
Dynamic Speed Scaling for Energy Minimization in
Delay-Tolerant Smartphone Applications

Jeongho Kwak†, Okyoung Choi†, Song Chong† and Prasant Mohapatra‡
†Department of Electrical Engineering, KAIST

‡Department of Computer Science, University of California, Davis
E-mail: {jh.kwak, okyoung}@netsys.kaist.ac.kr, songchong@kaist.edu, pmohapatra@ucdavis.edu

Abstract—Energy-delay tradeoffs in smartphone applications
have been studied independently in dynamic voltage and fre-
quency scaling (DVFS) problem and network interface selection
problem. We optimize the two problems jointly to quantify how
much energy can be saved further and propose a scheme called
SpeedControl which jointly manages application scheduling, CPU
speed control and wireless interface selection. The scheme is
shown to be near-optimal in that it tends to minimize energy
consumption for given delay constraints. This paper is the first
to reveal energy-delay tradeoffs in a holistic view considering
multiple wireless interfaces, DVFS and multitasking in smart-
phone. We perform real measurements on WiFi/3G coverage and
throughput, power consumption of CPU and WiFi/3G interfaces,
and CPU workloads. Trace-driven simulations based on the
measurements demonstrate that SpeedControl can save over 30%
of battery by trading 10 min delay as compared to existing
schemes when WiFi temporal coverage is 65%, moreover, the
saving tendency increases as WiFi coverage increases.

I. INTRODUCTION

Energy consumption in processing and transferring data in
smartphone is increasing. Maximum CPU clock frequency is
consistently speeding up (e.g., the latest Qualcomm mobile
chipset has maximum 2.5GHz CPU clock frequency [1])
to meet increasing demands of applications. Operation at
maximum CPU clock frequency results in significant amount
of energy consumption due to the fact that CPU power
consumption is a super-linearly increasing function of clock
frequency. Smartphones have multiple network interfaces in-
cluding 3G and WiFi, which tend to facilitate more networking
applications with higher data rates yielding higher networking
energy consumption.

The most energy-consuming module in smartphones is dis-
play [2], [3]. According to recent power consumption survey
of smartphones [2], LCD display of a smartphone consumes
more than 800mW, which is significantly higher than what
CPU or 3G/WiFi network interfaces consume. The power
management of LCD display to save battery, however, is a
technical challenge since reducing power consumption in LCD
display directly affects quality of user experiences. The survey
also reports that CPU and network interfaces consume most
of the remaining power besides display when representative
applications such as Angry birds or Web browser run. Notably,

This research was funded in part by the MSIP(Ministry of Science, ICT
& Future Planning), Korea in the ICT R&D Program 2013 and the NSF
Grant CNS-1319721 and the Army Research Laboratory under Cooperative
Agreement Number W911NF-09-2-0053.

according to our measurements in section IV-B, the power
consumption of CPU to process single bit for typical encoding
applications is comparable with that of WiFi or 3G interface
to transmit single bit. Thus, power management of CPU and
network interfaces are equally important for a given fixed LCD
display power management, and must be optimized jointly if
they are coupled to each other.

Many application processors (APs) for smartphones support
Dynamic Voltage and Frequency Scaling (DVFS) [1], [4], [5],
which controls CPU clock frequency and voltage depending
on CPU workloads. DVFS exploits power saving opportunities
owing to the fact that CPU power consumption depends super-
linearly on CPU clock frequency, but power saving comes at
the cost of increasing delay.

For energy minimization in a smartphone with multiple
network interfaces, previous works [6], [7] proposed energy-
efficient network selection policies under heterogeneous wire-
less network interfaces (e.g., 3G and WiFi interfaces) for
delay-tolerant applications. They studied tradeoffs between
energy saving and delay in data transmission by intentionally
deferring data transmission until the device meets an energy-
efficient network. To the best of our knowledge, however, no
works have studied joint optimization of CPU speed scaling
(i.e., DVFS policy) and network speed scaling (i.e., network
selection policy) for energy minimization.

Independent control of CPU speed and network selection
causes energy inefficiency. For instance, consider a situation
where a smartphone runs an application which processes a file
(e.g., encoding or transcoding a video file) and then uploads
the encoded file to a cloud server. Assume that the network
condition is bad, say, only 3G link with low data rate is
available. As CPU workload increases in this situation, DVFS
would keep increasing the data processing speed accordingly
so that the network queue would become a bottleneck with
large backlog eventually since the data processing speed would
exceed the low data transmission speed at some point. This is
exactly the situation that one would like to avoid from energy-
efficiency point of view because CPU would operate at an
unnecessarily fast speed wasting energy in this situation. On
the other hand, if the backlog at the network queue were small,
one could postpone data transmission until the device finds
out an energy-efficient network, say, WiFi. Note that average
energy consumption in transmitting a single bit in WiFi links
is much less than that in 3G links (see our measurements in

section IV-B). Therefore, the situation we consider above is
also harmful in terms of energy efficiency because the network
queue should transmit data over the energy-inefficient link due
to the large backlog and cannot wait for an energy-efficient
network to come.

According to recent survey on top 50 smartphone appli-
cations in Google Play [8], 44% are networking applications
(NAs) and 56% are non-networking applications (NNAs), and
contemporary smartphone operating systems provide multi-
tasking capability (e.g., iOS and Android). Therefore, many
smartphones are likely to run both NAs and NNAs simulta-
neously. NAs use both CPU and network resources whereas
NNAs use CPU resource only. If NAs and NNAs share the
CPU queue, they would interfere with each other. A way to
isolate the performance of NNAs from that of NAs should
be considered in the joint optimization of CPU and network
speed scaling.

In this paper, we propose a dynamic speed scaling scheme
called SpeedControl which jointly adjusts both processing
speed and networking speed by three control knobs: appli-
cation scheduling, CPU speed control and network (wireless
interface) selection. By invoking the Lyapunov drift plus
penalty method [9], the scheme is shown to be near-optimal
in the sense that it minimizes total energy consumption of
CPU and network interface for given delay constraints. This
paper is the first to reveal energy-delay tradeoffs in energy
minimization in a holistic view for smartphones with multi-
ple wireless interfaces, DVFS and multitasking capability. In
order to create realistic simulation scenarios, we perform real
measurements or use public measurement traces on WiFi/3G
coverage and data rate on the metropolitan area in South
Korea, power consumption of CPU and WiFi/3G interfaces
in popular smartphone models, and file size distribution and
CPU workloads for popular video clips.

The contribution of the paper is summarized as follows.

• The proposed SpeedControl scheme is the first to jointly
optimize CPU speed and network speed scaling for en-
ergy minimization in delay-tolerant smartphone applica-
tions, and is shown to be near-optimal in that it tends to
minimize energy consumption for given delay constraints.

• The SpeedControl is the first to address the co-existence
issue of NAs and NNAs sharing CPU resource in smart-
phones with multitasking capability. In order to isolate
the performance of NNAs from that of NAs subject to
the SpeedControl in this highly coupled environment, an
application scheduling policy to determine the sequence
of CPU access between NAs and NNAs is incorporated
into the SpeedControl scheme.

• The SpeedControl not only significantly outperforms ex-
isting schemes but also do not affect the performance
of background NNAs. Trace-driven simulations based
on real measurements of operational environments and
system parameters demonstrate that the SpeedControl
scheme can save over 30% of smartphone battery by
trading about 10 min transfer delay as compared to
existing schemes when WiFi temporal coverage is about

65%. Moreover, the saving tendency increases as WiFi
temporal coverage increases.

In the rest of this paper, we begin with related work in
Section II. In Section III, we describe the system model and
problem formulation. And then, we propose SpeedControl
algorithm. Then, in Section IV, we explain the design of the
SpeedControl algorithm. Next, in Section V, we extensively
evaluate our SpeedControl algorithm by theoretical analysis,
measurement and trace driven simulation and experiment.
Finally, we conclude this paper in Section VI.

A. Related Work

There have been extensive studies on energy-delay tradeoff
in network devices such as cellular base station or router
using DVFS [10]–[12]. Son et. al. [10] suggest energy efficient
joint control of DVFS and user association using the fact that
power consumption of base station is well modeled by a cubic
polynomial scaling of processing speed. Andrews et. al. [12]
study a routing problem with the objective of provisioning
guaranteed speed/bandwidth for a given processing demand
while minimizing energy consumption of network-wide rout-
ing devices.

Several DVFS techniques [1], [4], [5] have been considered
in mobile devices. Chen et. al. [4] suggested energy-efficient
task scheduling scheme for the real time workloads in multi-
processor dynamic voltage scaling (DVS) systems. Also, Liang
et. al. [5] showed that there exists a critical CPU clock speed
to minimize the energy consumption of handheld devices.
Recent mobile chipsets, e.g., Snapdragon S4 [1], have also
adopted a DVFS technique for the energy efficiency of devices.
However, their DVFS policies are far from an optimal one and
inefficient, e.g., in Ondemand policy [13], CPU speed is set to
be maximum when workload is over a certain threshold, which
is controlled manually, and then gradually decrease the speed
depending on the workload. To the best of our knowledge,
there have been no effort factoring in the wireless network
dynamics and heterogeneity of applications in the context of
mobile device DVFS.

Recently, the interests on network selection considering bat-
tery consumption of smartphone, which include [6], [7], [14],
[15], have been increasing. Rahmati et. al. [14] suggest on-the-
spot network selection by examining tradeoff between energy
consumption for WiFi search and transmission efficiency when
WiFi network is intermittently available. Some studies [6],
[7] suggest delayed network selection by exploring tradeoff
between transmit power of heterogeneous network interfaces
(3G, WiFi) and transmission delay. Lee et. al. [15] show 20%
power saving can be achieved by permitting 1 hour delayed
WiFi offloading for application having strict delay constraint.

II. ENERGY-EFFICIENT SPEEDCONTROL ALGORITHM

In this section, we formulate an optimization problem
considering energy minimization with queueing stability, and
propose an energy-minimal joint application scheduling, CPU
speed adjustment, and network interface selection, called
SpeedControl algorithm.

A. Model and Problem Formulation

Arrival Model. We consider two types of delay-tolerant
applications. One is networking application which uses both
processing and networking resources and the other is non-
networking application which uses only processing resource
in a smartphone. For instance, a smartphone user records two
video clips using camera application. The one of recorded
video clip is encoded and uploaded to cloud server such as
Dropbox (networking application, NA), and the other video
clip is just encoded in the smartphone (non-networking appli-
cation, NNA). Let a set of applications be K = {1, ...,K}. For
simplicity, we consider one NA and another NNA. However,
it can be easily generalized to more applications. We consider
a time-slotted system indexed by t = {0, 1, ...} where the
interval is ∆t. For each time slot t, workload ANA(t) for
NA, and ANNA(t) for NNA are arrived, respectively.
CPU & Network Model. We assume that a smartphone has
one CPU core which handles several applications running in
the smartphone. The workload of each application demands
different CPU processing resource. We call this notion by
processing density (in cycles/bit) γNA for NA, γNNA for
NNA which are defined as the average number of CPU cycles
required per bit when the application is processed by CPU
[16]. We assume that the smartphone can adjust CPU speed
s(t) ∈ {s1, s2, ...smax} (in cycles/∆t) every time slot t. The
levels of CPU speed are determined by Kernel in operating
system of the smartphone. For network side, achievable uplink
throughput µl(t) for different network l varies along with
dynamics of wireless channel states every time slot t. Also,
we assume that the smartphone can select among no network
transmission (N), cellular (C) and WiFi (W) networks every
time slot t, i.e., l(t) ∈ {N,C,W}.
Queueing Model. We consider a queueing model as illustrated
in Fig. 1. The queueing model is designed to prevent a
situation where NNA has a penalty when network is the
bottleneck. NNA should not be affected by the network
environment since it does not use network resource. However,
if we design queueing model that NA and NNA packets are
not segregated for processing, the system cannot address this
criterion when network is the bottleneck and NNA workload is
located behind than NA workload in CPU queue. In this case,
NNA workload cannot be scheduled even though NNA does
not use network resource. This is the reason why NA and NNA
workloads should be distinguished and processed separately in
our queueing model. For the queueing model, Qc(t) denotes
total CPU queue length at time slot t, QcNA(t) and QcNNA(t)
denote CPU queue lengths for NA and NNA at time slot t,
respectively, i.e., Qc(t) = QcNA(t) + QcNNA(t). Also, Qn(t)
denotes network queue length at time slot t. For application
scheduling, θ(t) ∈ {0, 1} denotes scheduling indicator by CPU
processor at time slot t, e.g., if θ(t) is 0, NNA is scheduled.
We assume that the unit of queue lengths is a bit, thus the
CPU speed s(t) (in cycles/∆t) should be divided by processing
density (cycles/bit) γNA or γNNA for unit agreement. Then,
queue lengths of all CPU and network queues are updated as
follows.

NA CPU queue

Network queue

NNA CPU queue

WiFi

Cellular

[cycles/]

[bits/

[cycles/bit]

[bits/

[cycles/bit]
[bits/

Fig. 1: Queueing model for SpeedControl system

Qc
NA(t+1)=

[
Qc

NA(t)− θ(t)s(t)
γNA

+ANA(t)

]+

[bits]

Qc
NNA(t+1)=

[
Qc

NNA(t)− (1−θ(t))s(t)
γNNA

+ANNA(t)

]+

[bits] (1)

Qn(t+1)=

[
Qn(t)−µl(t)+θ(t) min

{
Qc

NA(t),
s(t)

γNA

}]+

[bits]

Power Model. CPU power consumption can be modeled in
general as follows [12].

P c(s(t)) = αs(t)3 + β (2)

where α and β are constants depending on different smart-
phones. Since the network power depends on the selected
network [6], the network power is modeled as follows.

Pn(l(t)) ∈ {Pn(N), Pn(C), Pn(W)} (3)

These power consumption models will be further addressed
by real measurement in Section IV.
Problem Formulation. Our objective under the queueing
model in Fig. 1 is to develop energy-minimal joint application
scheduling, CPU speed adjustment and network interface
selection policies. The smartphone can serve all arrival work-
loads of NA and NNA within the capacity region which is the
set of all acceptable arrival rates with guaranteeing stability of
CPU and network queues. The optimization problem is chosen
such that

(P) : min P̄ = lim
T→∞

1

T

T−1∑
t=0

(P c(t) + Pn(t)), (4)

s.t. lim sup
t→∞

1

t

t−1∑
τ=0

E{Qc(τ) +Qn(τ)} <∞, (5)

where Qc(t) = QcNA(t)+QcNNA(t). The constraint means that
average CPU and network queue lengths should be finitely
maintained [9]. For the above problem (P), we determine
the application scheduling θ(t), CPU speed s(t) and network
interface selection l(t) every time slot t.

B. Application Scheduling, CPU Speed and Network Interface
Selection (SpeedControl) Algorithm

We obtain the solution of our problem (P) under un-
known future sequences of wireless network states and data
arrival by invoking Lyapunov drift plus penalty technique [9].
Our SpeedControl algorithm is to jointly control application
scheduling, CPU speed adjustment and network selection so as
to satisfy the decomposed objectives for each control variable.

Algorithm Description. The SpeedControl algorithm is de-
scribed as follows.

SpeedControl Algorithm

1: For every time slot t,
2: if Qn(t) ≥ µmax(t), then
3: Schedule NNA (θ∗(t) = 0)
4: Select CPU speed s∗(t) by

min
s∗(t)

{
V P c(s(t))− s(t)

γNNA
QcNNA(t)

}
(6)

5: Select network l∗(t) by

min
l∗(t)

{
V Pn(l(t))− µl(t)(QcNA(t) +Qn(t))

}
(7)

6: else

7: if Qc
NA(t)+Qn(t)

γNA
≥ Qc

NNA(t)
γNNA

, then

8: Schedule NA (θ∗(t) = 1)
9: Select CPU speed s∗(t) by

min
s∗(t)

{
V P c(s(t))− s(t)

γNA
(QcNA(t) +Qn(t))

}
(8)

10: Select network l∗(t) by (7)
11: elseif Qc

NA(t)+Qn(t)
γNA

<
Qc

NNA(t)
γNNA

, then
12: Schedule NNA (θ∗(t) = 0)
13: Select CPU speed s∗(t) by (6)
14: Do not select network (l(t) = N)
15: end all

where µmax(t) is the maximum uplink throughput among
available networks at time slot t.

The problems to select CPU speed and network (6)-(8)
can be interpreted as follows. An energy-delay tradeoff can
be controlled by single parameter V , i.e., as V increases,
energy can be saved by trading longer delay. Also, the first
term with V of problems (6)-(8) strives to minimize CPU or
network power consumption, and remained terms without V
strives to stabilize CPU and/or network queue. If V is small
and queues increase due to the workload arrival, the system
strives to immediately reduce queue lengths by increasing CPU
speed s(t) or selecting immediately available network, i.e., the
system is sensitive to queue variation. However, the CPU or
network power consumptions increase due to the high variation
of s(t) and the fact that the system is likely to immediately
transmit with a little interest on energy-efficiency of network
interface (e.g., 3G with low throughput). Therefore, the system
makes more effort to reduce queue length than to reduce
energy. On the other hand, if V is large and queues increase
due to the workload arrival, the system does not sensitively
react to increment of queues due to higher weight on the first
term with V than remained terms without V . However, for
the same workload, the system controls s(t) more smoothly
and is likely to defer transmission or select energy-efficient
networks (e.g., WiFi network). Therefore, the problems (6)-
(8) make more effort to reduce CPU and network energy than
to reduce queue length.

Scheduling of NA and NNA depends on the following
conditions. (i) If Qn(t) ≥ µmax(t), network is the bottleneck.
In this case, CPU part strives to reduce the queue length
of NNA than NA because NNA should not be affected by
network environment, hence always NNA is scheduled. On the
other hand, (ii) if Qn(t) < µmax(t), network is not bottleneck.
In this case, CPU part strives to reduce the queue length of NA
and NNA as fairly as possible since NNA does not be affected
by network environment, so the system schedules application
by comparing queue lengths and processing densities of NA
and NNA.

III. ALGORITHM DESIGN

We derive the SpeedControl algorithm in inheriting Lya-
punov drift plus penalty function [9].
Making Single Objective. Our original objective (P) is to
minimize CPU and network power consumption with satis-
fying queueing stability. First, we define Lyapunov function
and Lyapunov drift function as follows.

L(t) , 1
2 [QcNA(t) +Qn(t)]2 + 1

2 [QcNNA(t)]2 (9)

∆(L(t)) , E{L(t+ 1)− L(t)|Q(t)} (10)
Q(t) = {QcNNA(t), QcNA(t), Qn(t)} (11)

The Lyapunov function (9) is designed to fairly stabilize NA
queues (QcNA(t) +Qn(t)) and NNA queue (QcNNA(t)). This
is a key design principle to isolate NNA performance from
that of NA in terms of delay. Under the Lyapunov function
design, if the network queue is accumulated due to the network
bottleneck, scheduling NNA would not reduce NA queues
(QcNA(t) + Qn(t)), so NNA would be always scheduled to
reduce NNA queue (QcNNA(t)). On the other hand, if the
network queue is not accumulated, NA and NNA would be
fairly scheduled in terms of queue lengths1.

Next, we define drift plus penalty function where the
penalty function is the sum of expected CPU and network
power consumption during time slot t (E{P c(s(t))|Q(t)} +
E{Pn(l(t))|Q(t)}) in inheriting drift-plus-penalty expression
[9] as follows.

∆(L(t)) + V E
{
P c(s(t)) + Pn(l(t))|Q(t)

}
(12)

where V is energy-delay tradeoff parameter. Then, our single
objective is to minimize the equation (12).
Deriving Upper Bound. Next, we assume that workload arrival
ANA(t) and ANNA(t), CPU speed s(t) and uplink throughput
µl(t) for all available networks are bounded as follows.

ANA(t) ≤ ANA,max, ANNA(t) ≤ ANNA,max (13)
s(t) ≤ smax, µl(t) ≤ µmax (14)

These bounded values and queueing dynamic equations in
(1) make drift plus penalty function (12) be bounded as a
following Lemma.

1In fact, since the units of processing speed (in cycles/∆t) and traffic
in the queue (in bits) are different, processing density (in cycles/bit) of
application should be also considered.

Lemma 1. Under any possible control variables θ(t) ∈
{0, 1}, s(t) ∈ {s1, s2, ..., smax} and l(t) ∈ {N,C,W}, we
have:

∆(L(t)) + V E
{
P c(s(t)) + Pn(l(t))|Q(t)

}
≤

B + V E
{
P c(s(t)) + Pn(l(t))|Q(t)

}
− E

{
Qc

NNA(t)

(
(1− θ(t))s(t)

γNNA
−ANNA(t)

)
|Q(t)

}
− E

{
(Qc

NA(t) +Qn(t))×(
min

{
θ(t)s(t)

γNA
+Qn(t), µl(t)

}
−ANA(t)

)
|Q(t)

}
,

(15)

where B = 1
2 (

s2max

γNNA
+ µ2

max +A2
NA,max +A2

NNA,max).
Proof: Please refer to our technical report [17].

Deriving Solution. Minimizing the left-hand side of (15)
means that our original problem (P) is satisfied. We show that
the problem (P) has an optimal policy π∗ at the following
Theorem 1.

Theorem 1. For any mean arrival workload E{ANA(t)} =
λNA,E{ANNA(t)} = λNNA within capacity region, λNA +
λNNA ∈ Λ, where Λ denotes all mean arrival workloads
that the smartphone can process within finite time, there
exists a stationary randomized control policy π∗ that selects
application scheduling θ(t), CPU speed s(t) and network l(t)
every time slot t satisfying the following equations:

E{P c(s(t)π
∗
)} = P c(λNA + λNNA) (16)

E{Pn(l(t)π
∗
)} = Pn(λNA) (17)

E
{
θ(t)

π∗
s(t)

π∗

γNA

}
= E{µl(t)π

∗
} (18)

E{ANA(t)} = E
{
θ(t)

π∗
s(t)

π∗

γNA

}
(19)

E{ANNA(t)} = E
{

(1− θ(t)π
∗
)s(t)

π∗

γNNA

}
(20)

where P c(λNA + λNNA) and Pn(λNA) are average CPU
and network power consumption to process λNA+λNNA and
transmit λNA, respectively.

Proof: It can be proven using Caratheodory’s theorem in
[18].

Then, an optimal algorithm (OPT) which minimizes (12)
is to find control variables (θ(t), s(t),l(t)) which minimize
the left-hand side of (15), i.e., the optimal algorithm makes
the right-hand side of (15) the smallest one among the values
which obtains from all possible stationary randomized control
policies. Then, the right-hand side of (15) can be decomposed
into three problems to find application scheduling θ(t), CPU
speed s(t) and network selection l(t) when network is the
bottleneck (Qn(t) ≥ µmax(t)). However, since finding the op-
timal control variables is tightly coupled with all control vari-
ables when the network is not bottleneck (Qn(t) < µmax(t)),
we design simple and decoupled SpeedControl algorithm by

taking some approximation and assumptions. First of all, we
take following reasonable approximation.

Qn(t) ≈ 0, for Qn(t) < µmax(t) (21)

Then, if QcNNA(t) s(t)
γNNA

> QcNA(t) s(t)γNA
, the right-hand side

of (15) can be decomposed into (θ(t) = 0, s(t), l(t) = N)
such as (6). In the other case, however, we should address
complicated problems as follows.

min
s(t)

V
(
P c(s(t)) + Pn(N)

)
− s(t)

γNNA
Qc

NNA(t) (22)

min
s(t),l(t)

V
(
P c(s(t))+Pn(l(t))

)
−min

(
s(t)

γNA
, µl(t)

)
Qc

NA(t) (23)

If (22) ≥ (23), then θ(t) = 1 and if (22) < (23), then
θ(t)=0. Since jointly solving (22) and (23) is complicated
and hard to solve, we assume that always NA is scheduled
(θ(t)=1), and assume θ(t)s(t)

γNA
< µl(t) for CPU speed selection,

θ(t)s(t)
γNA

≥ µl(t) for network selection in order to prevent the
situation that the network queue is empty. Then, SpeedControl
algorithm selects CPU speed and network interface depending
on the network bottleneck and application scheduling. Al-
though our SpeedControl algorithm takes some approximation
and assumptions, the algorithm shows the nearly the same
performance with the optimal algorithm in further simulation
results.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of proposed al-
gorithm through theoretical analysis, measurements and trace-
driven simulations and experiments.

A. Theoretical Analysis

We describe the performance of an optimal algorithm by
theoretical analysis. The sum of NA and NNA queue lengths
and the sum of average CPU and network power consumption
can be upper bounded by following Theorem 2, respectively.

Theorem 2. Let t = {0, 1, ...T−1}. Suppose there exist ε′ > 0
and ε′′ > 0 such that λNA + 2ε′ ∈ ΛNA and λNNA + ε′′ ∈
ΛNNA, then under the optimal algorithm (OPT), we have:

lim sup
T→∞

1

T

T−1∑
t=0

E{Qc(t) +Qn(t)} ≤ B + V Pmax
ε

, (24)

P̄ c,OPT + P̄n,OPT ≤ P ∗(2ε) +
B

V
. (25)

where Qc(t) = QcNA(t) + QcNNA(t), ε = 2ε′ = ε′′, Pmax =
P cmax + Pnmax is the maximum average CPU and network
power consumption and P ∗(2ε) = P c

∗
(2ε) + Pn

∗
(ε) is the

optimal lower bound of CPU and network power consumption.
Proof: Please refer to our technical report [17].

The result of Theorem 2 can be interpreted as follows. As
the energy-delay tradeoff parameter V decreases, the sum of
average queue lengths (NA and NNA) decreases whereas the
average power consumption increases. On the other hand, as
V is larger, the average power consumption decreases whereas
the sum of average queue lengths increases. When V goes to

infinity, the smartphone consumes the optimal average power
P ∗(2ε).

B. Measurement and Trace-Driven Simulation
In this section, we verify the SpeedControl algorithm by

real power measurements and trace-driven simulations under
several environments.
Real Power Measurement. We measure and analyze the
CPU power consumption over different CPU speed for five
android smartphones. We connect Monsoon power monitor
[19] to experimental smartphones and measure the real power
consumption of the five smartphones. Because the power
consumption of CPU module cannot be directly measured,
we turn off the other controllable modules. Also, for 100%
utilization of CPU, we run a video encoding application2.
Five smartphones have different Kernel and OS, so the CPU
clock frequency-voltage matching tables of five smartphones
are different, respectively. For example, Nexus S has Trinity
Kernel and Android 4.0 OS, so it has six levels of CPU
speeds and each CPU speed matches with specific volt-
age (100MHz-975mV, 200MHz-975mV, 400MHz-1025mV,
800MHz-1250mV, 1000MHz-1450mV, 1440MHz-1500mV).
Fig. 2 depicts the measured CPU power consumption as a
function of CPU speed for five different smartphones. The
diagrams (e.g., circles, square, triangle, star) are the real power
measurement values for different discrete CPU speed levels.
The measured discrete power consumptions are well modeled
by a cubic polynomial scaling of speed to power for all
smartphones. From these results, we can make the CPU power
consumption model as a function of CPU speed as follows.

P c(s(t)) = αs(t)3 + β (26)

where s(t) is CPU speed, t is time slot of which interval is
minimum static CPU speed period, α and β are constant values
depending on the different smartphones.

Also, we measure the power consumption of 3G and WiFi
network interfaces using Monsoon power monitor [19] for
two different android smartphones, respectively. For network
interface measurement, we turn off running applications in
a smartphone except for throughput measurement application
which is made by us for transmitting dummy data to the
server. We make an application to measure the throughput
in server, and then, measure the power consumption while
the application transmits 2MByte (WiFi) and 50KByte (3G)
dummy data to the server. The measured network interface
power consumption of two smartphones can be shown in
Table II, which provides following findings. (i) the 3G and
WiFi transmit powers are the similar in both smartphones,
yet (ii) WiFi transmit power in W/bit is much smaller than
that of 3G. This implies that WiFi network is more energy
efficient than 3G network for transmitting same quantity
of data. Also, (iii) average transmit power consumptions
of WiFi and 3G interfaces in W/bit are comparable with

2In our measurement, all smartphones has 100% utilization for all CPU
speed levels when running video encoding application. Also, since we run
only one application, only one CPU core can be operated in spite of dual
core CPU.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

CPU clock [GHz]

C
P

U
 p

o
w

e
r

c
o
n
s
u
m

p
ti
o
n
 [
W

] Real - Nexus S

Model - 0.34s
3
 + 0.35

Real - Galaxy S

Model: 0.32s
3
 + 0.1

Real - Galaxy Nexus

Model: 0.4s
3
 + 0.3

Real - Galaxy Note

Model: 0.33s
3
 + 0.1

Real - Galaxy S2

Model: 0.55s
3
 + 0.19

Fig. 2: CPU power consumption vs. CPU speed

Nexus S

idle(mW) transmit(mW) uplink average tx. power
throughput(Mbps) in W/bit

WiFi 230 702±72.5 1.66-3.12 308.6× 10−9

3G 213 1217±185 0.69-0.85 1700× 10−9

Galaxy Nexus

idle(mW) transmit(mW) uplink average tx. power
throughput(Mbps) in W/bit

WiFi 99 875±22 6.36-6.87 134× 10−9

3G 82 964±210 0.354-0.742 1951× 10−9

TABLE I: Network power consumptions for two smartphones

CPU power consumption in W/bit (CPU power consumption
in W/bit assuming that CPU speed is 1GHz and process-
ing density is 1000cycles/bit: 816.5×10−9W/bit (Nexus S),
688.1×10−9W/bit (Galaxy Nexus)). It supports the fact that
power management of CPU and network interfaces are equally
important for processing or transmitting the same quantitiy
of data.
Real Traces. We collect workload arrivals, processing den-
sities of NA and NNA and uplink throughputs of 3G and
WiFi networks. First, we use open dataset of real YouTube
video data size from [20] to generate workload arrival traces
of NA and NNA. Second, we run an encoding application
in a smartphone for several video clips and measure their
completion times, respectively. Then, we compute processing
densities by dividing processing quantity (in cycles) with the
size of a video clip (in bits). The measured processing densities
are between 200cycles/bit to 1200cycles/bit for different video
formats and clips. Third, we measure the 3G and WiFi uplink
throughputs and WiFi connectivity of 5 smartphones for 2
weeks in a metropolitan area of South Korea. Using our uplink
measurement application, a smartphone transmits dummy data
to 3G and WiFi networks for every 20 seconds, respectively,
and records WiFi connectivity logs. Then, server application
measures the uplink throughput of all smartphones. Measured
average uplink throughput for 3G and WiFi are 0.76Mbps
and 3.01Mbps, respectively, and the average WiFi temporal
coverage is 63% in daytime (9:00AM to 9:00PM).
Setup. We consider a scenario that two applications are running
in a smartphone: (i) In networking application (NA), a video

0 10 20 30 40 50 60
20

30

40

50

60

70

80

90

100

110

Average delay per video clip [min]

A
v
e

ra
g

e
 e

n
e

rg
y
 c

o
n

s
u

m
p

ti
o

n
 p

e
r

v
id

e
o

 c
lip

 [
J
]

SC(1s): Total
SC(10s): Total
SC(20s): Total
SC(1s): CPU
SC(10s): CPU
SC(20s): CPU
SC(1s): Network
SC(10s): Network
SC(20s): Network

(a) Impact of time scale difference: WiFi
temporal coverage - 50%, γNA=300cycles/bit,
γNNA=1200cycles/bit

0.7982 1.0043 1.2146 1.4072 1.5999
0

1

2

3

4

5

6

NA arrival rate [Mbps]

A
v
e

ra
g

e
 N

N
A

 d
e

la
y
 p

e
r

v
id

e
o

 c
lip

 [
m

in
]

SC-NoAS

SC (Speed Control)

(b) Average delay of NNA in network bottleneck
case: WiFi temporal coverage - 0%, average net-
work throughput=0.76Mbps, γNA=600cycles/bit,
γNNA=600cycles/bit

20 25 30 35 40 45 50 55
25

30

35

40

45

50

55

60

65

70

75

Average delay per video clip [min]

A
ve

ra
g

e
 e

n
e

rg
y

co
n

su
m

p
tio

n
 p

e
r

vi
d

e
o

 c
lip

 [
J]

SC-NoAS: Total power

SC: Total power

SC-NoAS: CPU power

SC: CPU power

SC-NoAS: Network power

SC: Network power

(c) Energy-delay tradeoff in network bottleneck
case: WiFi temporal coverage - 0%, average net-
work throughput=0.76Mbps, γNA=600cycles/bit,
γNNA=600cycles/bit

Fig. 3: Characteristic evaluation of SpeedControl
clip generated in the smartphone is encoded and transmitted
to the cloud server. (ii) In non-networking application (NNA),
another video clip generated in the smartphone is just encoded.
During 1 second, the ANA(t) and ANNA(t) size video clips
are independently generated with 0.8% probability. We use the
one of CPU power-speed sets in Fig. 3, and use transmit and
idle powers for 3G and WiFi interfaces in Table II. Control
intervals are 1 second for application scheduling and CPU
speed adjustment, and 20 seconds for network selection. This
is reasonable setting since the associated network cannot be
changed as fast as CPU speed adjustment due to the vertical
handover delay. For uplink throughput estimation in simula-
tion3, we suppose the current uplink throughput as the uplink
throughput obtained in just before time slot. If the device
does not transmit data through the corresponding network at
just before time slot, we use time average throughput of the
corresponding network. Performance metrics are average CPU
and/or network energy consumption per video clip and the
average delay of NA and NNA per video clip. We compare
DVFS+SALSA and Max+SALSA with our SpeedControl al-
gorithm. DVFS+SALSA is conventional DVFS4 with delayed
network selection [6], and Max+SALSA uses always maxi-
mum CPU speed with delayed network selection.
Observations. From the simulation results, we obtain the
interesting observations as follows.
Impact of time scale difference. We verify the impact of the
time scale difference between CPU speed adjustment and net-
work selection. Fig. 3(a) depicts the energy-delay tradeoff of
SpeedControl for several time scales of network selection. This
figure shows that the average energy consumption and delay
performance of SpeedControl for different network selection
time scales (1 second, 10 seconds, 20 seconds) are almost the
same. This is because that the time scale of WiFi availability
in our trace is much larger than that of network selection (20
seconds). Therefore, we henceforth use 20 seconds for the time
interval of network selection in the remained simulations.
Impact of application scheduling. To verify that SpeedCon-

3We also use this estimation method in experiment
4In this algorithm, CPU speed is maximum when CPU workload is greater

than a threshold, and linearly decrease when CPU workload is less than the
threshold which can be manually controllable.

trol well isolates the performance of NNA from that of NA
in terms of delay, we carry out the simulation in the network
bottleneck case. For comparison, we consider an algorithm
without application scheduling control, called SC-NoAS. This
algorithm schedules the application by first in first out (FIFO)
manner, but CPU speed adjustment and network selection are
operated like SpeedControl. Fig. 3(b), 3(c) depict delay per-
formance of NNA and energy-delay tradeoff of SC-NoAS and
SpeedControl when network is the bottleneck. In simulation
for Fig. 3(b), the arrival rate of NNA is the same (0.8Mbps),
but the arrival rate of NA is increased up to twofold. Fig. 3(b)
shows that SpeedControl guarantees average delay of NNA
when the arrival rate of NA is increased, whereas SC-NoAS
increases average delay of NNA even though the arrival rate of
NNA is not increased. This implies that SpeedControl makes
NNA not be influenced by network environment, which is also
related with design issue of SpeedControl in Section III. As a
result, SpeedControl has better delay performance and energy
consumption than SC-NoAS as shown in Fig. 3(c).
Energy-delay tradeoff. Fig. 4 depicts the energy-delay trade-
off for several algorithms. (i) It is worthy of notice that
most of CPU and total energy saving (55% CPU, 50% total
energy saving) can be obtained by trading only 10 minutes
delay. This is due to the fact that CPU power consumption
is modeled by a cubic polynomial scaling of CPU speed
such as (26). Therefore, by smoothing CPU speed along
with time slot t, CPU power can be saved. However, since
the smoothing CPU speed makes the system be insensitive
to queue variation, average delay would be longer. Network
power consumption can be saved until 40% with 20 minutes
transmission delay. This power saving comes from the fact that
the smartphone is reluctant to transmit data through 3G which
is energy-inefficient network than WiFi, yet the smartphone
would wait for WiFi network. (ii) SpeedControl algorithm
well catches up with the delay performance and energy
consumption of an optimal algorithm (OPT) even though
SpeedControl is much simpler algorithm than the optimal
algorithm. (iii) SpeedControl saves 56%, 52% (in CPU), 30%,
33% (in total) energy for 10 minutes average delay than
Max+SALSA and DVFS+SALSA, respectively. The power
saving gains of SpeedControl come from the fact that the

0 10 20 30 40 50 60
20

30

40

50

60

70

80

90

100

Average delay per video clip [min]

A
v
e

ra
g

e
 e

n
e

rg
y
 c

o
n

s
u

m
p

ti
o

n
 p

e
r

v
id

e
o

 c
lip

 [
J
]

Max+SALSA: Total

DVFS+SALSA: Total

SC: Total

Optimal: Total

Max+SALSA: CPU

DVFS+SALSA: CPU

SC: CPU

Optimal: CPU

Max+SALSA: Network

DVFS+SALSA: Network

SC: Network

Optimal: Network

Fig. 4: Energy-delay tradeoff of different algorithms: WiFi
temporal coverage - 65%, processing density (NA,NNA) =
(300cycles/bit,1200cycles/bit)

algorithm pushes NA workloads from CPU side to network
side only when the network side requires the workloads. This
implies that joint consideration of application scheduling, CPU
speed and network selection is imperative for optimizing CPU
and network power in smartphone.

Impact of processing density, arrival rate and WiFi
temporal coverages. Fig. 5 presents total (CPU+network)
energy consumption of the combination of existing algorithms
(DVFS+SALSA, Max+SALSA), normalized by total energy
consumption of SpeedControl as a function of average delay of
NA and NNA per video clip. For this simulation, we generate
WiFi temporal coverage trace for different WiFi coverages
using measured WiFi temporal coverage distribution and up-
link throughput. (i) As processing density of NA is smaller,
and arrival rate of NA is higher, SpeedControl obtains more
energy saving gain. The gain from low processing density of
NA is because that SpeedControl quickly responses to the
needs of network side. Also, the gain from high arrival rate
comes from the fact that CPU side exactly know when network
side needs the workload to transmit in SpeedControl whereas
the CPU side does not know what happens at the network
side in DVFS+SALSA and Max+SALSA. (ii) As arrival
rate of NNA is smaller, SpeedControl obtains more energy
saving gain. This implies that NA gives more energy saving
impact on SpeedControl than NNA. (iii) As WiFi temporal
coverage is wider, SpeedControl achieves more energy saving.
This is due to the fact that wider WiFi coverage makes the
smartphone users exploit more energy-efficient network, i.e.,
WiFi network, thus, the average networking power is reduced,
which means that CPU power consumption is bigger impact
on total energy consumption than network power. Since our
SpeedControl algorithm obtains higher energy saving in CPU
part than network part as shown in Fig. 4, total energy saving
of SpeedControl increases compared to other algorithms as the
WiFi temporal coverage increases.

C. Experiment

Setup. We develop a prototype of SpeedControl application
which adopts our SpeedControl algorithm using Android soft-
ware development kit (SDK) based on the open source code of
NSTools application [21] which enables to control CPU clock
manually. For estimation of uplink throughput, our private
server transmits acknowledgement (ACK), which contains
uplink throughput information, to device every 5 seconds.
For experiment, we prepare rooted smartphone (Nexus S)
and Monsoon power monitor [19]. A smartphone runs two
applications: (i) video encoding application, (ii) prototype of
our SpeedControl application which selects CPU speed and
network interface and then transmit the encoded data to our
server, yet they can be seen as one networking application. We
consider that 5 video clips (21MByte per one clip) are arrived
at the specific time. Also, the smartphone is associated with
one WiFi AP5, and the smartphone is connected to Monsoon
power monitor to measure the total energy. As performance
metrics, we measure (i) battery level by application (visualized
as % or bar in most of smartphones) and real power using
Monsoon power monitor and (ii) the average delay of video
clips when 4 video clips are fully transmitted.
Observation. We obtain three observations from experiment
in Fig. 6. (i) (Fig. 6(a)) DVFS+SALSA and Max+SALSA
consume about 70% and 80% more energy than SpeedControl
algorithm with the same delay (about 11 minutes) in real
power measurement for transmitting 4 video clips, respec-
tively. (ii) (Fig. 6(b)) Our SpeedControl consumes 50% and
40% less battery than Max+SALSA and DVFS+SALSA by
trading similar delay, respectively. (iii) Smartphone users who
install our SpeedControl application save 10% of battery level
(spend 10% of battery) for uploading 4 video clips (total
84MBytes) by permitting about 3 minutes more delay when
the starting battery level is 70%.

V. CONCLUSION

In this paper, we investigate key processing and networking
features of contemporary smartphones in terms of tradeoff
between energy and delay. Based on this study, we suggest
SpeedControl algorithm, which jointly optimizes CPU speed
and network (wireless interface) selection so as to answer how
much energy can be saved further by the joint optimization.
SpeedControl well isolates the performance of non-networking
applications from that of networking application as well as
obtains high energy saving by trading small delay. Finally,
through extensive simulations and experiment studies includ-
ing meaningful real measurement results, we made several
important observations which provide us with a message
that joint optimization of CPU and network speed would be
imperative, especially in future network trend where the more
energy-efficient networks are deployed.

VI. ACKNOWLEDGEMENTS

The authors would like to thank Hong-hwan Jeon in heaven
for help with 3G/WiFi throughput measurement study.

5This WiFi AP is private AP for only one experimental smartphone.

0 5 10 15 20 25 30 35
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Average delay per video clip [min]

N
o
rm

a
liz

e
d
 e

n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n Max+SALSA/SC (

NA
=600,

NNA
=1200)

Max+SALSA/SC (
NA

=300,
NNA

=1200)

Max+SALSA/SC (
NA

=100,
NNA

=1200)

DVFS+SALSA/SC (
NA

=600,
NNA

=1200)

DVFS+SALSA/SC (
NA

=300,
NNA

=1200)

DVFS+SALSA/SC (
NA

=100,
NNA

=1200)

(a) WiFi temporal coverage: 35%

0 5 10 15 20 25 30 35
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Average delay per video clip [min]

N
o
rm

a
liz

e
d
 e

n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n Max+SALSA/SC (

NA
=600,

NNA
=1200)

Max+SALSA/SC (
NA

=300,
NNA

=1200)

Max+SALSA/SC (
NA

=100,
NNA

=1200)

DVFS+SALSA/SC (
NA

=600,
NNA

=1200)

DVFS+SALSA/SC (
NA

=300,
NNA

=1200)

DVFS+SALSA/SC (
NA

=100,
NNA

=1200)

(b) WiFi temporal coverage: 50%

0 5 10 15 20 25 30 35
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Average delay per video clip [min]

N
o
rm

a
liz

e
d
 e

n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n

Max+SALSA/SC (
NA

=600,
NNA

=1200)

Max+SALSA/SC (
NA

=300,
NNA

=1200)

Max+SALSA/SC (
NA

=100,
NNA

=1200)

DVFS+SALSA/SC (
NA

=600,
NNA

=1200)

DVFS+SALSA/SC (
NA

=300,
NNA

=1200)

DVFS+SALSA/SC (
NA

=100,
NNA

=1200)

(c) WiFi temporal coverage: 65%

0 5 10 15 20 25 30
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Average delay per video clip [min]

N
o
rm

a
liz

e
d
 e

n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n Max+SALSA/SC (NA=1, NNA=1)

Max+SALSA/SC (NA=2, NNA=1)

Max+SALSA/SC (NA=1, NNA=2)

DVFS+SALSA/SC (NA=1, NNA=1)

DVFS+SALSA/SC (NA=2, NNA=1)

DVFS+SALSA/SC (NA=1, NNA=2)

(d) WiFi temporal coverage: 35%

0 5 10 15 20 25 30
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Average delay per video clip [min]

N
o
rm

a
liz

e
d
 e

n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n Max+SALSA/SC (NA=1, NNA=1)

Max+SALSA/SC (NA=2, NNA=1)

Max+SALSA/SC (NA=1, NNA=2)

DVFS+SALSA/SC (NA=1, NNA=1)

DVFS+SALSA/SC (NA=2, NNA=1)

DVFS+SALSA/SC (NA=1, NNA=2)

(e) WiFi temporal coverage: 50%

0 5 10 15 20 25 30
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Average delay per video clip [min]

N
o
rm

a
liz

e
d
 e

n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n

Max+SALSA/SC (NA=1, NNA=1)

Max+SALSA/SC (NA=2, NNA=1)

Max+SALSA/SC (NA=1, NNA=2)

DVFS+SALSA/SC (NA=1, NNA=1)

DVFS+SALSA/SC (NA=2, NNA=1)

DVFS+SALSA/SC (NA=1, NNA=2)

(f) WiFi temporal coverage: 65%

Fig. 5: Normalized energy consumptions for several WiFi temporal coverages: (a)-(c) are the results under the same arrival rate
(NA:NNA=1:1), (d)-(e) are the results under the same processing density (γNA : γNNA=300cycles/bit:1200cycles/bit)

10 10.5 11 11.5 12 12.5
1

1.2

1.4

1.6

1.8

2

Average NA delay per video clip [min]

N
o
rm

a
liz

e
d
 e

n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n

Max+SALSA/SC

DVFS+SALSA/SC

(a) Energy-delay tradeoff

0

5

10

15

20

R
e
d
u
c
e
d
 b

a
tt

e
ry

 l
e
v
e
l
[%

]

DVFS
+SALSA
(NA delay:
10.42 min) SC

(NA delay:
10.5 min)

Max
+SALSA
(NA delay:
10.33 min)

(b) Reduced battery level

Fig. 6: Experimental results for several algorithms

REFERENCES

[1] “Snapdragon S4 processors: System on chip solutions for a new mobile
age, White Paper,” pp. 1–8, 2011.

[2] C. Yoon, D. Kim, W. Jung, C. Kang, and H. Cha, “Appscope: Appli-
cation energy metering framework for android smartphone using kernel
activity monitoring,” in Proc. of USENIX, 2012.

[3] A. Carroll and G. Heiser, “An analysis of power consumption in a
smartphone,” in Proc. of USENIX, Boston, MA, USA, Jun. 2010, pp.
21–21.

[4] T. K. J. Chen, C. Yang and C. Shih, “Energy-efficient real-time task
scheduling in multiprocessor DVS systems,” in Proc. of Asia and South
Pacific Design Automation Conference, Yokohama, Japan, Jan. 2007, pp.
342–349.

[5] Y. Liang, P. Lai, and C. Chiou, “An energy conservation DVFS algorithm
for the android operating system,” Journal of Convergence, vol. 1, no. 1,
pp. 93–100, Dec. 2010.

[6] M. Ra, J. Peak, A. Sharma, R. Govindan, M. Krieger, and M. Neely,
“Energy-delay tradeoffs in smartphone applications,” in Proc. of Mo-
biSys, SF, California, USA, Jun. 2010, pp. 255–270.

[7] P. Shu, F. Liu, H. Jin, M. Chen, F. Wen, Y. Qu, and B. Li, “etime: energy-
efficient transmission between cloud and mobile devices,” in Proc. of
IEEE INFOCOM, Turin, Italy, Apr. 2013, pp. 14–19.

[8] “Google Play.” [Online]. Available: https://play.google.com/store/apps/
collection/topselling free

[9] M. Neely, “Stochastic network optimization with application to commu-
nication and queueing systems,” Synthesis Lectures on Communication
Networks, pp. 1–211, 2010.

[10] K. Son and B. Krishnamachari, “Speedbalance: speed-scaling-aware
optimal load balancing for green cellular networks,” in Proc. of IEEE
INFOCOM, Orlando, FL, USA, Mar. 2012, pp. 2816–2820.

[11] A. Wierman, L. L. Andrew, and A. Tang, “Power-aware speed scaling
in processor sharing systems,” in Proc. of IEEE INFOCOM, Rio de
Janeiro, Brazil, Apr. 2009, pp. 2007–2015.

[12] M. Andrews, A. Anta, L. Zhang, and W. Zhao, “Routing for energy
minimization in the speed scaling model,” in Proc. of IEEE INFOCOM,
San Diego, CA, USA, Mar. 2010, pp. 1–9.

[13] “Kernel governors, modules, I/O scheduler, CPU tweaks AIO
app configs.” [Online]. Available: http://forum.xda-developers.com/
showthread.php?t=1369817

[14] A. Rahmati and L. Zhong, “Context-for-wireless: context-sensitive
energy-efficient wireless data transfer,” in Proc. of MobiSys, San Juan,
Puerto Rico, Jun. 2007, pp. 165–178.

[15] K. Lee, J. Lee, Y. Yi, I. Rhee, and S. Chong, “Mobile data offloading:
how much can wifi deliver?” IEEE/ACM Trans. Networking, vol. 21,
no. 2, pp. 536–550, Apr. 2013.

[16] M. Shin, S. Chong, and I. Rhee, “Dual-resource TCP/AQM
for processing-constrained networks,” IEEE/ACM Trans. Networking,
vol. 16, no. 2, pp. 435–449, Apr. 2008.

[17] J. Kwak, O. Choi, S. Chong, and P. Mohapatra, “Dynamic
speed scaling for energy minimization in delay-tolerant smartphone
applications,” Technical Report, Jul. 2013. [Online]. Available:
http://netsys.kaist.ac.kr/publication/papers/Resources/R6

[18] L. Georgiadis, M. Neely, and L. Tassiulas, “Resource allocation and
cross-layer control in wireless networks,” Foundations and Trends in
Networking, vol. 1, no. 1, pp. 1–149, 2006.

[19] “Power Meter Device: Monsoon Power Monitor.” [Online]. Available:
http://www.msoon.com/LabEquipment/PowerMonitor/

[20] “Dataset for statistics and social network of YouTube videos.” [Online].
Available: http://netsg.cs.sfu.ca/youtubedata/

[21] “NSTools application and open source code v1.16.” [Online]. Available:
http://forum.xda-developers.com/showthread.php?t=1333696

