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Abstract

An analytical model for computing submesh reliability
is proposed in this paper. The system is considered op-
erational as long as a functional submesh of the required
size is available. We use the principle of inclusion and
exclusion to find the exact probability of having a func-
tional submesh within a partition of the mesh. The reli-
ability of a partition is then used to approximate the
submesh reliability of the system and thus this model is
called partitioned mesh (PM) model. The partitions are
taken along either dimension of the mesh. The selection
of the dimension on which the partitions are made is
based on the required submesh size. It is shown that the
submesh reliability in every partition reduces to a poly-
nomial with only two terms. The partitioned mesh
model is validated with simulation and compared with
the earlier proposed approximation techniques. It is
shown that the PM model provides better approxima-
tions for submesh reliability with constant computa-
tional complexity.
INDEX TERMS: Column Partition, Partitioned Mesh
Model, Row Partition, Submesh Reliability, Two Di-
mensional Mesh.

 I.  Introduction
The mesh-connected processor array is a popular

architecture used in parallel processing. Existing exam-
ples of such systems include the Illiac IV, MasPar,
Touchstone Delta, Intel Paragon [1].

The fault-tolerance of mesh connected systems has
been studied in [2-4]. Earlier works have primarily fo-
cused on the design and analysis of reconfigurable sys-
tems. In [2, 3], a fault causes the elimination of either an
entire row or column from the mesh, and the minimum
working configuration consists of a single functional
row or column. These techniques are efficient for recon-
figuring systolic systems. For general applications and
with today’s high performance systems designed with
powerful and expensive processing nodes, the removal
of functional nodes becomes undesirable.

Mesh connected parallel computers are used in a
partitionable environment where a task requires only a
certain number of processing elements arranged in adja-
cent locations and does not require an entire mesh to
perform its function. The task requirements are specified
in terms of submeshes. Thus in a submesh reliability
model, the system is considered operational as long as a
submesh of the required size is available. Analyzing the
reliability for submesh helps the system designer to un-
derstand the reliability of the mesh system in performing
a particular task.

Submesh reliability is dependent on the processor
allocation schemes used. Several submesh allocation
schemes have been proposed in the literature [5-7].
These allocation schemes vary in terms of the submesh
recognition ability and thus result in different submesh
reliability. The two-dimensional buddy system (TDBS)
[5] and the frame sliding (FS) method [6] allocate sub-
meshes at specific locations in the system. As indicated
by Zhu [7], these two methods have the problems of
fragmentation, and may cause allocation misses. Zhu
proposed an algorithm, which is capable of allocating
submeshes at any possible location provided it exists.

As the possible submesh locations in TDBS and FS
do not overlap, the analysis is straightforward. Exact
models were derived in [4] for TDBS and FS. In case of
the submesh allocation with perfect recognition (Zhu’s
schemes [7]), the possible submesh locations overlap
and thus the analysis becomes extremely difficult. Ear-
lier attempts to analyze the exact reliability demon-
strated the difficulty and have left it as an open problem
[8,9]. Two approximation models were derived in [4] to
give the lower bounds for mesh systems with perfect
recognition ability -- the expanding row/column tech-
nique, and the row-folding technique. The expanding
row/column technique gives a tight bound when the
degradation factor is low (less than 50%), but gives a
pessimistic estimation of the submesh reliability when
the degradation factor is higher. On the other hand, the
row folding technique gives a better approximation at
high degradation but is not as good in predicting the
submesh reliability at low degradation. The main draw-



back of both these approximation techniques is the com-
putational complexity. Both techniques require a recur-
sive algorithm to calculate the consecutive k-of-n reli-
ability. The computational complexity of calculating the
consecutive k-of-n system is non-polynomial and thus is
only suitable for small system size.

In this paper, we analyze the submesh reliability of
mesh system with perfect recognition ability. The moti-
vation behind this work is to find an approximation
technique that can provide a better estimation of the
submesh reliability with a reasonable computational
complexity so that it can be used for any system size. An
exact model for the mesh system with perfect recogni-
tion ability can be derived with the principle of inclusion
and exclusion. However, the time complexity involved is
too high and thus makes this approach unacceptable. By
decomposing the system into smaller partitions along
one dimension, the submesh reliability using the prin-
ciple of inclusion and exclusion within each partition is
reduced to a deterministic polynomial with only two
terms. The partitions can be made along either dimen-
sion of the mesh. The submesh reliability of the entire
system can then be approximated by treating the system
as a parallel system consists of these partitions.

In the next section, we define the parameters and
assumptions used in deriving our model. Section III ex-
plains the detail of the polynomial model for the parti-
tioned mesh technique. The model is then validated and
compared with previous models in Section IV, followed
by the concluding remarks in Section V.

 II.  Preliminaries
We consider an MxN mesh connected system

where M is the number of rows and N is the number of
columns of processing elements. An incoming job is
assumed to require a submesh of size mxn, where m≤M
and n≤ N. Submesh reliability of the mesh is defined as
the probability of being able to allocate a fault-free sub-
mesh of the required size for the execution of a particu-
lar task. The proposed analytical model is based on the
following assumptions:
(i) A node failure does not affect the normal operation

of any other node.
(ii) The distributions of failure time of the nodes are

assumed exponential in nature and are independent
of each other.

(iii) The model assumes that the allocation algorithm is
always able to recognize an operational submesh of
the required size if it exists.
Failure of a node includes the failure of the proc-

essing element and the communication links associated
with it. The failure rate for an individual node is de-

noted as λ. The reliability of a single node is defined as
a function, R t e t( ) = − λ , with respect to time t and its

failure rate λ. Coverage factor, denoted as C, is the
probability that a system successfully detects a fault and
is recovered after a fault has occurred. In the case of an
uncovered failure, the status of the system is unpredict-
able and considered faulty.

 III.  Submesh Reliability Model by the Principle of
Inclusion and Exclusion

In this section, we describe the application of
principle of inclusion and exclusion in finding the exact
submesh reliability model.

A. Principle of Inclusion and Exclusion in
Submesh Reliability

In an MxN mesh, there are
X M m N n= − + × − +( ) ( )1 1 possible locations to locate
a submesh of size mxn. For the clarity of explanation,
we name these submeshes by their upper left-most
nodes. So we have submeshes located at positions (1,1)
through (M-m+1, N-n+1). The probability of having a
mxn submesh at any specific location is exactly Rmn(t).
The submesh reliability is equal to the probability of
having at least one of the X submeshes consisting of
functional nodes. Having a functional submesh at any
single location is a probabilistic event and the submesh
reliability equals to the probability of occurrence of these
events. This probability can be calculated using the
principle of inclusion and exclusion as

Rsys = Prob{one submesh exists}∑ -

Prob{any two submeshes coexist}∑
+ Prob{any three submeshes coexist}  ∑ − �

+ ( )− ∑1 Prob{X submeshes coexist}X-1 .

The probability of having more than one submesh
functional can be found as RY(t), where Y is the number
of nodes required for all the coexisting submeshes. De-
pending on the locations of the coexisting submeshes
concerned, Y can be different for the same number of
coexisting submeshes. Fig. 1 shows such an example for
two coexisting submeshes. The two 3x3 functional sub-
meshes at location (1,1) and (2,1) requires 12 nodes to
be functional, namely, nodes (1,1) to (4,3). On the other
hand, for two 3x3 submeshes to coexist at location (1,1)
and (2,2), 14 nodes have to be operational. The above
example shows that in the second summation of our
principle of inclusion and exclusion formula, among
others, the terms R12(t) and R14(t) exist. Once all Y’s are
found for every possible submesh combination and dif-



ferent number of coexisting submeshes, the complete
submesh reliability model can be constructed using the
principle of inclusion and exclusion.

To obtain the complete reliability polynomial, two
things need to be analyzed. First, a submesh list for dif-
ferent number of coexisting submeshes has to be gener-
ated. Second, the number of required nodes Y for every
submesh combination from the submesh list has to be
determined. For X possible locations of functional sub-
meshes, there are 2X combinations. Since we need to
check over each of these combinations to determine the
number of required nodes for all the submeshes in the
combination to be operational, this approach have a
complexity of O(2X). This kind of complexity becomes
unacceptable even with a small increase of X.

B. Partitioned Mesh (PM) Model
To reduce the complexity of computations, we use

an approximation technique based on dividing the entire
mesh into non-overlapping partitions. We call this
technique as Partitioned Mesh (PM) model.

There are two different ways to partition the sys-
tem. Consider a task requirement of mxn submesh in an
MxN mesh. The first approach considers a partition of
m rows and 2n columns. If 2n is more than N, we make
the partition's size mxN. The partitions thus formed are
called row partitions (RPs). The second approach con-
siders partitions of 2m rows and n columns. If 2m is
more than M, then we make the partition size Mxn. The
partitions thus formed are called column partitions
(CPs). Therefore an MxN mesh can be partitioned

into
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. Note that while making the RPs or CPs,

there may be cases where not all the nodes are covered.

The number of uncovered nodes adds to the error in the
model.

There are two factors that should be considered
while making the decision whether to make CPs or RPs.
First, the number of uncovered nodes should be mini-
mized. The uncovered nodes are ignored in our analyti-
cal model and thus contribute to the error. Second, the
number of partitions should be minimized. As we are
considering non-overlapping partitions, all the sub-
meshes that overlap two or more partitions are ignored
in our analysis and contribute to the error.

By extending an mxn submesh into an mx2n RP,
there will be X = n+1 possible locations to locate a
functional submesh. An example of a 3x8 RP for the 3x4
submeshes is shown in Fig. 2. By extending the 3x4
submesh into 3x8 RPs, the possible locations for a func-
tional submesh of the required size in a partition are
equal to 5. One important property for the possible sub-
mesh locations in a partition is each of these submesh
locations overlaps with or is adjacent to another sub-
mesh location. This property plays an important role in
simplifying the submesh reliability within each RP or
CP.

The submesh reliability is a polynomial of the sin-
gle node reliability, R(t). The polynomial can be con-
structed using the principle of inclusion and exclusion to
find the coefficients. The exponents of the polynomial
are found by counting the number of required functional
nodes for different combination of possible submesh
locations. In the example shown in Fig. 2, there are X=5
possible locations for submesh of the required size. The

reliability polynomial consists of R tYi ( ) , where Yi is

between 12 and 24, and is a multiple of 3. Twelve and
twenty-four are the smallest and largest possible number
of required functional nodes for different submesh com-
binations. The height of this RP is equal to the height of
the submesh required, so at least an entire column has to
be added into consideration when more submeshes are
considered. The width of the partition is taken as twice
the submesh width, so any two submeshes in this parti-
tion will overlap with or be adjacent to one another.
Therefore, no matter what submesh combination we are
considering, the required functional nodes for these

14 nodes for submesh
(1,1) and (2,2)
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2
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4
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1 2 3 4 5

12 nodes for submesh
(1,1) and (2,1)

Fig. 1. Number of Nodes Required for Submeshes at
Different Locations.

Column 1 2 3 4 5 6 7 8

row 1

row 2

row 3

Fig. 2. A (3x8) Row Partition for Finding the Reliabil-
ity of (3x4) Submeshes.



submeshes will be in consecutive columns. The number
of processing nodes in these consecutive columns, Y,
represents the exponent that appears in the reliability
polynomial. The number of submeshes determines the
sign of the coefficient of RY(t) in the reliability polyno-
mial.

Table 1 lists the coefficients of every term gener-
ated by including different number of events for the exis-
tence of an mxn submesh in an mx2n RP. The deriva-
tion of the reliability for a CP is similar and thus we use
only the RP to show the derivation. The sum of each
column in Table 1 represents the coefficient for a differ-
ent term in the reliability polynomial. The coefficient of
degree km is affected by possible locations of k consecu-
tive operational columns and these k consecutive col-
umns can be assigned to different number of functional
submeshes. Rows in Table 1 show how different number
of submeshes can contribute to terms with different ex-
ponents. In other words, an entry in the column Rkm and
row  j shows how j functional submeshes can be selected
with k consecutive operational columns. Table 1 lists
only coefficients from Rmn to R(n+4)m. The actual poly-
nomial consists of terms with exponents upto R2mn.

Because n consecutive columns in a mesh can be
assigned to only one functional submesh and n+1 con-
secutive columns can only be assigned to two consecu-
tive submeshes, the first two coefficients show how n
and n+1 consecutive operational columns can be se-
lected. For all the other entries in Table 1, there are two
combinatorial terms. The first term is the number of
ways one can choose the consecutive columns (rows) of
working nodes in the mesh. After the consecutive col-
umns (rows) of working nodes have been chosen, it is
possible to determine the submesh combinations that
require this number of consecutive columns (rows). It

can be observed that n+k consecutive columns (k be-
tween 2 and n) can be caused by combinations of 2 to
k+1 submeshes. We can visualize these n+k consecutive
columns as having at least two boundary submeshes
which will require all these columns to be operational.
Beside these two boundary submeshes, the consecutive
columns can accommodate upto k-1 other submeshes
without changing the exponent (number of required
nodes) in the reliability polynomial. The second combi-
natorial term determines how many different ways can
these other k-1 submeshes be selected.

Associating the sign of the coefficients with the
second combinatorial term in Table 1, the sum of all the
second terms in the same column for coefficients of
Rmn+km  is equal to the binomial [ ( )]1 1 1+ − −k , except
when k is equal to 0 and 1. This binomial function is
obviously equal to zero and thus the coefficients of all
the terms in the reliability polynomial are zero except
the first two terms. The coefficient for Rmn is equal to X,

and the coefficient for Rmn+m is equal to X-1. A reliabil-
ity polynomial with only two terms can thus be simply
derived for an RP as,

R t X R t X R tRP
mn mn m( ) ( ) ( ) ( )= ⋅ − − ⋅ +1 . (1)

Coverage factor of a failure can be incorporated
into the PM reliability model. Each term, RY(t), means
that Y functional nodes are required for the coexisting
submeshes. Among the remaining nodes, any number of
failures will not affect the operation of the system as
long as these failures are covered failures. Let α be the
number of nodes in a partition. It is equal to 2mn when
the size of partition considered is mx2n as in RPs or
2nxm as in CPs. If the partition size is mxN or Mxn, α
is equal to Mn or mN, correspondingly. The probability
of not having any uncovered fault among the other

Table 1. The Coefficients of the Reliability Polynomial.
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nodes can be calculated by the summation,

f Y
Y
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R C Ri Y i

i
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− − −
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has to be multiplied with RY(t) in the reliability poly-
nomial derived when coverage factor is considered.
Thus the reliability polynomial for an RP with coverage
factor incorporated in Equation (1) is equal to

R t X R t f mn

X R t f mn m

RP
mn

mn m

( ) ( ) ( )

( ) ( ) ( ).

= ⋅ ⋅ −
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α
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The submesh reliability of the entire mesh can be
approximated as a parallel system consisting of the RPs.
Let S be the number of RPs in the system. The system
reliability can be modeled as,

R Rsys RP
S= − −1 1( ) . (3)

The reliability polynomial can be obtained for a CP
by substituting the corresponding variables in the RP
model.

 IV.  Results and Discussion
A. Model Validation

The partitioned mesh model for submesh reliability
is compared with the simulation results. A mesh of size
(100x80) is considered. Task requirements of three dif-
ferent submesh sizes are analyzed, namely 50x40,
60x75, and 75x80. The simulation is run for 10,000
iterations. Fig. 3 illustrates the system reliability of the
three different submesh requirements. The dotted lines
represent the simulation results, and the solid lines are
the analytical results for the corresponding submesh
sizes. The results show the accuracy of the analytical
model. This model gives good approximation at low
degradation, such as in the case of 80x75 and 60x75
submeshes. For higher degradation, 50x40, the model
still gives a reasonable approximation with small time t.
The approximation becomes worse as the time grows

and the system reliability falls. However, it is unlikely
that the system will be operated with reliability below
certain values, or with such high degradation.

B. Comparison and Discussion
Table 2 lists the submesh reliability predicted by

the PM model and the expanding R/C technique [4].
The system and submesh sizes compared are the same
ones used in the previous subsection. These submesh
requirements represent the high degradation to low deg-
radation scenarios from 75% to 25%. It can be inferred
from Table 2 that the PM model gives tighter bounds for
the 50x40 case. It gives a bound of 6% higher at time
200, and  about 56% higher at time 1000 than the ex-
panding R/C model. For the low degradation submesh
(75x60), the PM model gives more conservative ap-
proximations. The difference is very insignificant
(around 0.4%) at time 200. The largest difference ob-
tained is at about 3.6 % at time 1000. The submesh reli-
ability at that time is only around 0.03. It is very un-
likely that a system will be operated with such a low
reliability. For the submesh with the lowest degradation
(80x75), both models give identical results.

For system with high degradation, row folding
technique is chosen over expanding R/C technique for
its better accuracy. Figures 5 and 6 compare the sub-
mesh reliability estimated by row folding technique and
the PM model with high degradation. Different failure
rates are used in these two figures to make the difference
between the two models prominent. In the two cases
compared, we have shown that the PM model provides
an even tighter bound than the row folding technique.
Unlike the expanding R/C and row folding techniques,
which only provide good approximation of the reliability
with certain range of degradation factor, the PM model
analyzes submesh reliability with consistent accuracy for
any degradation factor.
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Fig. 3. Submesh reliability for a (100x80) mesh.
λ=0.000001, C=0.99.

Table 2: Comparison of R/C extension technique
with the partitioned mesh (PM) model.

50x40 75x60 80x75
Time R/C PM R/C PM R/C PM

0 1.000 1.000 1.000 1.000 1.000 1.000
200 0.938 0.995 0.527 0.525 0.389 0.389
400 0.807 0.958 0.262 0.261 0.143 0.143
600 0.660 0.875 0.126 0.125 0.051 0.051
800 0.521 0.758 0.059 0.058 0.018 0.018

1000 0.402 0.628 0.028 0.027 0.006 0.006
1200 0.304 0.502 0.012 0.012 0.002 0.002
1400 0.226 0.389 0.005 0.005 0.001 0.001
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Fig. 5. Submesh Reliability with 75% degradation.
C=1.0, λ=0.0001.

The most important feature about this new model
is its simplicity. Both the previously proposed tech-
niques require a recursive algorithm to carry out the
calculation for the consecutive k-of-n system. The com-
putational complexity of the recursive algorithm is non-
polynomial and thus requires tremendous computing
time even for a small system size. In our new model, the
submesh reliability in every partition is a polynomial
with only two terms. Thus, the complexity for obtaining
the reliability polynomial for every RP or CP is constant.
The approximation of parallel system with RPs and CPs
is also of constant complexity.

 V.  Concluding Remarks
This paper discusses the submesh reliability

evaluation techniques in mesh connected multiproces-
sors. A partitioned mesh (PM) model is introduced for
finding the mesh reliability using the perfect submesh
recognition allocation algorithm. The entire mesh is first
divided into several partitions based on the required
submesh size. Each of these partitions is analyzed using
the principle of inclusion and exclusion. Reliability of
the partitions are then used to derive the system reliabil-
ity using the parallel system model. The model is vali-

dated through simulations. Two major improvements
over the previous techniques are obtained in the PM
model. First, previous models provide good bounds only
within certain degradation. The PM model provides
consistent accuracy with a wide range of degradation.
Second, the exact analysis of submesh reliability is
known to be extremely difficult [8,9]. Previous approach
on approximating the submesh reliability is highly
complex and does not provide a tight bound. The pro-
posed PM model is very simple and also provides a
tighter bound than that of [4]. The model improves the
complexity from a non-polynomial complexity as used
in [4] to a constant. These two advantages make the
partitioned mesh model favorable.
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Fig. 4. Submesh Reliability with 50% degradation.
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System Size: (16x12)
Submesh Size: (12x8)

System Size: (16x12)
Submesh Size: (8x6)


