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Abstract

Differentiated services (DiffServ) was recently proposed by the IETF as a scalable solution
for the Internet QoS. Within the DiffServ architecture, premium services is a service class which
is proposed for interactive real-time applications like Internet telephony or video conference. In
order to ensure the service quality of premium services, each DiffServ domain need to appro-
priately negotiate a service level agreement(SLA) with its customers and neighboring domains.
Because the resources for premium service is usually a small part of the total network band-
width, dynamic SLA negotiation is preferred to maximize the resource utilization. However, a
completely dynamic SLA negotiation scheme introduces scalability problem for the bandwidth
broker(BB). In this paper, we introduce the concept of “pipe” as a viable solution for this
scalability problem. We propose a simple threshold-based updating scheme for the pipe which
incurs an acceptable updating overhead for the BB while maintaining a high utilization of the
pipe. We study the performance of the threshold-based updating scheme and compare it with
an ideal updating scheme. The ideal scheme is theoretically optimal as it uses future knowledge
for periodically updating the pipe capacity. The performance of the threshold-based updating
scheme is very close to the ideal updating scheme.

Keywords: Differentiated Services, End-to-End Guarantee, Expedited Forwarding, Internet, Pipe,
Premium Services, Quality of Service



1 Introduction

The current Internet uses the best-effort service model. In this model the network allocates band-
width to all the contending users as best as it can and attempts to serve all of them without making
any explicit commitment to rate or any other service quality. With the proliferation of multime-
dia and real-time applications, it is becoming more desirable to provide certain Quality of Service
(QoS) guarantee [1] for Internet applications. The Internet Engineering Task Force (IETF) [2] has
recently proposed the Differentiated Services (DiffServ) model [4] as a scalable solution to provide
Internet QoS.

Currently, IETF has defined one class for Expedited Forwarding (EF) [8] and four classes
for Assured Forwarding (AF) [9]. EF was originally proposed by Jacobson in [10] as Premium
Services. It is expected that premium traffic would be allocated only a small percentage of the
network capacity and be assigned to a high-priority queue in the routers. Premium service is ideal
for real-time applications such as IP telephony and video conferencing.

In order to maintain the service quality, each ISP domain need to control the amount of incoming
traffic, which is negotiated through a service level agreement (SLA). An SLA from domain 1 to
domain 2 specifies how much premium traffic and assured traffic could be sent from domain 1 to
domain 2. Each domain has a bandwidth broker (BB) which manages the bandwidth resources
within the domain and negotiate SLA with neighboring domains. Appropriate SLA negotiation
is a very important aspect of DiffServ. If the SLA is oversubscribed, the traffic quality will be
degraded. On the other hand, if the SLA is undersubscribed, a part of the bandwidth resources
may be wasted. In the current proposals [5] [14], SLAs for assured services are usually static while
SLAs for premium services are usually dynamic because they are more expensive.

Most of the current research works on DiffServ are focused on service specification, service archi-
tecture, and component definitions [11][12][7]. Few of them [6] discuss how resource management,
especially dynamic SLA, could be implemented in the DiffServ environment. Without good resource
management schemes, DiffServ itself would not provide any quality of service (QoS) assurances or
guarantees. Usually, assured service only need a soft QoS guarantee. We agree that the SLA could
be negotiated statically based on statistical estimation or through a learning process. Premium
services, however, are more critical and may demand QoS guarantees. So the SLA negotiation
should be more precise. As proposed in [14], a dynamic signaling process could negotiate the exact
amount of SLA for the premium service traffic. In this scheme, when a new flow need to enter
the domain, the BB will receive a signaling message. It will then check the resource database to
see whether it can update the corresponding SLA. This will cause even worse scalability problem
compared to RSVP [3] because in RSVP the signaling and reservation is distributed among all

routers within the domain. In order to solve the scalability problem for BB, the SLAs for premium



services should not be updated upon the join/leave of each connection. A comprising approach
can be used by aggregating the SLA updating requests and periodically signaling the BB for SLA
updating. We can limit the amount of updating requests sent to BB. Since we update the SLA
periodically, the resource utilization should be better than that of the static SLA scheme.

In this paper, we introduce the concept of “pipe” as a solution for resource management within
a DiffServ domain. A pipe is a destination-aware SLA from the ingress router to a specific egress
router. It specifies the amount of premium traffic that could flow from the ingress router to the
egress router, hence forms a virtual channel with a certain bandwidth between an ingress and an
egress router. When a new connection joins/leaves the pipe, it only signals the ingress router. BB
only get involved when the pipe capacity needs to be updated. Thus, we offload and distribute
parts of the resource management work to edge routers so that the BB can handle the scalability
problem. We have reported the implementation details of pipe and have used voice traffic to
evaluate its performance. The result shows that the use of pipe could greatly reduce the signaling
overhead on BBs. Also, the utilization is comparable to the per-flow-based signaling schemes. In
our simulations using IP telephony traffic, when the average number of calls in the pipe ranges from
100 to 1000, the updates would be only 1072 to 10~ times of the completely dynamic SLA scheme,
while the utilization could still be maintained as high as 80 percent. Thus, without sacrificing any
significant utilization we can greatly reduce the updating overheads.

The rest of the paper is organized as follows. Section 2 discusses the concept of pipe. Section 3
studies different implementation schemes of pipe. Section 4 discusses how to improve pipe utilization

through updating. The conclusions are reported in Section 5.

2 Concept of Pipe

Although the deployment of Differentiated services (DiffServ) paradigm is simpler and scalable than
the Integrated Services (IntServ), it makes end-to-end quality of service guarantee more challenging.
The problem lies in the fact that DiffServ operates on the per-hop behavior (PHB) without any
end-to-end guarantees. Unlike RSVP [3], it does not perform an end-to-end resource reservation
before a connection is set up.

The expedited forwarding (EF-PHB) class of service reserves some fraction of the resources
for premium services. Typically, real-time applications (e.g. voice over Internet, video over Inter-
net) are going to be the users of this service. These applications mandates end-to-end resource
reservation for proper operation.

In this paper we propose the use of “pipes” to establish end-to-end QoS guarantee in the DiffServ
environment. The concept of pipe, as described earlier, can be used to guarantee ingress-to-egress

bandwidth availability without the overheads of per-flow state maintenance. We have demonstrated



the implementation and effectiveness of the usage of “pipe” for IP telephony applications. IP
telephony is used as a representative of real-time applications requiring premium services in the

DiffServ Internet model.

2.1 Definition of a Pipe

A pipe is defined as a logical path between two end points on the network, having a predefined

capacity. The choice of end points depends on many factors:
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Figure 1: Pipes in DiffServ domains.

Service providers’ point of presence: Technically, pipe could be within an ISP domain or ex-
tend through multiple domains as shown in Figure 1. However, it is preferable to have pipe
within one ISP domain for convenience of management. Usually a pipe starts from an ingress

router and end at an egress router.

Traffic between regions: The purpose of pipe is to reduce the signaling and computation over-
head of BB. Usually, for the same type of traffic (eg. voice traffic), the aggregate traffic gets
smoother as the total amount of traffic increases. Depending on the average traffic amount
between an ingress router and an egress router pair, it may or may not be necessary to con-
struct a pipe between this pair. If the total traffic between the two points exceed a certain
threshold, we can construct a pipe. Since the aggregate traffic is relatively smooth, pipe
capacity need not to be updated frequently. So the BB need not get involved frequently,
thus minimizing its load and thereby enhancing scalability. If a connection need to cross an
ingress-egress router pair without a pipe, it has to use the dynamic signaling process through
the BBs.

Dynamism in the traffic pattern: The choice of end points may also depends on the dynamism
of the traffic pattern. The smoother the aggregate traffic between the end points, the higher

is the benefit obtained by constructing a pipe between the two points.



2.2 Relationship between Pipe and SLA

Pipe is just a destination-aware SLA. According to the definition in [4], the scope of SLA could be

one of the three situation:
1. all traffic from ingress point A to any egress point
2. all traffic between ingress point A and egress point B
3. all traffic from ingress point A to a set of egress points

Pipe belongs to the second category. All of the pipes’ configurations within the domain are stored
in the domain’s BB. BB could also store the topology of the domain and the link capacity between
each pair of nodes. When a pipe needs to update its capacity, it talks to the BB and the BB decides
whether the request should be granted or rejected. If the request is granted, the BB will notify the
ingress router to reconfigure its traffic conditioner (T'C), and thereby the SLA is updated.

2.3 Establishments of Pipes

Pipe is usually set up by the network administrator based on the traffic provisioning information.
The initial set up information includes ingress router, egress router, and initial bandwidth. The
information is sent to the BB of the domain from the ingress router. Based on the network topology
information and the resource utilization within the network, BB will either admit or reject the pipe
set up request. If the request is admitted, the ingress router will configure a traffic conditioner
(TC) based on the initial bandwidth. Once the pipe is set up, it could update its capacity based

on the actual utilization. Details about the updating mechanism will be discussed in Section 4.

2.4 Using Pipes to Construct an End-to-end QoS Guaranteed Connection

When an end host need to make a connection with another end host using premium services, it
contacts all the pipes it need to use in its path one by one. If the connection are admitted by all of
the pipes, it will be set up successfully. Note that it only needs to signal those ingress routers. If
one or more of the pipe do not have enough capacity to admitted the new connection, the ingress

router could have two choices:
1. reject the connection

2. contact the corresponding BB to increase the pipe capacity to admit this connection, which

in turn could be accepted or declined.

By concatenating multiple pipes, an end-to-end QoS guaranteed connection can be established.



3 Implementation of Pipe

In this section we study how a pipe can be implemented within the constraints of current Internet
architecture and the DiffServ paradigm. Since expedited forwarding should not be delayed (or
experience bounded small delay) per-hop, it is desirable to have it implemented on a priority
queuing environment.

Unlike the virtual channel in ATM, a pipe in the DiffServ is just a destination-aware SLA. It
is configured in the markers and policy enforcers at the edge routers only for admission control
purpose. Once a packet enters the domain core, we cannot tell which pipe it comes from. The BB
of the domain stores the pipe information. So BB knows whether the domain is able to increase a
pipe capacity or construct a new pipe. There is no per-flow or per-pipe state information stored in
the domain core routers. Depending on the topology of the domain, multiple pipe may share some
common paths. The forwarding behavior in the core routers is only determined by the DiffServ
Code Point (DSCP) [7] of the packet, which retains the per-hop behavior in the core. The service

quality of the premium services is ensured through the following methods:

1. premium service packets are queued separately and treated preferentially. The premium
service queue could be implemented as a high priority queue over the RIO queue [12]. It
could also be implemented as a WFQ with the RIO queue and the premium queue could be

given higher weight compared to its actual traffic.

2. Pipe would ensure that the aggregate traffic through it would not exceed its capacity. Since
each pipe is destination oriented, BB could make sure that for each link, the aggregate traffic
of all the pipes through it would not exceed a certain percentage of the link capacity. (Usually,
premium services would not occupy more than 20 percent of the total capacity of a link.) So
even there is no per-pipe level service guarantee in the core routers, the QoS of each pipe

could still be ensured.

We set up the following experiment to show the service quality of the aggregate scheme under
different queuing disciplines. We use the ns [13] simulator to implement different queuing disciplines
which include priority queuing (PQ) and different WFQs. Figure 2 shows the network topology
that is simulated. Four nodes: n0, nl, n2, n3 are part of the network core. The link bandwidth of
n0-nl, n1-n2, n2-n3 are 10Mbps, 5Mbps, and 10Mbps, respectively. A pipe with capacity of 10 voice
streams exists between n0 and n3. A pipe with capacity of 15 voice streams also crosses link n0O-n1.
Similarly, a pipe with capacity of 3 voice streams and a pipe with capacity of 15 voice streams
cross link nl-n2, n2-n3, respectively. These three pipes (n0-nl, n1-n2, and n2-n3) are used as cross

traffic. All of the voice traffic use the premium services through pipes. The remaining capacity of
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Figure 2: Simulation topology.

the links are used by the best-effort TCP traffic. The premium service queue are implemented in
all of the core routers n0, nl, n2, and n3.
We pick up one voice stream from the pipe between n0 and n3 to study the voice packet delay

and jitters. In this experiment, we used several queuing disciplines:

1. Priority Queue (PQ): There are two queues in the router, one for the premium services and
the other for best-effort services. The premium service queue has higher priority over the
best-effort service queue. Thus, all the packets of the premium service queue are served

ahead of the best-effort service queue.

2. Weighted Fair Queue (WFQ): Same as PQ except that the two queues are weighted fair
queues. In order to ensure the quality of premium services, the weight assigned to the
premium service queue is more than the actual amount of traffic. For example, WFQ-2.0
means if the average premium service traffic is 1Mbps, we assign a weight equal to 2Mbps

capacity to the premium service queue.

3. Per-flow WFQ: Each micro-flow has its own queue and is given the weight equal to the peak
rate of the voice stream. This queuing scheme is not advisable for DiffServ. We use the result
to compare with the first two schemes used in DiffServ, and show how well the aggregate

schemes work.

In this simulation, we use the ITU G.711 PCM [15] VoIP traffic as our voice source. The bandwidth
of each voice during talk spurt is 87.2 kbps, including the relative protocol headers. Each packet
size is 218 bytes. The average burst time is 0.4 second. Average idle time is 0.6 second. It is
an exponential ON/OFF model. The packet size of TCP flow is 1000 bytes. The TCP flows are
simulated traffic of FTP transferring large size (unlimited) of bulk data.

The simulation result in terms of delay and jitter for one of the voice stream from n0 to n3

is shown in Figure 3. Figure 3(a) is the plot of delay variation and Figure 3(b) is the plot for
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Figure 3: Delay and jitter in a pipe.

jitters. Observe from the graph that PQ has the best quality, and WFQ-2.0 has almost the same
performance as PQ. The performance of WFQ-1.3 is also acceptable. In term of delay, PQ, WFQ-
2.0, and WFQ-1.3 work even better than per-flow WFQ. The reason for this could be intuitively
explained as follows. Per-flow WFQ could be deemed as a service in which each voice stream uses
a thin link and the thin links are separated from each other. PQ, WFQ-2.0 and WFQ-1.3 use a fat
link for all of the voice streams. The thin link will stretch individual packet, hence introduce longer
delay. The fat link could transmit individual packet much faster, even though the link utilization
are similar in both cases. However, per-flow WFQ has almost a fix delay. So the jitter of per-flow

WEFQ is as good as PQ. The following conclusions could be drawn from these results:

1. Premium services could be implemented with a PQ or an aggregate level WFQ if the relative

weight is given higher than 1.3. The performance is comparable to per-flow level WFQ.

2. With appropriate policing at the entrance of pipe, aggregating multiple pipes would not have

much side effect on the quality of premium services.

4 Improving Pipe Utilization Through Updating

Depending on the burstiness of the aggregate traffic through the pipe, pipe capacity could be set
as static or dynamic. If it is static, then all of the admission controls are done at the entrance of
the pipe, BB will not receive any updating message from the pipe. However, in order to limit the
rejection rate, we will have to reserve the peak of the traffic as the pipe capacity. This, of course,
will make the utilization very low given the fact that the traffic could vary greatly during different

time of a day and probably vary during different days. On the other hand, we can make the pipe



capacity completely dynamic, that is, upon each new call arrival, we update the pipe capacity.
In this case, the utilization could be up to 100 percent. However, BB will receive one updating
message upon each call arrival/departure, which increases the load and thus defies the benefit of
building pipes. So there is always a tradeoff between the utilization and the updating overhead.
One possible solution is, instead of using static or completely dynamic pipe, a hybrid scheme can
be used by updating the pipe capacity periodically. The period is set to several seconds or minutes
so that the updating overhead is negligible or acceptable. At the same time, the utilization could
still be kept at a high level. In the remaining parts of this section, we explore several updating

methods and show how well they work.

4.1 Traffic model
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Figure 4: Call arrival distribution during a day.

Premium services are designed for real-time traffic like VoIP, Video Conference, etc. Here
we select voice traffic as a representative of real-time traffic for our study. VoIP is most likely
to become the first user of pipe because of its popularity and the bandwidth limitations of the
Internet. The intensity of telephone calls vary greatly during different time of a day. The British
Telecommunications (BT) published the average call numbers in their network. Figure 4 shows the
call arrival pattern where the peak rate (during 9am-1lam and 2pm-5pm) is set as 1.0. Actually,
the call arrival during a certain period, say, 9am-1lam, is not flat as we show in Figure 4. In short
term, the call arrival could be approximated as a Poisson process. In order to show the detail traffic
and see how well different updating methods works for pipe, we build a simple simulator to mimic
this arrival /departure process. The length of each call is exponential with an average of 5 minutes.

Figure 5 is the traffic during a day from the output of our traffic simulator. In Figure 5(a), the



peak arrival rate is set as 20 calls/min so that on average there are 100 calls in the pipe during
the peak period (i.e., 9am-1lam, 2pm-5pm). In Figure 5(b), the peak arrival rate is set as 200
calls/min so that on average there are 1000 calls in the pipe during the peak period. In the rest
of this paper, for convenience, we simply say that the pipe with traffic shown in Figure 5(a) has
100 calls and the pipe with traffic shown in Figure 5(b) has 1000 calls, although 100 or 1000 calls
are only the average number of calls in the pipes during the peak period. From the graph we can
observe that the relative burstiness of Figure 5(a) is larger than that of Figure 5(b). For a Poisson
arrival /departure process, the variance decreases as the average number of calls increases. Our goal
is to find a good prediction method to update the pipe capacity so that we can have both high
utilization and acceptable updating overhead.
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Figure 5: Number of active calls in the pipe during different time of a day.

4.2 Prediction Model

The variance of the number of calls is subject to two main factors: a long term factor which is
caused by different usage of phone during different time slot; a short term factor which is caused
by the Poisson call arrival process. The long term factor may be due to the variation during a day,
or week, or month, or season. The short term factor is due to the independent behavior of users.
Without updating, a pipe has to reserve its capacity according to the usage during the peak time.
Here we propose a threshold-based prediction scheme to update the pipe capacity. In order to see

how well this scheme performs, we first study the ideal case which we call as ideal prediction.

4.2.1 Ideal Prediction

In this scheme, the pipe capacity is updated periodically. Assume that upon each updating point,

we can precisely predict the peak bandwidth of the next period so that we can set the pipe capacity

10



to that value. In this scheme, we can ensure that no call gets rejected and the utilization is as high
as possible. However, the utilization is not 100 percent because, during the period between two
neighboring updating points, the traffic still varies. Ideal prediction cannot be implemented in real
world since we are not aware of the future events. However in our simulation we first count the
number of calls during different times and use that information as our “prediction”, thus using the
future knowledge. Figure 6 shows the updating processes. The solid line is the pipe capacity and
the doted line is the actual used bandwidth. The updating interval is 40 minutes. From the graph
we can find, for the same updating interval, Figure 6(b) has higher utilization than Figure 6(a).
The reason is: Figure 6(b) has 10 times more calls than Figure 6(a), so the traffic in Figure 6(b) is
smoother than that in Figure 6(a).
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Figure 6: Ideal prediction (Update Interval=40min).
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Since we choose the peak rate of the period as the pipe capacity, using smaller update interval
could increase the pipe utilization. This result is observed in Figure 7. From Figure 7, we can also
observe that the pipe utilization could be higher than 80 percent as the update interval is less than
30 minutes. However, if there is no update during the 24 hours, the utilization would be as low as
40 percent. So updating scheme could improve the utilization by a factor of 2 or more. This result
coincides with the result shown in [16] where the traffic trace from AT&T telephone network was
used for a similar analysis. For the same update interval, the pipe with 100 calls always have lower
utilization than the pipe with 1000 calls. So more the traffic between two end points, more the

benefit we can get by building a pipe between them.
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Figure 7: Ideal Predication: Utilization vs. Update Interval.

4.2.2 Threshold-Based Prediction

Ideal prediction is not realistic since we cannot know the future events. Our goal is to find a
realistic prediction algorithm which has a performance comparable to the ideal prediction. A linear
prediction is not good for this case because of the Poisson call arrival process. Here we propose a
simple prediction scheme called threshold-based prediction. The motivation for the threshold-based
prediction scheme is very simple: if we use the per-flow updating scheme, we need to increase
the pipe capacity by one for each call arrival and decrease the pipe capacity by one for each call
departure. This could make sure that the pipe has the highest resource utilization, but will incur
very high updating overhead. However, if we increase the pipe capacity by § (6 > 1) when a new
call arrives and the pipe is full, then we do not have to update the pipe capacity for every incoming
arrival as long as the total number of calls does not exceed the new pipe capacity. By reserving

more than we actually need right now, we loose a bit utilization, but we may be able to save a lot of

12



updates, given the fact that the total number of calls in the pipe will not change drastically during
a short period. The value for § is selected based on the tradeoff analysis between overhead and
utilization. When the number of calls in the pipe drops below a threshold, we can decrease pipe
capacity in order to increase the utilization. But we do not decrease the pipe capacity to the exact
amount of calls. We can keep it higher than the actual number of calls so that the new coming

calls will not trigger a new updating. The algorithm can be stated as follows:

1. Upon a call arrival, if the number of calls reaches the pipe_capacity, then pipe_capacity is

increased by J.

2. Upon a call departure, if the number of calls is under pipe_capacity — 2 X §, then pipe_capacity

is decreased by ¢.

If § = 1, then this scheme is same as the per-flow updating scheme. Usually, § is selected larger
than 1. The larger ¢ is, the less frequently the pipe capacity is updated. By doing this, we could
ensure:

pipe_capacity — 2 x § < number_of _calls < pipe_capacity (1)

So, the utilization has a lower bound:

pipe_capacity —2 X &

(2)

utilization > - ;
pipe_capacity

The results of the threshold-based updating are shown in Figure 8. Figure 8(a) is the plot for the
pipe with 100 calls. Here the gray line is the actual number of calls in the pipe. The black solid
line is the pipe capacity for 6 = 20 and the black dotted line is the pipe capacity for 6 = 10. With
the smaller §, we have higher utilization however the updating is also more frequent. Figure 8(b)
is the plot for the pipe with 1000 calls. The pipe capacity for § = 100 and § = 50 are shown there.
We can observe that the pipe capacity predictions in Figure 8(b) are closer to the actual traffic
compared to that in Figure 8(a) because the traffic are smoother. Instead of updating the pipe
capacity periodically, we only update the pipe capacity when the actual number of calls changes
out of the region between the upper and lower thresholds. So in Figure 8, the updates are less
frequent during 0am to 6am, but are more frequent during 6am to 9am.

From equation (2) we infer that the utilization could be controlled through 4. Figure 9 shows
the relationship between utilization and §. For the pipe with 100 calls (shown in 9(a)), if we select
0 = 10, the utilization is about 80 percent. For the pipe with 1000 calls (shown in 9(c)), if we
select 6 = 100, the utilization is about 80 percent. For both of them, utilization increases as §
decreases. The corresponding updating overheads are also shown in the right side. Here we use the

normalized updates as the updating overhead. As we know, if we choose § = 1, i.e., upon each call

13
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Figure 8: Threshold prediction (d=delta).

arrival or departure, we update the pipe capacity, then for each call we have two updates. If we
choose & > 1, we will have less updates. The normalized updates is defines as the actual number

of updates during the simulation period divided by double the number of calls, i.e.,

number_of _updates
normalized_updates = foup

3)

2 x number_of _calls

Equation (3) could be used to evaluate how much updating overhead can be saved by using pipe.
For example, in Figure 9(b), if we select § = 10, the normalized updates is 1072. So we removed
99% of the updating overhead. In Figure 9(d), if we select § = 100, the normalized updates is 10~4,
which means we removed 99.99% of the updating overhead! Thus, by sacrificing a little utilization,
we could save a lot of updating overhead, especially when the aggregation degree in the pipe is high
(e.g. for the pipe with 1000 calls).

Figure 10 shows the relationship between normalized updates and utilization directly so that
we can evaluate the performance of the threshold-based updating more clearly. It also makes it
possible for us to compare the performance with that of the ideal prediction. The dashed line is the
ideal prediction and the solid line is our threshold-based prediction. Obviously, the ideal prediction
performs better than our threshold prediction. However, the difference is not large. Given the fact
that the threshold-based prediction is very simple and could be easily implemented, it is a very good
scheme. In Figure 10(a), if we want to keep the utilization to be 80%, for both of the prediction
schemes, the normalized updates overhead is about 10~2. In Figure 10(b), if we want to keep the
utilization to be 80%, for both of the prediction schemes, the normalized updates overhead is about
10~4. The actual number of calls in the later case is ten times of the former case. So the absolute

number of updates in the later one is only about 10% of the former one. The number of updating

14



utilization
normalized updates
=
o

0.4 I I I L 10" I I L L

0 10 20 30 40 50 0 10 20 30 40 50
5 5
(a) Utilization (100 calls) (b) Updates (100 calls)
1.0 T T 10°
09 | 1 .
10
0.8 q @
5 £ 10°
5 5. o
€ 10
0.6 4 é
0.5 1 10°
0.4 : ‘ ‘ ‘ 10° ‘ ‘ ‘ ‘
0 100 200 300 400 500 0 100 200 300 400 500
5 5
(c) Utilization (1000 calls) (d) Updates (1000 calls)

Figure 9: Relationship between Utilization, Updates and J.

messages receive by BB decreases as the total number of calls increases. However, without the
proposed pipe implementation, upon each call arrival/departure, the BB will receive an signaling
message. The signaling message overhead received by BB is proportional to the number of calls,
which may inhibit scalability. This scalability problem is solved by using pipes.

The normalized updates shown in Figure 10 is the average value over the 24 hours’ simulation.
The average update interval could be calculated as the following;:

24 hours

normalized_updates X number_of _calls X 2

(4)

average_update_interval =

Since the threshold-based prediction does not use periodical updating, the update interval during
the worst case should be much shorter than the average update interval. The average value is

important because one BB may be in charge of many pipes. It is unlikely that all of the pipes
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Figure 10: Performance comparison of threshold-based prediction and idea prediction.

will be in the worst case at the same time. Statistically, when one pipe is frequently updated
during a period, other pipes may be in a stable state and need not be updated often. However,
our simulation shows that even in the worst case, the updating interval is pretty long. The result
is shown in Figure 11. For the pipe with 100 calls during the peak period in Figure 11(a), if we
choose 6 = 10, then minimum update interval is about 20 seconds. The utilization corresponding
to § = 10 for this pipe is about 80% (see Figure 9(a)). For the pipe with 1000 calls during the
peak period in Figure 11(b), if the we choose § = 100, then minimum update interval is about 300
seconds. The utilization corresponding to 6 = 100 for this pipe is about 80% (see Figure 9(c)). The
updating interval bounds are long enough. The updating overhead is acceptable even in the worst
case.

The proposed threshold-based updating uses a fix §. In our simulation, we use the current
number of calls in the pipe as a trigger of the pipe capacity updating. In the real implementation,
we may use the pipe utilization as a trigger instead of using the number of calls. This will make
it easier to implement in the DiffServ environment because the DiffServ edge router may or may
not keep the per-flow state information. The utilization could be achieved through counting the
wasted tokens in the leaky bucket. Then we do not have to keep the soft state of each flow at the

edge routers (i.e., entrance of the pipe).

5 Concluding Remarks

In this paper we introduced the concept of “pipe” as a solution for resource management of premium

services in the differentiated services environment. Pipe could be implemented in an aggregate level

16



minimum update interval (sec)
minimum update interval (sec)

10° ‘ : : : ‘ 10 : : : : ‘ ‘ ‘
0 5 10 15 20 25 30 0 20 40 60 80 100 120 140
5 5
(a) 100 calls (b) 1000 calls
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as a destination-aware SLA. We use VoIP traffic as an example and show the QoS of a voice steam
under different queuing schemes of premium services. Since pipe is relative static compared to
the per-flow completely dynamic resource management scheme, it greatly reduces the signaling
overhead on bandwidth brokers. In order to improve the utilization of pipe, we proposed the
threshold-based updating scheme. Through simulation, we have shown that this updating scheme
incurs very little overhead while providing high utilization. The threshold-based updating scheme
could provide a performance comparable to the ideal prediction scheme, which uses the knowledge

of future events.
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