content-addressable memories that need to be 
modeled; the signature CAM and the master TCAM.  The 
signature CAM is a very small fully associative memory with 
2, 4, 8, 16 or 32 rows and a tag width of 8, 16, 24 or 32 bits.  
The small CAM depths were chosen to keep the per-port cost 
of the implementation low while exploring the sensitivity of 
flow caching.  The CAM width is dependent upon the 
signature size, which was also chosen to be small in order to 
limit costs and explore the sensitivity of representing a flow 
key in as few bits as possible.    

The master TCAM is a large structure that uses a 29 byte 
flow-key as the search key.  The key size is fixed by the 
concatenation of standard fields from the packet header.  The 
TCAM can be segmented to reduce power consumption 
during searches as described in various optimization schemes 
[30-32].  The size of the TCAM can vary based upon the 
number of simultaneous flows that the switch is attempting to 
support. Depths of 8K, 16K, 32K, 64K and 128K were chosen 
to cover a span of common implementations found in practice 
today. A power consumption model for ETCAM_search is 
calculated using the Sherwood TCAM tool. The results from 
the Sherwood TCAM tool are validated against 
implementations from NetLogics Inc. and the HP ProCurve 
5400 family ASIC and were found to be with 15% of nominal 
values. 

2) Memory Arrays 
The flow-key RAM associated with the prediction cache is 

29 bytes wide in order to support the standard concatenation 
of packet header fields that make up a flow-key.  The width of 
the forwarding instruction RAMs are implementation specific 
and a width of 54 bytes was chosen to match an existing 
known implementation. There is a shallow forwarding 
instruction RAM associated with the prediction cache and a 
deep RAM associated with the master TCAM.  In all cases 
these memories are modeled as having a single bank with a 
single read/write port.  

3) Fabrics and MACs 
The calculation of Efab includes the power consumed by an 

external fabric chip and the SerDes interfaces on the network 
chip required to interface the line card to the backplane.  There 
are many different switch fabric architectures and a detailed 
analysis of the power consumption of these architectures is 
provided by Ye, Benini and Micheli [25].   This analysis 
focuses mainly on the internal architecture of the fabric and 
includes the power consumed by node switches, internal 
buffers and interconnects wires.  Reference implementations 
[27], however, indicate that over 50% of the power for an 
external chip is associated with the high-speed SerDes.  For 
example, 7.7W of the 15W total described in [25] are due to 
the sixty four 3.25 Gbps SerDes.  Using this reference as an 

estimate and including the same SerDes estimate on the line 
card, a measure for Efab is found to require approximately 96 
nJ per minimum sized packet.  Similar numbers are calculated 
from information available on fabric chips from Dune 
Networks [27]. 

The calculation of EMAC includes the power consumed by 
the combinational logic needed to implement the Ethernet 
MAC and the power needed by the SerDes.  An Ethernet 
MAC implementation will have variations across chips, but in 
general consumes a small amount of energy in comparison to 
the SerDes.   A typical 1GbE SerDes implementation will 
consume about 125 mW, or approximately 84 nJ per minimum 
sized packet.   An example Ethernet MAC in the HP ProCurve 
mid-range ASIC consumes about 19 mW or approximately 13 
nJ per minimum sized packet.   Together these provide an 
estimate for EMAC of 97 nJ per minimum sized packet. 

IV. LATENCY REDUCTION FROM SPECULATIVE CUT-
THROUGH SWITCHING 

The prediction enhancement speculates on the flow 
membership of the next received packet allowing the 
forwarding engine to apply a rich set of forwarding policies to 
the packet while it is still being received.  This allows switch 
forwarding to begin with the lowest possible latency 

A. Switch Latency Model 
To understand how the prediction enhancement improves 

latency, it is first necessary to develop a model for switch 
latency.  The switch architecture defined in Section II is 
applicable to either a store-and-forward switch or a cut-
through switch.  In a store-and-forward switch, the entire 
packet is completely received on the ingress port before 
lookup operations begin.  In a cut-through switch, the lookup 
begins as soon as enough of the packet has been received to 
assemble a flow-key. 

To increase throughput, the process of switching a packet 
can be pipelined.  While the lookup process is working on a 
packet, the next packet can be copied from the ingress port to 
the input memory, and the previous packet can be modified 
and transferred to the output memory of the egress port.  Fig. 6 
shows the pipeline diagram for the store-and-forward switch. 

In order for the switch to maintain line rate forwarding, no 
stage of the pipeline can exceed the time it takes to receive a 
packet from the wire.   On a 10 Gbps Ethernet port there are 
potentially 14.88 million minimum size packets arriving per 
second; therefore, no stage can exceed 67.2 ns.  A generalized 
way to look at the minimum required pipeline stage length is 
to normalize the stage to received bit times.  A minimum size 
Ethernet packet is 64 bytes, and is therefore received in 512 
bit times as determined by the speed of the ingress link. 

Fig. 6.  Switch latency for a store-and-forward switch pipeline 
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The duration of the packet Rx and packet Tx stages of the 
pipeline are directly tied to the physical media line rate.  The 
fabric transit and packet modification stage is faster than the 
physical media line rate.  Therefore, to forward at line rate, the 
lookup stage and the fabric transit stage must be no longer 
than the time it takes to receive a minimum sized packet.   To 
simplify the calculation of switch latency we assume the 
lookup stage time will be a constant and equal to the amount 
of time it takes to receive a minimum size packet. 

Let Ksf be the number of bits in a minimum size Ethernet 
packet (which is the constant 512).  Let Rp be the received port 
line rate in bps and let L be the length of the packet in bits.  
Let Rf be the fabric interface transfer rate in bps and assume 
that Rf > Rp.  Switch latency is the amount of delay a packet 
experiences inside the switch, and will be measured as the 
amount of time between when the first bit of a packet is 
received on the ingress port and the time the first bit is 
transmitted on the egress port.  The formula for store-and-
forward switch latency is then: 

 
Store and Forward Latency = (L / Rp)+(Ksf / Rp)+(L / Rf) (11) 
 

This formula represents the time taken to receive the packet 
plus the time to perform the lookup stage plus the time to 
make any modifications and transfer the packet across the 
fabric.  (Packet transmission on the egress port is assumed to 
start immediately once the packet is in the output memory.) 

To improve store-and-forward switch latency, two things 
must change.  First, the lookup process and packet 
modification with transfer across the backplane must begin 
before the current packet has been completely received.  
Second, the transmission of the packet on the egress port must 
also be allowed to begin before the current packet has been 
completely received.  

In the cut-through model of a switch without any prediction 
the lookup process can begin no sooner than after the last bit 
of the packet needed to construct a flow-key has been 
received.   Let D = {D1(H1), D2(H2), …, Dn(Hn)} be the set of 
functions in the classification process that return the starting 
bit displacement for the flow-key fields in H.  Then Dn(Hn) is 
the starting bit offset for the last field necessary to create the 
n-tuple needed for the lookup.  If Kct is defined as the number 
of bits that must be received to construct the flow-key for the 
lookup stage to begin then Kct is determined as: 

 

Kct = Dn(Hn) + |Hn| (12)                  
 
Assuming that packet modification is part of the fabric 

transfer stage and the transmission of the received cut-through 
packet may begin as soon as the first bit has arrived in the 
output memory, then the following formula for cut-through 
switch latency is: 
 
Cut-Through Latency = (Kct / Rp) + (Ksf / Rp) + 1/Rf (13)  

 
This formula represents the time taken to receive enough of 

the packet to construct the flow-key plus the time to perform 
the lookup stage in order to maintain line rate plus the time to 
optionally modify the packet and transfer the first bit of the 
packet across the fabric.  Packet transmission on the egress 
port is assumed to start immediately once the first bit of the 
packet is in the output memory.   Fig. 7 shows the pipeline 
diagram for a cut-through switch. 

1) Further reductions to Switch Latency 
The switch latency of both store-and-forward and cut-

through switches can be reduced by exploiting two key 
concepts from computer architecture; value prediction and 
speculative execution [33].  Value prediction attempts to 
remove the limits on parallelism imposed by true data 
dependencies, while speculation seeks to reduce the latency of 
obtaining computed results.  In an Ethernet switch, the lookup 
stage is a data dependent operation that requires the reception 
of enough packet data to construct a flow-key, and the 
operations applied to the packet once the lookup completes 
must endure the lookup latency before forwarding can begin.  
Packet prediction and speculative switching remove this 
barrier by exploiting the temporal locality of network traffic to 
predict the data being received, allowing speculative packet 
operations for the flow to begin before the lookup has 
completed. 

Switch latency for a packet predicting speculative switch is 
limited by the time it takes to generate enough of the packet 
signature to confirm a match in the prediction cache.   Let S = 
{S1, S2, … Sm} be a packet signature of length m that consists 
of a set of bits that have been derived from the fields in H.  
There are a set of functions F that derive bits Si through Sj of S 
from the fields in H as they arrive from the link.  Let Kp be the 
number of bits received to form enough of S to find a match in 

 
 
Fig. 7.  Switch latency for a cut-through switch pipeline 

Look-up Fabric
Transit

Packet
Rx

Packet
Tx

Look-up Fabric
Transit

Packet
Rx

Packet
Tx

Switch Latency

 
 
Fig. 8.  Switch latency for a cut-through switch with packet prediction in the
forwarding pipeline 
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the prediction cache.  Then the latency for a packet predicting 
speculative switch is as follows: 
 
Prediction with Speculation Latency = (Kp/Rp)+1/Rf (14) 

 
This formula represents the time taken to receive enough of 

the packet to construct enough of the packet signature to find a 
match in the prediction cache, plus the time to transfer the first 
bit of the packet across the fabric.  This results in the pipeline 
diagram shown in Fig. 8. 

 

B. Implementation Considerations 
As with any pipeline employing speculation, there are 

several complications and clean-up steps that may be required.  
Once the entire flow-key has been received it is possible to 
confirm the correctness of the speculation.  Since it is possible 
for the first bit of the packet to be transmitted on the egress 
port before the results of the flow-key match are complete, the 
current egress transmission may be incorrect.  Such an 
incorrect speculation requires that the packet transmission be 
aborted in some cases.  To accomplish this, the packet must be 
corrupted by the transmitter before the last bit is sent.  
(However, this may not always be necessary - in the case of a 
layer 2 bridged network, a packet that is forwarded through 
the wrong port would simply appear as an extraneous flood 
and typically not cause an error.) 

The reduction in latency for a given configuration of cache 
size and signature size is directly related to the number of 
concurrent flows and amount of temporal locality in those 
flows.  To maintain effectiveness, the scheme will require 
more resources if applied to aggregated links in the core of the 
network because there will likely be a greater number of 
concurrent flows on those links.  Similarly, the general lookup 
process for switches attached to aggregated links will require 
larger table sizes and larger TCAMs to support increased 
concurrent flows, so the prediction scheme has similar scaling 
properties. 

 
 

V. EVALUATION 

A. Experimental Set-up 
In order to evaluate the effectiveness of the prediction 

approach, a program was written that consumes actual traces 
of network traffic and simulates the behavior of the proposed 
OpenFlow switch architecture.  Each packet received is 
assumed to be exposed to the full flow-matching logic of the 
OpenFlow switch. 

B. Traffic Analysis on Representative Traces 
The traces contain packet data from different network 

environments and different parts of the network topology as 
seen in Fig. 9.  The highlighted ports in the figure show the 
representative locations where trace files were captured. 
Network ports that are closer to individual stations have fewer 
multiplexed flows, and network ports that are in the core of 
the network or at the Internet edge are likely to have a greater 
number of multiplexed flows.  Prediction methods are 
expected to be most effective in the data center, near clusters 
of message passing servers, where the total number of flows is 
expected to be relatively small and low latency cut-through 
switching will be most beneficial. 

Four different trace datasets, described below, were used in 
the simulations and a summary analysis of the trace data is 
shown in Table II. 

1) Router Traces from LBNL 
Lawrence Berkeley National Laboratory (LBNL) maintains 

11 GB of anonymized packet header traces from October 2004 
through January 2005, which are available for download from 
http://www.icir.org/enterprise-tracing/download.html. These 
traces include enterprise campus LAN traffic from subnet 
links connected directly to the site router.  A thorough analysis 
of these traces is available in [34].  

2) Server Traces 
The Server trace files were captured from the LAN 

backbone of a network-engineering department at the Hewlett-
Packard Company in May 2008.  The trace selected contains 
only inbound traffic to a core switch with a backbone 10GbE 
port connecting the engineering development servers.  The 
outbound traffic is not included in the trace, which more 
accurately represents the type of traffic the prediction logic 
would be exposed to in an implementation of the architecture 

 
 
Fig. 9.  Network topology containing representative trace capture points 
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TABLE II 
TRACE DATA SET ANALYSIS 

Trace 
File 

Packet 
Count 

Average 
Packet Size TCP UDP other 

Pin 
(24x32)

E(S) 
(24x32)

MPI-BT 237K 1161 100% 0% 0% 0.98 6.51 

MPI-CG 237K 1243 100% 0% 0% 0.00 2.67 

MPI-EP 1141 150 83% 15% 2% 0.43 4.25 

MPI-FT 237K 1160 100% 0% 0% 0.00 4.52 

MPI-IS 236K 1194 100% 0% 0% 0.97 6.42 

MPI-LU 239K 899 100% 0% 0% 0.00 4.79 

MPI-MG 237K 1169 100% 0% 0% 0.00 4.49 

MPI-SP 236K 1238 100% 0% 0% 0.00 4.98 

Router 2.2M 344 96% 2% 2% 0.80 5.93 

Server 490K 198 55% 44% 1% 0.53 6.24 

Client 250K 151 38% 40% 22% 0.83 5.89 
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in Section II.  
3) Client Traces 

The Client trace files were captured from a link to a 
workgroup switch in the same engineering department.  The 
trace selected for analysis captures only the inbound activity 
of a small number of engineering users, and therefore the 
source addresses of the packets are predominantly client 
stations.  This trace has the highest percentage of traffic that is 
neither TCP nor UDP as seen in Table II. 

4) MPI Traces 
The National Air and Space Administration (NASA) 

maintain a set of benchmarks developed by the Numerical 
Aerodynamic Simulation (NAS) organization in order to 
analyze the performance of parallel computer systems.  These 
tools are called the NAS Parallel Benchmarks (NPB).  The 
benchmarks are recognized in the industry as a representative 
suite of parallel applications. The traces collected for this 
study are the ingress capture of an individual 1 GbE port 
connected to one of the 16 compute nodes in a Linux Rocks 
cluster.  Individual trace files were captured for each 
benchmark in the suite, and the inter-cluster communication 

used was MPI over Ethernet. Complete details of the NPB 
suite may be found at [35].    

C. Temporal Locality of Network Traces 
 Fig. 10 illustrates the temporal locality of the trace data sets 

by comparing the gap between consecutive packets of the 
same flow.   The figure shows the percentage of packets that 
have a particular spacing between a previous packet of the 
same flow.  The figure only shows the distribution of packet 
spacing up to a gap of 10 packets, which covers approximately 
75% of all packets in the traces.  The remaining ~25% of the 
packets lie in the long tail of the distribution.   The measured 
distribution of the packet flow gap in the trace datasets closely 
matches the results observed in [16]. 

Traces that have been acquired from links that aggregate 
fewer flows and are physically closer to end-stations have the 
highest temporal locality (MPI and Client).  The ability to 
predict flow membership with a small per-port cache is 
expected to be most effective on these traces.  

VI. RESULTS 
A complete set of simulation results for both power and 

latency reductions were obtained for each combination of 
cache size, signature size and trace file.  In the following 
figures a signature size of 32 bits is commonly used for 
consistency and because it highlights notable aspects of the 
proposed enhancements.  

The ability to reduce latency and power is strongly 
dependent upon the rate of correct predictions generated by a 
prediction method. Fig. 11 shows Phit, Pincorrect and Pmiss for the 
Sub-Field Hash method when run with all trace files.  The 
figure confirms that the prediction circuitry is more effective 
when placed closer to servers in the data center.  The MPI 
traces have very high temporal locality, resulting in Phit rates 
nearing 99%. 

Fig. 12 compares the different prediction methods with the 
most diverse Router trace using 32-bit signatures.  The figure 

 
Fig. 10.  The packet gap analysis shows the distribution of spacing between
consecutive packets of the same flow up to a spacing of 10 packets. 
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Fig. 11.  Prediction rates for each trace data set using the Sub-Field Hash method with 32-bit signatures and varying prediction cache size 
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Fig. 12.  Prediction rates for each prediction method run against the Router trace with 32-bit signatures and varying prediction cache size 
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clearly shows that correct prediction rates nearing 97% are 
possible even as the technique is placed deeper in the network 
topology.  It also shows that the methods have a high incorrect 
prediction rate when the cache size is small.  This is 
understandable since both methods stop searching the 
prediction cache under two conditions - when there is exactly 
1 entry that matches the partial signature, or when there are no 
entries that match.  When the cache size is small it is more 
likely that a small partial signature will match exactly 1 entry 
because there is little diversity in the cache.  Larger caches 
support more diversity, reducing the chance of a false positive 
match and thus the number of incorrect predictions. 

A prediction cache miss occurs when a new flow is 
established or the signature for an existing flow has been 
removed from the cache.  Fig. 12 shows that the Direct Map 
method has a slightly lower prediction cache miss rate with 
small caches (~20%) than the Sub-Field Hash method.  This is 
because the Direct Map method has a higher incorrect 
prediction rate with lower cache sizes.  Incorrect predictions 
are not counted as cache misses - whether there is an incorrect 
prediction or a cache miss, the same switch latency penalty is 
paid, so the more speculative approach tends to benefit in the 
overall latency calculations.  The downside to the more 
speculative Direct Map approach is that it potentially wastes 
backplane resources and power, which in practice is not free.  

The Sub-Field Hash method has lower incorrect predictions, 
since it takes into account a greater number of bits when 
creating a signature.  This is particularly relevant when the 
signature size is small and the cache is large as seen in Fig. 13.  
As the number of bits used to represent a signature grows the 
two methods perform similar. 

Fig. 14 shows that the Direct Map method has lower 

prediction cache misses on the Client trace than the Sub-Field 
Hash method, but at the expense of greater incorrect 
predictions.  Recall that the Client trace has the highest mix of 
non TCP/UDP traffic – the Client trace dataset has 18% ARP 
packets and 2% other layer 2 frames, while the Server and 
Router trace files have 99% and 98% IP traffic, respectively.  
Since the Direct Map method simply extracts bits from 
predetermined offsets, and those offsets are optimized for 
TCP/UDP traffic, it is no surprise that the Direct Map method 
has the higher number of false positive matches between the 
two.   The two figures show the effectiveness of hashing over 
selecting predefined bits for all signature and cache sizes used 
with the Client trace. 

When considering how latency can be reduced, one would 
expect that improved accuracy from the largest signature size 
and cache size would be the most effective.  However, for 
latency reduction, the objective of packet prediction is to 
begin forwarding the packet as soon as possible with the 
highest probability that the speculation is correct. Fig. 15 
shows the reduction in switch latency on the Server trace for 
different packet prediction schemes as compared to a 
conventional store-and-forward and cut-through switch.   

The figure shows there is very little difference between 
methods when it comes to latency reduction.  This is because 

Fig. 13.  Difference between Direct Map and Sub-Field Hash methods when
making incorrect predictions on the Client trace. 
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Fig. 15.  A comparison of the latency reduction achieved by each prediction
method on the Server traces using 32-bit signatures 
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Fig. 16.  Direct Map method latency reduction for the Client, Server and
Router trace datasets showing increasing delays at larger cache sizes 
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both methods have similar correct prediction rates.  Where the 
methods differ is in the mix of incorrect predictions and cache 
misses as seen in Fig. 13 and Fig. 14.  These differences will 
have a bigger impact on power reduction since incorrect 
predictions require aborting backplane transfers which are 
strictly a waste of power.  The Direct Map method has the 
lowest latency with a 64-entry cache - the switch latency for 
this configuration is 0.13 times the latency of a store-and-
forward switch and 0.33 times the latency of a cut-through 
switch.   This corresponds to nearly a factor of 8 and a factor 
of 3 reduction in latency, respectively. 

Fig. 16 shows the Direct Map method latency reduction for 
the Client, Server and Router trace datasets.  It is interesting to 
note that as the cache size increases the performance of the 
Direct Map method degrades for the Router trace.  This 
phenomenon occurs because a larger number of stale entries 
exist in the prediction cache, which only serve to further delay 
the exact match of partial signatures. 

The baseline power for an OpenFlow switch that uses a 
TCAM for flow matching is highly dependent upon the size of 
the TCAM.  An OpenFlow switch can be optimized for 
different locations in the network topology by selecting 
different TCAM sizes. Locations where a large number of 
flows are aggregated are better served by a large TCAM, and 
locations in the topology that are closer to individual stations, 
such as the MPI cluster or client workgroup, can get by with a 
smaller TCAM. 

As the size of the TCAM grows, the average energy 
consumed by a flow match increases. Packet prediction 
reduces this energy by avoiding the lookup process.  Fig. 17 
shows the per-packet energy savings over a switch without 
prediction.  Even with the smallest TCAM size evaluated, the 
average energy consumed by the lookup phase for MPI traffic 
is only 7% of the power consumed by a switch without 
prediction.  At the largest TCAM size considered, the average 
energy for MPI traffic is only 1%.  

The Client trace has the highest energy consumption of all 
the sample datasets.  This is primarily because it has the 
highest incorrect prediction rate and incurs the most cost for 
incorrect speculation.  The lookup phase for the Client trace 
consumes 68% of the power required for a switch without 
prediction at the smaller TCAM size and 16% of the power 

using the larger TCAM.  Increasing the prediction cache depth 
tends to increase the prediction accuracy, so it should be an 
effective approach for reducing the load on the TCAM.  The 
larger prediction cache will consume more power, but its 
increased effectiveness will offset the power required to 
deploy a larger TCAM.  

There are cases where the prediction circuitry results in a 
switch that consumes more power than a switch without the 
circuitry.  Fig. 18 shows the smallest TCAM size evaluated 
(8K) with the largest signature size (32-bits).  Anytime the 
prediction cache is less than 8 entries deep, the system suffers 
too many cache misses and incorrect predictions to keep the 
cost of speculation below that of a system without prediction.  
This is true for all traces except the MPI traces which were 
collected from a relatively small cluster and exhibit extreme 
temporal locality.  Clearly ASIC designers should not consider 
cache sizes less than 8 entries and larger depths will better 
support a greater number of simultaneous flows as seen in the 
Server and Router traces. 

Since the prediction enhancements ultimately aim to 
simultaneously reduce both power and latency, the goal is to 
find a configuration that optimizes both.  Fig. 19 shows the 
power reduction verses latency reduction for the Router trace 
using the Sub-Field Hash method.  Values located in the lower 
right hand portion of the figure are best.  Clearly 8-bit 
signatures are not able to predict flows well enough to be 
useful.  As previously shown, 16 entry caches are a turning 

 
Fig. 18.  Power consumption of Sub-Field Hash method on all trace files
showing the breakeven point against a switch with no prediction 
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Fig. 19.  The packet gap analysis shows the distribution of spacing between
consecutive packets of the same flow up to a spacing of 10 packets. 
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Fig. 17.  A comparison of the power reduction achieved by the Sub-Field
Hash method across all trace data sets 
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point for the methods when reducing latency. Larger 
signatures and larger cache sizes appear to be effective at 
reducing power with only slight increases in latency. 

In summary, the results show that even for the most diverse 
Router trace, correct flow prediction rates approaching 97% 
with a simultaneous reduction in latency by a factor of nearly 
5 and a reduction in power of the lookup phase by a factor of 7 
are achievable.  While all parts of the network topology can 
benefit from a switch with prediction, the high performance 
computing cluster gains the most.  The two methods perform 
similarly for latency reduction, but the Sub-Field Hash method 
has a slight performance advantage when also considering 
power reduction because of its lower incorrect prediction rate. 
Both methods are most effective with cache sizes around 16 
entries.  Larger signatures are more effective at reducing 
power and signatures less that 16 bits are not worth 
considering. 

VII. RELATED WORK 
This work is an extension of a previous contribution that 

focused exclusively on latency reduction [36].  This work 
includes additional trace data sets for MPI communication, the 
Sub-Field Hash prediction method, a power model and the 
ability to also reduce the power of the lookup process.     

A. Reducing TCAM Power 
Reducing the power consumption of network devices that 

use TCAMs has been the focus of a number of different 
studies [31, 32, 37].  A common technique in most previous 
approaches is to segment the TCAM into blocks and only 
search individual blocks as needed.  Additional front end logic 
is provided to locate the individual block that likely contains 
the search entry. Power is saved by only driving current 
through the lines of that individual block.  The use of TCAM 
segmentation and intelligent organization to reduce power 
consumption during search is orthogonal to the prediction 
enhancement and in fact is compatible with the approach that 
further aims to reduce power by simply bypassing these 
operations. 

Mogul et al reduce TCAM lookups in an OpenFlow switch 
by first searching for fully qualified flow-keys in a large hash 
table [38].  This multi-layer scheme saves power and also 
reduces pressure on the TCAM size. Kasnavi uses a multizone 
pipeline cache to reduce power and exploit the temporal 
locality of IP routed traffic [39].  These schemes are similar to 
the prediction enhancements because they use caching to 
reduce power, but neither attempt to simultaneously reduce 
latency. 

B. Latency Reduction using Prediction 
Using prediction techniques to reduce latency and improve 

communication performance has not been extensively studied.  
There is no known prior work that has used compressed 
packet content to facilitate prediction in parallel with the flow 
classification process on a statistically multiplexed packet 
switch.    

The goal of reducing the number of pipeline stages in a 

routing switch by using predictive switching was proposed in 
[40].  The proposed technique looks at the forwarding history 
of an ingress port to predict the egress port, irrespective of the 
contents of the packet. The 2-D torus network for which this 
prediction scheme was developed is a connection oriented 
switch for specialized high performance computing 
applications.  The authors achieved 77% prediction accuracy 
using the NAS parallel benchmarks. 

Speculative techniques are proposed to reduce the latency 
of setting up paths across a connection oriented crossbar fabric 
in [41, 42].  In these works, fabric bandwidth is arbitrated 
under the speculation that fabric virtual channel allocation will 
typically succeed.  All of this occurs after the decode and 
routing stages (i.e. packet Rx and lookup stages).  However, as 
the richness of the forwarding policy increases, the complexity 
and latency of decode and routing stages will begin to 
dominate.  

The comparison of predictive switching ideas with concepts 
from advanced computer architecture is best described in [43].   
Surendra et al show how the temporal locality of network 
traffic can be exploited to improve instruction reuse and 
reduce latency in network processors. Their proposal is to 
have a separate instruction reuse buffer for each active flow 
and to swap the processor context when a packet is received 
from a different flow.  The approach is conceptually similar to 
our prediction enhancement in that the prediction cache holds 
a set of forwarding instructions for packets from a particular 
flow.  The same temporal locality is used to select a context 
and speculatively operate on a packet.  However, they assume 
the packet classification completes with 100% accuracy and 
there is no speculation.  They are focused on speeding up the 
instructions that operate on the packet after the classification is 
done, where our approach uses a cache in parallel to speculate 
the results of the classification. 

VIII. CONCLUSION 
Enhancing an OpenFlow switch with per-port packet 

prediction circuitry is an effective means for simultaneously 
reducing power and switch latency without sacrificing 
flexibility and rich packet processing.  Correct prediction rates 
approaching 97% are achievable with a moderate amount of 
per-port circuitry.  Two different prediction methods that 
trade-off per-port complexity for accuracy where shown to be 
effective.  The more accurate Sub-Field Hash method is more 
effective at reducing power consumption because of a lower 
incorrect prediction rate while equivalent latency reduction 
can be achieved even with the simplistic Direct Map method.  
The results of simulations using real network data have shown 
that packet prediction can reduce the latency of a traditional 
store-and-forward switch by nearly a factor of 8 and reduce 
the already low latency of a cut-through switch by a factor of 
3.  Depending upon the locality of the network traces, the 
average energy required in the lookup phase of an OpenFlow-
based Ethernet switch can simultaneously be reduced as well. 
While all parts of the network topology can benefit from a 
switch with the proposed circuitry, the high performance 
computing cluster gains the most. 
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