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ABSTRACT

QoS-aware multicasting is becoming more and more desir-
able with the expanding usage of group-based applications,
especially those involving multimedia objects. Until now,
most of the proposed QoS-aware multicasting routing pro-
tocols adopt per-flow based resource reservation. Although
these schemes can be adopted in integrated services (IntServ)
Internet, they are not suitable for more scalable Differenti-
ated Services (DiffServ) Internet. A new QoS-aware multi-
cast routing protocol called QMD is proposed for DiffServ
environments in this paper. Based on the design philosophy
of DiffServ, the complex multicasting control plane function-
alities are removed from the core routers. In addition, for
each multicast group, only a limited set of on-tree routers
(termed as key nodes) maintain multicast routing states and
forward multicast data traffic. The key nodes of a multicast
group uniquely identify a QoS-satisfied multicast tree con-
necting the group members. Although the other on-tree
routers between any two key nodes do not maintain any
multicast routing states and QoS reservation information,
the group members’ QoS requirements can still be satis-
fied. Through simulation experiments based on both ran-
dom and real intra-domain topologies, we have also demon-
strated that QMD can provide higher QoS-satisfaction rate
while maintaining the simplicity of core routers.
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1. INTRODUCTION

With the phenomenal popularity of Internet, a broad group
of network applications have been deployed over the Inter-
net. More and more of these applications, such as multi-
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party video conferencing, distance learning, files distribution
and caching, involve transmitting information using multi-
point connections. The popularity of these applications de-
sire multicast service support from the Internet.

IP multicasting [15] has been proposed to provide efficient
one-to-many (many-to-many) data delivery services. Many
applications that benefit from multicasting services are also
QoS-sensitive. These applications require the underlying
network to provide QoS support. In the past years, many
efforts have been dedicated to QoS provisioning in the In-
ternet [31]. Among them, the Internet Engineering Task
Force (IETF) has proposed two basic QoS provisioning tech-
niques to manage and reserve the QoS resources in the In-
ternet: per-flow-based Integrated Services (IntServ)[10] and
aggregation-based Differentiated Services (DiffServ) [8].

In the past years, lots of QoS-based multicast routing proto-
cols[18][17][22][29] based on per-flow reservation have been
proposed in the literature. Even though these protocols can
perform very well in IntServ environment, they cannot be
easily deployed in DiffServ domains. In DiffServ, the packets
are marked with different service levels at the edge routers,
and then the core routers provide different data forwarding
services based on the codepoints carried by the packets. Us-
ing this approach, DiffServ releases the core routers from
maintaining per-flow QoS reservation states. This idea of
scalable QoS-support has attracted many researchers’ at-
tention since it was proposed. However, most efforts have
been directed to the unicast support while only a few at-
tempts have been reported on supporting multicast opera-
tions within DiffServ domains. Several reasons determine
that providing QoS-aware multicasting in Diffserv domains
is a nontrivial work. First, DiffServ was proposed to achieve
scalability by aggregating the traffic to decrease the amount
of routing state maintenance in core routers. However, for
multicasting protocols, every on-tree router needs to main-
tain per-group data forwarding state. With the increase in
the number of multicast groups, the large amount of state
maintenance and related processing work needed could over-
whelm the core routers (memory and CPU cycles), which
conflicts with the design goals of DiffServ. Second, Diff-
Serv only requires edge routers (or together with bandwidth
brokers) to make admission control and maintain resource
reservation information. The existing QoS-aware multicast
routing protocols do not distinguish the functionalities be-
tween edge routers and core routers. Both edge routers and
core routers perform the same functions in regular multi-



cast routing protocols: processing control messages, mak-
ing admission control, maintaining multicast routing tables,
and forwarding the data traffic. Third, when the regular IP
multicasting protocols are deployed within the DiffServ do-
mains, the Neglected Reservation Subtree problem (NRS)[9]
also becomes an issue. The NRS problem occurs because
of the branching of trees in the core routers within a do-
main. The amount of outgoing traffic from a domain may
exceed the incoming traffic to the domain and consumes
additional network resources. This additional traffic cannot
receive the desired QoS while adversely affecting other exist-
ing traffic flows. Finally, within a multicast group, different
group members may have different QoS requirements. How
to provide heterogeneous QoS support for multicast group
members is an issue that needs further consideration [27].

In this paper, we propose a scalable technique called QoS-
aware Multicasting for DiffServ (QMD). When a single-
source multicast group (formed by CBT[3], SSM[6], or PIM[16],
etc.) passes through a DiffServ domain, it usually takes the
form of multicasting among edge routers (border routers).
Usually, one edge router is the multicast source for other
group members within a DiffServ domain. Our goal is to
construct a scalable QoS-satisfied multicast tree connecting
all of these on-tree edge routers. Similar to DiffServ, in
QMD, we separate the control plane functions from data
plane functions. The edge routers and the Bandwidth Bro-
ker (BB) handle most of the multicast control plane func-
tions: processing join or leave events, searching QoS-satisfied
branches, making resource reservation, etc. The core routers
only maintain minimal data forwarding states. Using the
proposed QMD-DIJKSTRA algorithm, QMD can find a QoS-
satisfied branch ( identified by a list of key nodes, a subnet
of on-tree routers) connecting the new member to the mul-
ticast routing tree. A set of key nodes can not only identify
a multicast routing tree, but also provide predictable QoS
services to group members. The multicast traffic can then
be recursively transmitted between the key nodes to the re-
ceivers. Though other on-tree nodes do not maintain any
multicast routing states and the QoS resource reservation
information, the multicast traffic can still obtain predictable
QoS according to the DiffServ codepoints.

A series of simulations have been carried out to evaluate the
performance of QMD. The simulation results have shown
that QMD can greatly decrease the core routers’ workload
in terms of processing multicast control messages and main-
taining multicasting routing states. The success ratio, which
quantifies the probability of finding the QoS-satisfied paths
for new members, is higher in the case of QMD. The basic
idea of decoupling the processing of data and control mes-
sages in DiffServ domains is shown to have positive impact
on the performance of QMD.

The rest of the papers is organized as follows. The related
works are discussed in Section 2. In Section 3, we introduce
the basic idea of QMD. The key nodes searching algorithm,
QMD-DIJKSTRA, is introduced in Section 4. We evaluate
the performance of QMD through simulations in Section 5,
followed by the concluding remarks in Section 6.

2. RELATED WORK

The multicasting data plane implementation of our work
shares the idea of “recursive unicast” with REUNITE[25]
and HBH[14]. Inregular “recursive unicast”, only the routers
at branching nodes maintain multicast forwarding states.
The multicast traffic is recursively unicasted between the
branching nodes without bothering other on-tree nodes. All
other on-tree nodes still need to maintain the multicast tree
control information and process the join and leave events.
However, in QMD, the multicast traffic is unicasted between
the key nodes which can guarantee the receiver’s QoS re-
quirement at the same time. Other on-tree nodes do not
maintain any control states. Besides, QMD releases the
core routers from processing large amount of multicast con-
trol messages. The control plane operations are handled by
border routers and bandwidth broker (BB). The design of
QMD makes it DiffServ-friendly and relieves multicast ser-
vice’s security and pricing concerns.

Bless [9] first discussed the issue of providing QoS-aware
multicast services within DiffServ domains. However, the
goal of his work is to cope with neglected reservation sub-
tree problem (NRS) problem by decreasing the QoS ser-
vice level of the replicated packets. Yang and Mohapatra
also proposed an approach called DAM to solve the NRS
problem [32]. It has three novel features: weighted traffic
conditioning (WTC), receiver-initiated marking (RIM), and
heterogeneous DSCP header encapsulation (HDE). The ap-
proach solves the NRS problem by sacrificing efficiency in
terms of bandwidth usage.

In parallel to our work [23], several other approaches have
been proposed to provide DiffServ multicasting routing ser-
vices. In Striegel and Manimaran’s encapsulation-based ap-
proach[28], a DSMCast header including the multicasting
tree information is added to each multicasting packet at the
ingress router. The core routers can duplicate and forward
the data traffic based on the DSMCast header information.
This method keeps the core router simple but incurs high
bandwidth overhead. Gupta and Ammar [19] used the lim-
ited branching techniques to achieve scalable multicasting
services in DiffServ domains: M-DS. It has two techniques:
edge-router branching technique and limited-core branching
technique. This method does not incur any overhead on the
data packets and requires minimum changes to the existing
routers. However, there will be more duplicate multicast
traffic and incur extra overhead. Similarly, EBM [26] also
leverages the intelligence of edge routers and the proposed
Multicast Broker (MB) to provide scalable DiffServ multi-
casting service. The multicasting data transmission is based
on Edge Cluster Trees (ECTSs), which ensures that the mul-
ticast branching points are only located at the edge routers.
QUASIMODO ([7] mainly focuses on the providing desirable
QoS for new group members. It is based on two approaches:
1) A probe-based approach called “GRIP” to verify the re-
source availability of a new path; 2) Using a special DiffServ
marking value to maintain the replicated packet QoS.

Several works providing QoS-based multicast routing service
have been proposed [11][12][17]. However, all of them re-
quire the on-tree nodes to process and control per-flow based
QoS resource reservation, which is not scalable in DiffServ
domains.



In [5], the authors proposed a method that can reduce the
amount of states the core routers need to maintain in IntServ
environments. It also differentiates the functions between
edge routers and core routers. This approach can be ap-
plied to both unicast and multicast traffic. QMD can re-
duce not only the QoS service states (benefited from Diff-
Serv), but also the multicast routing state maintenance at
the core routers. In addition, it can also deal with NRS, se-
curity, and pricing concerns of multicasting services within
DiffServ domains.

Different traffic engineering techniques and algorithms have
been proposed to efficiently utilize network resources, ac-
commodate data traffic and provide service quality, such as
multi-path routing, traffic splitting, constraint-based rout-
ing[4]. In contrast to the existing QoS-aware multicast rout-
ing approaches, QMD combines the “key nodes” identifica-
tion process with the traditional traffic engineering ideas
(multi-path routing) to maximally utilize network resource
and satisfy the multicast receivers’ QoS requirements. In
addition, only the key nodes need to maintain QoS and
multicast routing states, which can greatly reduce the core
router’s state maintenance burden without introducing com-
plexity.

3. QOS-AWARE MULTICASTING IN DIFF-
SERV (QMD) DOMAINS

3.1 Design Philosophies & Assumptions

When a single-source multicast tree (constructed by CBT|[3],
SSM[6], PIM[16], etc.) passes a domain (an autonomous
system), it usually takes the form of multicasting among a
subset of the domain’s edge (border) routers, one of which
is the multicast source router (ingress border router) while
others are the multicast receivers (egress border routers).
Based on this abstraction, the goal of QMD is to construct
a multicast routing tree connecting all of the on-tree border
routers (one source and multiple receivers).

The primary advantage of DiffServ lies in its scalability. It
concentrates the complex control plane functionalities at the
edge routers facilitating scalable QoS provisioning. Follow-
ing similar idea, QMD tries to remove the control functions
from core routers while reducing the multicast forwarding
states at the core routers. The design of QMD is based on
the following philosophies:

e Relieving core routers from processing control mes-
sages and maintaining control state information.

e Decreasing the number of data forwarding states the
core routers need to maintain.

e Enhancing Bandwidth Broker (BB) to support QoS-
aware multicasting services in DiffServ domains.

e Providing predictable QoS for multicasting applica-
tions in DiffServ domains.

As introduced in [1], one or more Bandwidth Brokers (BB)
could exist in the DiffServ domains to facilitate QoS resource
management and admission control [1]. It is reasonable to

assume that a BB has the information of its domain’s topol-
ogy and available QoS resources at each intra-domain link.
QMD is based on the assumption of BBs’ existence in Diff-
Serv domains. To facilitate multicasting services within Diff-
Serv domains, we propose to add multicast modules to BBs.
A BB’s multicast module will handle most of the multicast
related control plane functions within its domain: processing
join/leave requests, admission control, finding new branches,
and informing the selected on-tree nodes to install the data
forwarding states. This centralized approach can enhance
the multicasting service security and ease multicast pricing
compared to traditional IP multicasting.

To decrease the multicast routing state maintenance at core
routers, for each multicast routing tree, only a sub-set of
on-tree nodes (key nodes) maintain the multicast data for-
warding states. The set of key nodes uniquely identify a
QoS-aware multicast routing tree. The multicast traffic will
be recursively unicasted among key nodes to multicast re-
ceivers. The key nodes set is composed of two parts: branch-
ing nodes and milestone nodes. The branching nodes are
those nodes that have more than one child node in a multi-
cast routing tree. The branching nodes can make sure that
the multicast traffic to multiple receivers can share the net-
work resources when it passes through the common part of
the network. As mentioned earlier, DiffServ can only pro-
vide aggregate QoS support without guaranteeing per-flow
service. The milestone nodes (as introduced in the following
section) are used to enhance QoS support and provide more
desirable QoS service to multicast receivers.

3.2 Milestone Nodes

DiffServ provides QoS by conditioning packets at the edge
routers and using differentiated forwarding mechanisms based
on codepoints associated with the packets. By aggregating
traffic, DiffServ achieves good scalability. However, Diff-
Serv can only guarantee QoS for the small amount of traf-
fic marked with Expedited Forwarding [21]. For the large
amount of traffic marked with Assured Forwarding [20], it
cannot guarantee QoS on a per-flow basis.

Figure 1: Example of Service Degradation.

Consider the topology shown in Figure 1. Suppose the ca-
pacities of the links are 5 Mbps each. Consider two flows
passing through this domain: one from A to F, and the other
from B to E. Suppose the traffic from A to F is 3 Mbps and
marked with AF1, and the traffic from B to E is 4 Mbps and
marked with AF1. Based on least-cost based routing, both
the flows will pass through link C-D. In a well-engineered
DiffServ domain, one of the flows cannot be accommodated.
Otherwise, some traffic marked with AF1 will be dropped so
that both of the flows will suffer service degradation in Diff-
Serv domains. However, both of them will get predictable
QoS if one of them takes the path C-F-G-H-D instead of
C-D.



For example, the traffic from A to F can be first sent to G
using the least-cost path, then to F following the least-cost
path. We call this kind of nodes (node G in this exam-
ple), where one flow must pass through to get predictable
services, milestone nodes®. Using milestone nodes, the un-
derlying routing protocol is still least-cost based. However,
the traffic is recursively unicasted between milestones nodes.
Based on this mechanism, more applications can be accom-
modated and receive predictable QoS service. Furthermore,
the network traffic can be distributed in the network avoid-
ing any potential hot spot problem.

3.3 QMD Multicasting Tree Maintenance &
Data Delivery

As mentioned earlier, in QMD, only the key nodes need
to maintain the multicast data forwarding states, while all
other on-tree routers just process the multicast traffic as uni-
cast traffic. Figure 2 shows an example comparison between
QMD and regular IP-based multicasting protocols. Figure
2 (a) shows a sample DiffServ domain topology, in which
S1, R1, and R2 are the border routers and the values near
the links are link capacities. Suppose S1 and S2 want to
join a multicast group with a bandwidth requirement of 4
units, which has the source S1 within this domain. Most cur-
rent IP-based multicast routing protocols are based on least-
cost routing protocols, with the multicast routing tree con-
structed as shown in Figure 2 (b). The table entries (in the
format of groupid: list of children nodes) beside the nodes
are the corresponding multicast routing tables. Figure 2 (c)
shows the corresponding multicast routing tree constructed
by QMD, in which only a subset of on-tree routers maintain
the multicast routing table and QoS reservation informa-
tion. The multicast traffic is unicasted between two key
nodes until it reaches the two receivers. Though other on-
tree routers do not maintain any information, the receivers
still can receive multicast traffic with predictable QoS.

To facilitate QMD data forwarding, each key node maintains
a Multicast Forwarding Table (MFT). Each Entry of MFT
is composed of three fields: the group id, its children key
nodes, and the DiffServ codepoints for the traffic to its chil-
dren key nodes. The DiffServ codepoints make it more easier
to satisfy multicast receivers’ heterogeneous QoS require-
ment. The MFT routing entries are also softstate-based. If
after some time, the MFT entry cannot get refreshed and
the value of TTL becomes 0, the corresponding MFT rout-
ing entry would be removed.

The multicast traffic is carried by DATA type message which
includes the group address and real multicasting data. A
DATA message is a unicast packet with the destination ad-
dress as the next hop key node. The DiffServ codepoint
of DATA message is set as the corresponding multicasting
traffic codepoint. When a key node receives a DATA type
message, it first retrieves the group address and obtains the
corresponding MFT entry. If the entry only has one child
key node, it sends the DATA message to its child key node
with the corresponding service level codepoint. Otherwise, it

'Here, we do not intend to do per-flow management within
DiffServ domain. The milestone nodes searching will be
combined with searching of new multicast branch as dis-
cussed in the following sections.

(a) An Intra—domain Topology

'Sii':'Aa_

(c) QMD’s Multicast Routing Tree

(b) Regular Multicast Routing Tree

Figure 2: Comparison of QMD and Regular IP-
based Multicasting Protocols.

duplicates the DATA message and sends the message to each
of its children key nodes with the corresponding service level
codepoints. Thus, key-node-by-key-node, the multicast traf-
fic is forwarded to all the receivers. The intermediate nodes
between any two key nodes do not maintain any QoS reser-
vation states or multicast routing states for the multicast
group. They just forward the packets based on the desti-
nation addresses and DiffServ codepoints as normal unicast
packets.

3.4 QMD Membership Management

BB
sep2 -~ S sepl
step 3
VA T Y
Ingress router @~ e __~® New member
\‘\, ST /
S L4 Key nodes ® 7

Figure 3: Basic Procedure of New Member Join.

Figure 3 shows the procedure of processing a new mem-
ber’s join request. As mentioned above, QMD’s goal is to
construct a multicast routing tree connecting a set of bor-
der routers. In QMD, the multicast’s join request (a JOIN
message) is usually sent from one of the border routers
(edge routers) to its local domain BB (step 1 in Figure
3). The JOIN message sent by a border router includes
its own IP address, service level requirement, and multi-
cast group address. The JOIN messages can be initiated
from other domains via inter-domain multicasting join re-



quests. The inter-domain multicasting protocols can be
CBT[3], MBGP/MSDP[2], SSM[6]. Each on-tree border
router may have more than one downstream group mem-
bers located in the other domains.

To support QMD, a BB needs to maintain a Multicast group
table(MGT). An MGT entry records a multicast group in-
formation within this domain. An MGT has the following
fields: 1) Group address; 2) A list of group members (border
routers) and their TTL (time to live values). When the BB
cannot receive a border router’s refresh message (a JOIN
message sent by a border router) after the TTL, it will be
removed from the group member list. 3) A list of key nodes
for this group and their corresponding information: IP ad-
dress, the service level of the path from the multicast source
to the nodes, and each key node’s multicast data forwarding
information.

When a BB receives a JOIN request, after admission control
and locating this multicast ingress border router, it first uses
the QMD-DIJKSTRA algorithm (as described in Section 4)
to identify the key nodes which connects the new member
to the existing multicast tree via a QoS-satisfied path. The
number of key nodes indicates how many core routers will
maintain the Multicast Forwarding Table (MFT) entry so as
to provide QoS-aware multicast service to this new mem-
ber. Then, it updates the MGT entry and sends out CON-
STRUCT message (step 2 in Figure 3) to the ingress bor-
der router (multicast source). The CONSTRUCT message
is used to set up the corresponding multicast forwarding
entries at the key nodes. When a node receives a CON-
STRUCT message, it looks up the corresponding entry for
itself, removes it from the CONSTRUCT message and up-
dates its multicast forwarding table (MFT). It then locates

its children key nodes’ addresses, duplicates the CONSTRUCT

message and sends it to them (step 3 in Figure 3).

As mentioned earlier, the MFT entries at the key nodes are
maintained in soft-state. The BB needs to periodically send
CONSTRUCT messages to the ingress border routers so as
to refresh the corresponding MFT entries at the key nodes.
The membership of a multicast group is also maintained
in soft-state, which means that the edge routers must re-
fresh their membership status periodically (by sending JOIN
messages). When a group member wants to leave (it has
no downstream receivers), it can either stop sending refresh
messages or send a LEAVE request to the BB. The BB can
then remove the node’s membership and release the reserved
resources. If some key nodes’ corresponding entries need to
be updated, a new CONSTRUCT message will be sent out
by the BB.

4. KEY NODES SEARCHING METHOD

In QMD, we use a modified version of DIJKSTRA algorithm
(QMD-DIJKSTRA) to find the list of key nodes that can
connect a new group member to the group’s multicast tree
while satisfying the new member’s QoS requirement.

A domain can be modeled as a connected directed graph
G(V, E), while V is the set of nodes and E is the set of
links. A link from v; to v; is represented as (v;, vj). The
available QoS resource between nodes i and j is Q(i, j). If
Q(, j)> SLg, it means that the available QoS resource from

i to j can meet the QoS requirement SL;. Vg is the set of
edge routers while V¢ is the set of core routers (V = Vg U
V). Suppose group M has ingress source edge router Vg;
at this domain and Vkng € V is the set of key nodes for
this group. The set K N¢ depicts the DiffServ service levels
for the multicast traffic from the ingress router to these key
nodes. Each element of K Ng has a 2-tuple notation, <wg,
SLi>.

We assume that the BB has the knowledge of the domain’s
topology G(V, E) and the available QoS resources on all e €
E. We also assume that the BB can obtain the shortest paths
between any two nodes in V (for example, using FLOYD
algorithm[13]). Suppose an edge router Vg; wants to join
group M (its ingress source edge router within this domain
is Vms ) with service level requirement SL;. Algorithm 1
depicts how the BB can find a new branch (a list of key
nodes) that meets the new member’s QoS requirement.

Algorithm 1 QMD-DIJKSTRA-2(G, Vgng, KNg, Vi,
SL;)

1 W&V

2 Q«+ {<u;, <> 00>}

/* Q is a set of 4-tuples, which is the set of nodes that have
been selected. The first field is a node id. The second is the
list of the key nodes on the path from u; to Vg;. The third
is the number of key nodes. The fourth is the cost of the
path*/

3 while Q#0

4 Extract u = <uj, <u1,u2,...>, n, ¢ > from Q with the
least value of Weight(n,c) to vj, remove u; from W.

5 If u; € Vkng and SLy; > SL; /* Satisfying the QoS
requirement.*/

6 return <wi,uz,...>

7 Else

8 For each v € u;’s neighbors and v € W

9 If Q(v, uj)> SL;

10 C is the path cost from v to u;

11 If u; is in the least cost path from v to u1

12 Add <v,<u1,us,...>,n,¢c + C > to Q

13 Else

14 Add <v,<uj,u1,u2,..>, n+1, ¢+ C > to Q

The algorithm can be explained using Figure 4. Suppose we
have obtained the path from wu; to v; with the list of key
nodes, and w1 is u;’s neighbor key node along the path. v is
u;’s neighbor node. If u; already belongs to the multicast
tree, our task is done. Otherwise, if u; is on the least-cost
path from v to w1, the key nodes from v to v; should be the
same as from u; to v; (line 12 in Algorithm 1). If w; is not
on the least-cost path from v to w1, the key nodes from v to
v; should include u; and the key nodes from u; to v; (line
14 in Algorithm 1).

Uj U1 Vj

Figure 4: Explanation of QMD-DIJKSTRA Algo-
rithm.

We can see that the Algorithm 1’s computing complexity is
same as the regular Dijkstra algorithm with O(|V|?). The



definition of Weight(n,c) can be varied depending what kind
of QMD tree the BB wants to construct. If Weight(n,c) =
n, the algorithm can find a new branch with the least num-
ber of key nodes. This ensures that the new branch adds
the least number of data forwarding states (entries) into
core routers while meeting the receiver’s QoS requirement.
If Weight(n,c) = ¢, the new branch will consume the least
amount of network resources while meeting the receiver’s
QoS requirement. If Weight(n,c) = n+*c, it means that the
algorithm considers both of the factors (resource consump-
tion and forwarding states) at the same time.

5. SIMULATION & ANALYSIS

In this section, we conduct a series of simulations to study
and compare the performance of QMD with other multicast
routing protocols. Four algorithms are simulated: short-
est path tree (SPT), QMD1 (Weight(n,c) = n), QMD2
(Weight(n,c) = n xc), and QMD3(Weight(n,c) = ¢). In
CBT (Core-Based tree)[3] and PIM (Protocol Independent
Multicast)[16], the new member is connected to the multi-
cast tree via unicast least-cost path, and the multicast tree
is a shortest path tree (SPT). These routing algorithms can
be categorized as “SPT” algorithm.

In reality, different domains can have different intra-domain
topologies. Without the loss of generality, we use two ran-
dom Waxman network topologies[30] and two real intra-
domain topologies published by Rocketfuel[24] to simulate
the intra-domain topologies. Our goal is to show the generic
performance of QMD, not on any specific intra-domain topol-
ogy. Waxman uses the following approach to generate a Diff-
Serv domain topology: network nodes are randomly chosen
in a square (aka) grid. A link exists between the nodes u and
v with the probability P(u,v) = a*e_d(“’”)/(b*"‘2), where
d(u,v) is geometric distance between u and v, a and b are
constants that are less than 1. Using this method, we gen-
erate two random topologies: one with 300 nodes (150 edge
nodes) and 600 undirected links, one with 600 nodes (200
edge nodes) and 1800 undirected links. The two real intra-
domain topologies are two typical ISP toplogies: Sprint-
Link (AS 1239) and Level3 (AS 3356). The router-level
SpringLink topology published by Rocketfuel has 604 nodes
(242 edge nodes) and 2274 undirected links. The Level3
intra-domain topology has 624 nodes (193 edge nodes) and
5300 undirected links.

For each simulation, a multicast source and a set of multi-
cast receivers are randomly selected out of the edge routers.
In reality, each of the receivers can have one or more down-
stream receivers. During the simulation, we assume that
each of the members has only one downstream receiver. The
receivers join the multicast group in sequence with some
random QoS requirement. There are 3 scenario (sl, s2, s3)
setups for the physical links’ QoS resource. In sl, for each
receiver’s request, each link has the probability of % to meet
the receiver’s requirement. That means that half of the links
can meet the receiver’s QoS requirement. In s2, for each re-
ceiver’s request, each link has the probability of % to meet
the receiver’s requirement. In s3, for each receiver’s request,
each link has the probability of % to meet the receiver’s re-
quirement. For each group size and algorithm, we simulated
different sizes of multicast groups based on the above sce-
narios for 1000 times and computed the average results.

Based on above simulation setups, we evaluate the following
performance metrics: average routing states, QoS success
ratio, average routers involved setting up multicast trees,
and average multicast routing tree cost.

# of MFT Entries
# of multicast groups

(1)

Avg. routing states =

# of QoS satisfied requests
# of join requests

Awvg. success ratio =

(2)

# of mcast table updates
# of groups
3)

Avg. # of involved cores =

# of links mcast trees passed
# of groups

Awvg. tree cost =

(4)

The Average Routing States is defined as the average num-
ber of multicast routing entries each core router needs to
maintain for each multicast group. It is used to evaluate
the core routers’ burden of specifically routing multicast
data traffic. The Average Success Ratio is defined as the
ratio of finding a QoS-satisfied path connecting the multi-
cast source to the new members (edge routers). To fairly
compare other metrics, if a QoS satisfied path cannot be
found for a new member, we will connect it to the multicast
tree using the least-cost path. That means, the new member
can still receive the multicasting traffic without its desired
QoS. To compare the core routers’ burden of processing the
new group members’ join requests, we use Average Number
of Core Routers involved to evaluate how many core routers
are involved setting up a new multicast routing tree. It is
defined as the average number of multicast routing table
changes in the core routers. The Average Tree Cost is de-
fined as the average number of physical links a multicast tree
passing-by. It can be used to evaluate the different multicast
routing protocols’ network resource consumption.

Figure 5 and Figure 6 show the average amount of rout-
ing states a core router needs to maintain for a multicast
group for different group sizes under the different simula-
tion setups. From the figures, we can observe that using
QMDs, the core routers only need to maintain about half
the amount of routing states compared to the other multi-
cast routing protocols (SPT). Thus, QMD can decrease half
the multicast routing burden of forwarding multicast data
traffic (which is forwarded as the regular unicast traffic).
This is because QMD only requires the key nodes of the
multicast groups to maintain multicast routing states. The
other on-tree nodes do not maintain any multicast routing
states even when there are multicast traffic passing through
them. When comparing the performance of QMDs in differ-
ent scenarios (sl, s2, and s3), we can see that core routers
in s1 maintain more routing states than s2, which again re-
quires routers to maintain more states than s3. As we men-
tioned earlier in the simulation setup, s1 has % of total links

meet the receivers’ QoS requirement while s2 has % and s3
has %. When fewer links meet the receivers’ QoS require-

ments, QMDs require more milestone nodes to maintain the
routing states.
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Figure 5: Comparison of Core Routers’ Multicast Routing States (Random Topologies).
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Figure 6: Comparison of Core Routers’ Multicast Routing States (Real Intra-domain Topologies).

In addition, QMD3 requires the core routers to maintain a
little more routing states than QMD1 and QMD2. This is
because the definition of Weight in QMD1 only considers
the number of key nodes while in QMD2 and QMD3, it also
considers the cost of the multicast tree. As a result, QMD1
need a little less number of key nodes to connect a new
member to the existing multicast routing tree.

Figure 7 and Figure 8 show the receivers’ QoS success ratios
using the multicast protocols for the different simulation se-
tups. It can be observed that QMD1, QMD2 and QMD3
can achieve almost the same QoS success ratio for multicast
receivers for each scenario. When comparing QMDs with
SPT, we can see that QMDs can provide a much higher
QoS success ratio. Because SPT’s new multicasting branch
searching is based on least-cost path search, it cannot pro-
vide receivers the desired QoS when some links do not meet
the QoS requirement. However, QMDs can effectively avoid
these links and provide receivers with better QoS branches.

In Figure 9 and Figure 10, we show the average number
of core routers involved in processing multicast control mes-
sages for setting up a new multicast routing tree. The results
show that QMDs have much fewer core routers participat-
ing in setting up a new tree because the join requests are
sent directly to the BBs. Only the key nodes of the new

branches need to add the new routing entries. The other
on-tree nodes are not involved in processing the multicast
control messages. Compared to QMD2 and QMD3, QMD1
has lowest number of core routers involved in setting up a
multicast routing tree, which benefits from its definition of
Weight. When comparing the different scenarios (s1,s2 and
$3), we observe that s3 requires much fewer routers involved
in setting up multicast routing trees. In s3, more links meet
the receivers’ QoS requirements which means that the multi-
cast trees have fewer milestone nodes compared to the other
scenarios.

Figure 11 and Figure 12 compare the average multicast tree
cost (the number of links the trees pass by) for the different
routing protocols under different simulation setups in these
intra-domain topologies. From the results, we observe the
following trends: the trees constructed by SPT have less
cost than the trees constructed by QMDs; the trees in s3
have less cost than the trees in s2 (the same relationship for
s2 and sl); the trees constructed by QMD2 have less cost
than the trees constructed by QMD1 (same for QMD3 and
QMD2). This is because of the following two reasons: 1)
The definition of Weight of QMD2 and QMD3 contributes
more in terms of the tree cost compared to QMD1; 2). If
fewer links meet the receiver’s QoS requirements, the multi-
cast trees need to deviate more from SPT trees to meet the
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Figure 7: Comparison of Receivers’ QoS Satisfaction Ratio (Random Topologies).
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Figure 8: Comparison of Receivers’ QoS Satisfaction Ratio (Real Intra-domain Topologies).

receivers’ requirement, which results in higher tree cost.

From the above simulation results based on both random
and real intra-domain topologies, we can conclude that QMD
requires a lower number of core routers to maintain rout-
ing states compared to the SPT-based routing protocols. It
uses QMD-DIJKSTRA algorithm to locate the key nodes
to achieve higher success rate. Besides, it also puts lower
burden on the core routers in processing multicast control
messages to set up multicast routing trees.

6. CONCLUSIONS

In this paper, we introduce QMD as a scalable QoS-based
multicast routing method for DiffServ domains. Based on
the basic idea of DiffServ, we decouple the control plane and
data plane functions in QMD. The edge routers together
with the Bandwidth Broker (BB) process the join and leave
events, find the lists of key nodes of QoS-satisfied branches
(using the proposed QMD-DIJKSTRA algorithm) and other
control functions. The key nodes only need to maintain the
necessary data forwarding states. Thus, other nodes in the
multicasting tree need not maintain any state information
about the multicasting group. The merit of QMD is that it
can provide QoS support to multicast group members with-
out requesting the on-tree routers to do resource reservation
and maintain QoS routing states. Simulation results have

shown that QMD can provide better performance in terms
of higher success ratio while incurring less multicast control
burden on the core routers. QMD also can easily facilitate
group members’ heterogeneous QoS provisioning. The low
overhead and implementation simplicity makes QMD an at-
tractive candidate for adoption in DiffServ Domains.
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