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Abstract

Sensor networks usually have limited energy and trans-
mission capacity. It is beneficial to reduce data volume for
dissemination in a sensor network that monitors continu-
ous physical processesin order to reduce energy consump-
tion. Data compression schemes in use should be able to
adapt to limited bandwidth while preserving high data qual-
ity. e propose a wavelet-based, error aware compression
algorithm that is targeted to achieving these goals. First
of all, it can adjust its maximum normalized error to cur-
rent network capacity. Additionally, errors due to multiple
passes of compression during multi-hop relaying are addi-
tive and thus can be estimated easily upon data reconstruc-
tion. Moreover, during data dissemination, error ranges
can be narrowed through an opportunistic patching process
when excess bit rate is available. Consequently, the perfor-
mance is less subject to the volatility of physical processes.
The algorithm has been evaluated in various aspects and
demonstrated to be effective in rate adaptivity, error range
narrowing, and preservation of statistical interpretation.

1 Introduction

A sensor network is formed of a number of networked
sensors that are deployed to gather information collectively
from their proximity and relay it to a data sink for further
processing. Sensor networks are widely used in environ-
mental exploration, military systems, and factory produc-
tion monitoring. Sensor Networks usually have limited bat-
tery source and link bandwidth. A large body of research
has been done to address some challenging issues in deploy-
ing large scale sensor networks, for example, route setup
and maintenance [1, 2, 3], energy consumption and conser-
vation [4, 5]. Closer to the context of our work, authors in
[6, 7] proposed methods for data volume shrinkage, which,
however, are for single variable cases and thus not directly
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applicable to multivariate monitoring sensor networks.

Based on characteristics of traf ¢ sources, data dissem-
ination in sensor networks can be divided into two major
classes: continuous dissemination and event-triggered de-
livery. In the class of continuous dissemination, sensing de-
vices monitor certain physical processes continuously and
periodically relay the collected data to a sink in a hop-by-
hop manner. For instance, environmental observations, and
production process monitoring fall into this class. In the
class of event-triggered delivery, sensors do not transmit
data on a regular basis. Instead, the sink advertises its inter-
est of certain types of events to the entire network, and in-
dividual sensors generate a report to the sink only upon the
occurrence of an event of interest. Moving object detection
and tracking in battle eld are examples of this category.

Our motivation for this work was based on the observa-
tions that sensor networks are usually energy and bandwidth
constraint and that data rates in continuous time series may
be large and varying over time. It is desirable that we can
compress time series from volatile physical processes into
streams with constant or limited bit rates in order to meet
network capacity limitation. To the best of our knowledge,
there has been no reported work on time series compression
with rate adaptivity and the ability to preserve statistical in-
terpretation of time series. We believe such a compression
method will signi can tly enrich the research efforts in net-
work capacity planning and estimation, data quality main-
tenance, network traf ¢ scheduling, congestion alleviation,
and energy conservation.

Our work attempts to address multiple issues, namely,
data dissemination with capacity constraint, preservation of
statistical interpretation, and energy conservation from an
integrated view. In particular, we propose a Rate Adap-
tive Compression with Error bound (RACE) algorithm in
the context of M3 (multi-terminal, multi-hop, and multi-
variate) sensor networks. Major contributions of this work
are as follows.

e We propose an error-based wavelet coef cients zero-



ing algorithm. This algorithm has low computation
complexity and its error bounds are additive when mul-
tiple error thresholds are imposed. It can generate ef -
cient data encoding patterns and meet various rate con-
straints.

e We adopt an opportunistic patching process to smooth
and minimize error ranges for the proposed compres-
sion algorithm.

e We evaluate the algorithm and demonstrate its capabil-
ity of adapting to bit rate, minimizing and smoothing
error range, and preserving statistical interpretation.

Although our work is focused on adaptive compression of
time series in the class of continuous dissemination sensor
networks, some of the principles are applicable to event-
triggered sensor networks as well.

The rest of the paper is organized as follows. Section
2 outlines main challenges in sensor networks, some re-
lated efforts in existing literature, and motivation of our ap-
proaches. Section 3 gives some preliminaries which facili-
tate our discussion. Section 4 presents our RACE compres-
sion algorithm and analyzes its effectiveness in time series
compression. Section 5 elaborates main procedures of our
RACE algorithm. Performance evaluation of RACE algo-
rithm is reported in Section 6. Concluding remarks and fu-
ture work plan are presented in Section 7.

2 Related Effortsand Our Approaches

The following questions motivate our design philosophy.
They are answered in the rest of this section.

e Why data compression is not replaceable by lowering
sampling frequency/precision?

e Why constant or limited bit rate (CBR and LBR) is
preferred over other forms (e.g. variable bit rate,
VBR)?

e How can we bound error for lossy compression, es-
pecially multi-pass compression on multivariate time
series in M3 sensor networks?

e Why encoding is necessary during compression?

Intuitively, low sampling rate and sparse sensor deploy-
ment can shrink the data volume. However, such approach
cannot capture the detailed movement of observed variables
and thus only delivers information of low quality. Compres-
sion of high precision data is able to preserve more details
and can trade off accuracy for bandwidth when the trans-
mission capacity limit is encountered. A threshold trig-
gered dissemination scheme is proposed in [7], which, how-
ever, does not use data compression to meet bandwidth con-
straints.
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It has been known that wireless transceivers are major
energy consumers in sensor networks [4]. So, transmitting
raw data without compression will result in too much en-
ergy consumption. But only compression is not enough.
Due to the volatility of physical processes, common com-
pression algorithms with hard precision requirement may
produce variable bit rate output stream, which is not desir-
able for transmission scheduling in sensor networks. With-
out a good transmission scheduling, sensor nodes have to
listen more frequently for pass-by traf ¢ in hope of not in-
curring too much delay. As pointed out in [5], this kind
of idle listening is also a major source of energy consump-
tion. Thus an algorithm that can generate constant bit rate or
limited bit rate output streams is important for better trans-
mission regulation and energy conservation. To this end,
we believe that it is very desirable to have a rate adaptive
compression algorithm in order to shrink data volume and
reduce transmission energy consumption. An interesting re-
lated work is Embedded Zerotree Wavelet (EZW) proposed
in [8] that interprets errors in forms of noise signal strength,
which is different from those used in numerical error anal-
ysis and is thus not suitable for our purpose.

Because we want to compress time series from volatile
physical processes into CBR or LBR output streams which
can meet network capacity constraint, lossy compression
becomes the only choice. There are two types of compres-
sion based on the retention of accuracy: lossy and lossless.
Lossy compressed data cannot be reconstructed to the orig-
inal accuracy as lossless compression does. This naturally
leads to the concern of data quality. In the context of time
series compression, data quality is quanti ed as their nu-
merical accuracy. As discussed in [9], lossy compression
based on wavelet decomposition needs special mechanisms
to protect against unbounded errors. The wavelet coef cient
zeroing techniques (explained in Section 3) in that work,
however, cannot be directly translated to compression algo-
rithms: there is lack of mechanisms of how these wavelet
coef cients should be encoded and how we can estimate
data error after zeroing some leaf tree(s). Hence we pro-
pose Gradient Error Tree structure and error-based zeroing
technique in order to achieve error aware compression.

In a multivariate monitoring sensor networks, multiple
time series are converged at a sink for statistical interpre-
tations. The interpretations are either based on individual
variables’ features such as mean and variance, or on mul-
tiple variables’ correlation and regression. While there are
plenty of network research efforts on single variable dis-
semination [6, 7], their conclusions are not well applicable
into the multivariate sensor networks. Since the compress-
ibility of different time series may be quite different, some
compression methods may treat some better than the others.
For instance, the shrinkage based on some principal com-
ponents [10] may incur different levels of delity among
the multiple time series. This differentiation may dimin-



ish statistical signi can ce of different variables. In other
words, differentiated treatment of multiple variables may
not render meaningful statistical values. Variables with di-
verse patterns should be treated with adequate fairness in
order to preserve their individual characteristics as well as
the correlationship among them. Additionally, we need to
deal with the problem of multi-pass compression on multi-
ple time series in multi-hop sensor networks. With the error
additivity property of our technique, it is easy to estimate
data error after multi-pass compression in multi-hop relay-
ing.

Now let us explain the importance of encoding schemes
in adaptive data compression. For a compression to be ef-
fective in volume shrinkage, it is necessary to exploit data
patterns and derive an ef cient encoding scheme. Other-
wise compression outcome may not be satisfying. For in-
stance, the two sequences with the identical membership
but different patterns {ababab} and {aaabbb} have vary-
ing compression ratios using different encoding schemes.
When compressed using run length encoding [11] based
on a single character’s occurrence frequency, the rst se-
quence is encoded as {ababab} and the second is encoded
as {a3b3}, the second one is more ef ciently encoded than
the rst one. But if the encoding counts the occurrence fre-
quency of two characters, then the rst sequence is encoded
as {(ab)3}, its compression ratio is improved. Therefore, it
is pivotal to incorporate encoding into wavelet coef cient
zeroing to implement an ef cient compression algorithm.

Finally, we would like to point out that it is dif cult, if
not impossible, to provide hard guarantee on data quality in
a sensor network with potential con icting between avail-
able network capacity and data volume of time series. So
it is more practical to pursuit a Soft guarantee on data qual-
ity, which is the guide for the design of our rate adaptive
compression algorithm which attempts to meet bandwidth
constraint and provide minimal error bound in a best effort
manner.

3 Preliminaries

In this section we brie y review some basics in order to
facilitate later discussion on our compression algorithm.

3.1 Error Norm

An L? error norm was chosen to be the accuracy ob-
jective for quality guarantee in [6]. The L? error norm is

de ned as
= > e,
i

where ¢; is the error of each element. This choice of de ni-
tion is demonstrated to be effective in trend prediction. We
n d that L? error norm is weak at estimating error bound

(1)
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on operation results from functions such as mean, variance,
correlation, etc, because it only captures the overall error
range of the data set instead of per element errors. We thus
choose to use L as our error norm, which is de ned as the
maximum absolute error among all the data elements:

L*® = mazx;|e;|.

)

It is observed that the values of the absolute errors from
multiple physical processes are likely to be in different mag-
nitude orders. When they are treated with the same preci-
sion objective, those in lower magnitudes might be dimin-
ished by others in higher magnitude orders. We are thus
motivated to use a variant of the absolute error-normalized
error as the error norm. The normalized error refers to the
absolute error of the normalized data. More speci cally ,
a time series is rst normalized between its maximum and
minimal values. An element of the time series d; is normal-
ized into norm(d;) using the following equation:

di - dmzn
i ; 3)
where d,,,;,, and d,;, 4, are the maximum and minimal values
that have been observed. Note that the normalized value
range is thus between [0,1]. The normalized error between
the actual data element d; and its reconstructed value d is
|norm(d;) — norm(dy)|.

The normalization is illustrated as follows. Ten tempera-
ture samples that are used in Section 6 are {24.33, 24.40,
24.31, 24.35, 24.41, 24.43, 24.50, 24.58, 24.48, 24.54}.
The normalized values are {0.074, 0.333, 0.000, 0.148,
0.370, 0.444, 0.704, 1.000, 0.630, 0.852}. If the recon-
structed values (normalized version) from a lossy compres-
sion are {0.07, 0.33, 0.00, 0.14, 0.370, 0.44, 0.70, 1.00,
0.63, 0.85}, then the normalized errors are {0.004, 0.003,
0.000, 0.008, 0.000, 0.004, 0.004, 1.000, 0.000, 0.002}.

Normalization ensures error ranges of multiple time se-
ries to be in the same magnitude order, thus improves fair-
ness among them. The error estimation using normalized
error can follow the established methodologies [12].

norm(d;) = .

3.2 Wavelet Coefficient Tree

The Haar wavelet transformation is an instance of
wavelet decomposition. For a given time series, neigh-
boring elements are averaged and their differences are also
computed. The averages represent the trend of the time se-
ries and the differences reveal the details. The series of av-
erage values from the last transformation apply the same
process until there is one average value left. The resultant
values are called wavelet coef cients. An example is given
in Table 1: the original time series is {2,6,5,11}, and the
resultant wavelet coef cients are {6,-2,-2,-3}.

The Haar wavelet coef cients can be arranged into a
tree structure [13, 9, 14]. A coefcient tree that is con-
structed based on the Haar wavelet coef cients for data set



Table 1. Haar Wavelet Transformation

[ Tteration [ Average | Detail |
1 2651011 -
2 [4,8] [-2, -3]
3 [6] [-2]

Table 2. Notations

| Notation Meaning |
¢ ith coef cient
d; ith element in the time series
path(i.j) all the coef cients from c¢; to the ¢;
leaf(i) all of leaf nodes of node ¢

all the left leaves of
all the right leaves of 4
all the coef cients that are ¢;’s parents

left leaves(i)
right leaves(i)
parent(i)

{3,4,3,2,6,8,9,7,2,3,1,2,10,8,7,9} is shown in Figure 1. The
coef cien ts are labeled as ¢(i), where i is its index. The
values in the time series is labeled as d(3).

The value d; in the time series can be reconstructed using
all the wavelet coef cients ¢; along the path from root to d;,
using the notations in Table 2:

>

c; €path(0,i)

d; = di,j - Cj, 4)

—1,i € right _leaves(j) or j = 0.
1,i € left leaves(j).
0, otherwise.

3.3 Magnitude-Based Zeroing

The magnitude-based zeroing of wavelet coef cients is
as follows. Given a threshold o > 0, if a wavelet coef -
cient ¢; satis es |¢;| < a, then the value of ¢; is set as 0,
i.e. the coef cient is cut off and does not participate in the
reconstruction process.

c4
c36§ (03 ar(0) sl et6{ 1

aJoJoJololo)olelolololelcloRolo

do dl d2 d3 d4 ds d6 d7 d8 d9 d19 din di2 di3 di4 dis
Time Series

Figure 1. A sample coef cient tree
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Wavelet coef cients zeroing techniques have been
widely used in various applications for signal de-noising
[15].

4 RACE Algorithm

This section outlines our Rate Adaptive Compression
with Error bound (RACE) algorithm. We rst discuss the
underlying Gradient Error Tree structure and error-based
zeroing technique, and then give an overview of our RACE
algorithm. We also present error additivity and patch-ability
properties of RACE algorithm.

41 Gradient Error Tree

We adopt a tree structure which is similar to wavelet co-
ef cient tree but with error value as nodal label. The error
value associated with each node is evaluated as, if the sub-
tree rooted from this node is zeroed, the maximum devia-
tion between the reconstructed and the original values that
are affected. The higher level a node is in the tree, the larger
is the deviation. We term the error value as error gradient.
A formal de n ition is as follows.

Definition Error gradient. The error gradient of the coef-
cien t V, denoted as G(V'), is the maximum magnitude of
the error that is incurred when the sub-tree rooted from V'
1s zeroed, i.e.,

G(V) = max{Vi € leaf(V) : |d; —

>

cjEparent(V)

8i5 i}
Q)

Note that the error norm used in Equation 5 is the L* in
the absolution form. If the coef cients are normalized then
the error norm becomes normalized error. We may de ne
other variants of error gradients based on other error norms.
For instance, error gradients based the L? error norm can be
de ned as Equation 6.

>

Vieleaf(V)

G(V) (di —

>

cj Eparent(V)

0ij - €5)°-

(6)

In this paper, we use Equation 5 and normalized error to
compress wavelet coef cients.

Figure 2 shows the gradient error tree which is corre-
sponding to the wavelet coef cient tree in Figure 1. Note
that each node i is labeled with its error gradient G(3).

4.2 Error-Based Zeroing

With the development of gradient error tree structure, we
now present our error based zeroing technique. A coef -
cient and its children are zeroed if its error gradient is less
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Figure 2. Error gradient
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Figure 3. Threshold: 2

than the preset threshold. The zeroed sub-tree is encoded
with a single tree symbol. Obviously the tree symbol fully
embeds the position information of all the zeroed coef -
cients. Because time series usually do not change signif-
icantly in a short duration, it is possible to further shrink
these tree symbols using run-length encoding.

Now let us see some illustrations of error based zero-
ing. Take the wavelet coef cient tree depicted in Figure 1
for example. We prune it by using error-based zeroing with
different error thresholds of 2 and 4. Figure 3 is the pruned
coef cient tree using error threshold 2, where the zeroed
sub-trees are labeled as “t”, the numbers inside the bottom
circles are derived from the zeroed coef cient tree. Note
that the output symbol is denoted as O(i), where 4 is the
symbol’s index in the output stream. The number of sym-
bols needed to be encoded is 8, of which the last four “t”’s
can be further compressed using run length compression.
Figure 4 is the pruned coef cient tree with the error bound
of 4. The number of symbols to be encoded is 6.

Output Symbols

G

?QD%

0(3)

o4
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Reconstructed Time Series

Figure 4. Threshold: 4
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4.3 Overview of RACE Algorithm

RACE algorithm is built on top of error-based zeroing
technique and it consists of a series of procedures which
will be elaborated later in Section 5. Here we give a brief
overview of it.

To compress a time series, we rst construct a wavelet
coef cien t tree based on its wavelet decomposition (in this
paper it is Haar Wavelet Transformation). We can gener-
ate an associated gradient error tree for the wavelet coef-
cien t tree. We then compress the original time series by
applying error-based zeroing to the wavelet coef cient tree
with guidance from the gradient error tree. During multi-
hop transmission in sensor networks, multi-pass compres-
sions may be applied on the same time series from hop to
hop if bandwidth limit is encountered. Thanks to the error
bound additivity property (see Section 4.4) of our RACE al-
gorithm, it is easy to estimate the overall error bound upon
data reconstruction at the sink side.

The RACE compression algorithm is coupled with a
patching mechanism that can narrow the error range and
lower the maximum error whenever there is excess in bit
rate. Formal description on patch-ability will be presented
in Section 4.4, and details on this patching process will be
presented in Section 5.4. Due to the patch-ability property
of our RACE algorithm, its performance is less subject to
the volatility of physical processes. This patching process
has a very low overhead in encoding and matching the con-
text information.

4.4 Propertiesof RACE Algorithm

In this subsection we discuss two important properties of
RACE algorithm, namely, error bound additivity and patch-
ability. With error bound additivity, we can estimate overall
error bound for multi-pass compressions with ease. With
patch-ability, RACE algorithm can smooth and minimize
error range in an opportunistic manner.

Proposition 4.1 Error Bound Additivity. Given a time se-
ries S, itswavel et coefficient treeisdenoted asT'. Using the
gradient error tree algorithm, 7" is zeroed and transformed
into 71 when the threshold is ¢1, T} is zeroed and trans-
formedinto T using threshold ¢,. Denote the reconstructed
time series from 7% as S'. Then the deviation between S’
and S ishounded by ¢1 + t».

Proof Take an arbitrary element d; € S. Denote d;’s re-
constructed value in S as d?. The objective is to prove
|dz — d12| < t1 + to.
Denote d;’s reconstructed value from T} as d'.
|di—d}| = |(di —d)+(d; —d})| < |d;—d;|+|d} —dF|.
Using the de n ition given by (5) in Section 4.1, we get
T

0, otherwise.
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Figure 5. Stacked Thresholds: 2 and 4. Error
bound: 6

Similarly,
|d} —d?| = .

v v 0, otherwise.
Since G(j) < t1 and G(I) < t9, we have
jdi— 2] < [di—d}| +]d} 2] < G(j)+C(D) < 1+t
That proves the proposition.

Let us see an example of error bound additivity. If we
apply a further compression with error bound of 4 to the
wavelet coef cient tree in Figure 3, which has been com-
pressed with error bound of 2, we can get the resultant tree
as depicted in Figure 5. Comparing Figures 5 and 1, we ob-
serve that the error is bounded by the sum of the two thresh-
olds, that is, 6.

The error bound additivity property makes it possible to
estimate the error bound in a multi-hop network. Moreover,
the stacked zeroing processes do not require the coef cient
tree to be decoded to obtain the error bound; it operates
directly on the wavelet coef cients, the computation com-
plexity thus decreases at each relay hop.

Patching has been used to protect image quality against
lossy compression in image coding eld (e.g, see [16]). We
can utilize this technique to improve data quality in wire-
less transmission as well. We term this property of RACE
algorithm as patch-ability.

Proposition 4.2 Patch-ability. Given a Haar wavelet co-
efficient tree T' and a threshold ¢. Denote T (T<) as the
set of coefficientswhose error gradients are greater than or
equal to (less than) ¢. Obvioudly, T is set of the coeffi-
cients zeroed by t. T is sorted in descending order into
T'< =c5,c5,¢5,...cy, based onthe error gradients, i.e. if
1<i<j<pthenG(i) > G(j). Denote first m coeffi-
centsas A, Ay, = cf,c5,c5, e C T.. Thentheer-
ror bound for the consolidated tree T (| A, isG(cpy, 1)

Proof The proposition of patch-ability can be translated
into an equivalent problem: When the n wavelet coef cients
are sorted based on their error gradients, the reconstruction
error using the rst m coef cients is then bounded by the
(m + 1)th coef cien t’s error gradient. This is exactly how
the zeroing process works. The proof is thus omitted.
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Figure 6. Patch-ability illustration

An illustration of the patch-ability proposition is as fol-
lows. When the threshold is 4, the error gradients as de-
picted in Figure 2 is partitioned into the following sets:
Ts = co,c1,c3 and T = ¢3, 5, €7, Ca, Co» C105 C11» Clds
c15, Cg, Cg, C12, C13. The error gradients that correspond
to the coef cients in T'< are {3.75, 1.5, 1.5, 1, 1, 1, 1, 1,
1, 0.5, 0.5, 0.5, 0.5}. Thus by de nition, Ay = co,c5 =
—2.25, —0.5. Then TZ ﬂ A2 = ¢p,C1,C3,C2,Cs. The con-
solidated tree is illustrated in Figure 6. The patch-ability
property projects that the maximum error is bounded by
G(7) = 1.5. Compare Figures 1 and 6, we observe that
the maximum error occurs at dq5, so the deviation is 1.5.
That con rms the error bound projection.

Because of the volatility of underlying physical pro-
cesses, the errors of each compressed time series segment
may differ signi can tly, which is con rmed in Section 6.1.
In this occasion, the patch-ability property can utilize excess
in bit rate when the compressibility of current segments is
high, to compensate some signi cant coef cients for previ-
ous segments, and thus reduce overall error range.

5 Main Procedures of RACE Algorithm

This section presents the main procedures of RACE al-
gorithm. We assume that the encoding of each symbol,
whether it is a tree symbol “t” or numeric symbol of wavelet
coef cient values, takes one unit space (e.g. octets).

5.1 Gradient Calculation

In order to apply error aware zeroing to the wavelet coef-
cient tree, we need to rst construct an associated gradient
error tree. The process of gradient calculation is outlined in
Procedure 1.

5.2 Rate Adaptive Compression

The process of compression is to select signi cant co-
ef cien ts while trying to meet the bit rate constraint. The
procedure is presented in pseudo code in Procedure 2. It
compares the error gradients with the threshold and decides



Procedure 1 Gradient Calculation

Input: ¢: the coef cient to be evaluated.

a[]: Haar wavelet coef cients.

e: the accumulated error so far.

stze: the number of the coef cients.

Local: left child, right child: left and right children of the current

coef cient.

left ret, right ret: return values from the iterations using left and

right children.

left error, right_error: the error gradients for the left and right chil-

dren.

Output:

cient.

. if ¢ > size then

return e

. end if {if the end of the tree reached}

. left child¢—c%2—1

: right_child - ¢ * 2

. left_error < e + ac]

: right_error <— e — a[c]

. left ret «— gradient(left child, left error)

. right ret <— gradient(right child, right error) {return the
maximum error}

. return max(right ret, left ret)

error gradient associated with the given coef -

—_
(=)

how the corresponding wavelet coef cients should be en-
coded: if the error gradient is greater than the threshold, the
value of the coef cien t is put into the output stream, other-
wise the coef cient and its children are zeroed and encoded
as a tree symbol “t”. If the resultant output volume exceeds
the size constraint, the threshold is incremented and the co-
ef cien ts are compressed iteratively until the size constraint
is met.

Every time when threshold increases, it is only neces-
sary to evaluate those coef cients that have not been zeroed
during last iteration. This can save many comparison oper-
ations.

5.3 Multiple Time Series Compression

Compression of multiple time series that converge at a
relay sensor is based on Procedure 2. All time series are
compressed using the same threshold. If the aggregate of
resultant data volume is still beyond bit rate requirement,
they are trimmed again using an incremented threshold.

We may make some improvements to the above proce-
dure. One is to explore the correlation among multiple time
series and compress the principal components instead of
equal treatment of all of them. Its effectiveness largely de-
pends on the density of sensor placement and characteristics
of the underlying physical processes. This can be studied in
conjunction with sensor deployment and capacity planning.
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Procedure 2 Rate Adaptive Compression

Input: N R: number of data entries.

stze: maximum number of symbols that can be output.
a[]: Haar wavelet coef cients.

g[]: error gradients.

man: minimum error bound.

max: maximum error bound.

step: threshold increment.

Local: : 4: the threshold value.

index: the moving cursor of the output array.
count: the number of symbols in the output array.
Output: output[]: the output symbol stream.

I: 14 min
2: whilei < max do
3 index < 0
4: count <0
5: fork=1to NRdo
6 if g[k] < i AND node k has not been evaluated then
7 if output[index-1] # “t” then
8 count ++
9: end if {this sub tree can be zeroed}
10: output[index++] - “t”
11: zero the sub tree rooted from & {if the last symbol is
also “t”, then run-length encoding can be used}
12: end if
13: if g[k] > i AND node k has not been evaluated then
14: count ++
15: output[index++] <— a[k] {this coef cient is signi cant
and is put into output array}
16: end if
17:  end for
18:  if count < size then
19: break
20:  end if{the number of symbols can be compressed using
designated space}
21: i<+ step

22: end while
23: return output

5.4 Error Smoothingand Minimization viaPatch-
ing

The adaptive compression procedure may produce er-
ratic error bounds over time. Relying on the property of
patch-ability of RACE algorithm, we can use Procedure 3
to approximate sub-optimal error bound and narrow the er-
ror ranges. We assume that patching process needs at most
three symbols to encode a zeroed coef cient: one to encode
which tree the coef cient belongs to, the second to encode
the coef cient’s position within the tree, and the last one
encodes the coef cient’ s value.

The rationale behind the procedure is as follows. The
compressibility of each time series segment varies over
time, some of which can t the size constraint with lower
errors than others. In many applications, it is desirable to
improve the overall error bound for time series instead of



that for individual segments. So it is a natural idea to “steal”
some bit rate space from highly compressible segments to
compensate those ones that are less compressible and need
more space to achieve the same error bound.

Procedur e 3 Error Smoothing and Minimization via Patch-
ing
Input: NR: number of data entries.
stze: maximum number of symbols that can be output.
a[]: Haar wavelet coef cients.
g[]: error gradients of each node.
avg: moving average of the previous maximum normalized error.
maz: maximum error bound.
r[]: a sorted array of coef cient structures by the order of their
corresponding error gradients.
Local: : i: the threshold value.
Output: output[]: the output symbol array.
patch[]: previously zeroed coef cients and their context.
I: i< avg
2: whilei < max do
3:  index < 0

4: count <0
5: fork=1to NRdo
6 if g[k] < i AND node k has not been evaluated then
7: if output[index-1] # “t” then
8: count ++
9: end if
10: output[index++] «— “t”
11: zero the sub tree rooted from k { if the last symbol is
also “t”, then run-length encoding can be used}
12: end if
13: if g[k] > i AND node k has not been evaluated then
14: count ++
15: output[index++] < a[k]
16: end if
17:  end for
18: if count < size then
19: break
20:  end if{the number of symbols can be compressed using
designated space}
21: 141+ step;
22: end while
23: free_slots «— (size — count)/3
24: for j =1to free_slots do
25:  patch[j] + r[j]
26:  remove 1[j]
27: end for
28: return output + patch

6 Numerical Evaluation

We have evaluated the performance of RACE compres-
sion algorithm using real world data which was obtained
from the Tropical Atmosphere Ocean project (TAO, http:
//www.pmel .noaa.gov/tao/). The data sets used in
the evaluation date from January, 2001 to January, 2003.
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It consists of air temperature samples from a single moor-
ing, subsurface temperature at different depths from a sin-
gle mooring, and air temperature from multiple moorings.
Without loss of generality, we assume that the sensors ac-
crue every 512 samples to make a segment, which is taken
as one unit for transmission. Please note that varying the
number of samples in a segment does not affect the conclu-
sions we draw in the following discussion.

6.1 Rate Adaptivity
In this evaluation we use a set of air temperature samples

from a single mooring. Some of the statistical characteris-
tics of the data set are summarized in Table 3. In order to

| Category | Value |
Number of samples | 32,768
Max 29.94
Min -9.99
Mean 27.57
Variance 6.33

Table 3. Air Temperature Data Characteristics

evaluate the performance of rate adaptivity, we used three
levels of size constraints for the compression of each seg-
ment: 256 symbols, 128 symbols, and 64 symbols. The
corresponding compression ratios are 2:1, 4:1, and 8:1, re-
spectively.

The normalized errors with respect to different size con-
straints are depicted in Figure 7. While RACE can compress
the data into different sizes, we observe that data quality de-
teriorates more signi cantly when the available space size
decreases. The higher compression ratio, the higher mag-
nitude in maximum normalized error, which means lower
quality of data and consequently more complicated in er-
ror estimation. More speci cally, the maximum normalized
error for the compression ratio 2:1 (256 symbols) ranges
between [1.0%, 3.4%]; while the most aggressive compres-
sion ratio 8:1 (64 symbols) has a error range between [2.0%,
19.1%].

We also observe that the normalized error follows simi-
lar uctuation patterns with different magnitudes under all
compression ratios. This observation of erratic error ranges
justi es our belief that some form of error smoothing is nec-
essary.

6.2 Error Range Smoothing and Minimization
To evaluate RACE’s ability of narrowing and smooth-

ing the error range, we use the same data set as in Section
6.1. The results are plotted in Figure 8. We observe that
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the error ranges are narrower and the maximum errors be-
come smaller. In the cases of compression ratios 2:1 (256
symbols) and 8:1 (64 symbols), the error ranges become
[0.9%, 1.7%] and [4.2% , 10.6%], respectively. Compared
to the results in Figure 7, error ranges are greatly reduced
by RACE’s patching process.

For each compression ratio, we observe that the curve of
error shows less uctuation, which justi es RACE’s capa-
bility of smoothing error ranges.
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Figure 8. Smoothed Maximum Normalized Er-
rors

6.3 Preservation of Statistical I nterpretation

We evaluate RACE’s capability of preserving statisti-
cal interpretations under different compression ratios. We
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use cross correlation as an instance to evaluate how the
compression can preserve the multivariate correlationship.
Cross correlation is the temporal correlationship between
two variables. For example, cross correlation can be used to
analyze the relation between the El Nino and La Nina phe-
nomena. The cross correlation between two samples from
D (@i=2)x(yi-a=y)
VI @i/ (gica—)?

where d is the temporal delay between x and y.

variable z and y is dened as
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Figure 9. Subsurface Temperature at depths
25M and 50M

The data used in this evaluation are sea subsurface tem-
peratures from depths 25M and 50M, which are plotted in
Figure 9. In this evaluation, we use a wider compression
ratio range from 4, 8, 16, 64, up to 256. Figure 10 plots the
cross correlation variations with respect to different com-
pression ratios. Because the correlation-curves of ratios 4
and 8 almost overlap with the one of uncompressed data,
we only present the results for the higher compression ra-
tios. We observe that the correlation between two time se-
ries are preserved with different levels of delity: the lower
the compression ratio, the higher the d elity. We also ob-
serve that, even for very high compression ratio (256:1),
RACE can still preserve signi can t details of the trendency.
This observation con rms that our algorithm and choice of
error norm can preserve statistical interpretation of time se-
ries very well.

7 Conclusion and Future Work

Continuous monitoring sensor networks have wide po-
tential applications. We characterize this class of sensor net-
works as multivariate monitoring, multi-terminal data fu-
sion, and multi-hop delivery. To address major challenges
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Figure 10. Cross Correlation between Subsur-
face Temperature at depths of 25M and 50M

of limited bandwidth and battery source in this class of net-
works, we propose a Rate Adaptive Compression with Error
bound (RACE) algorithm that attempts to meet both net-
work capacity and error bound requirements. Since RACE
algorithm can always generate CBR or LBR output streams,
it is bene cial for better transmission scheduling in sensor
networks, which can reduce transmission energy consump-
tion. When network capacity limit is encountered in multi-
hop relaying, RACE can trade off data quality smartly for
be tting bit rate. Because of the property of error bound ad-
ditivity, it is easy to estimate overall error bound upon data
reconstruction at the sink side. In order to exploit differ-
ent compressibility of time series segments over the time,
RACE algorithm adopts an opportunistic patching mecha-
nism which can narrow and smooth error range. We have
use real world data to evaluate RACE algorithm, and the re-
sults have veri ed that RACE can achieve our design goals.

One of our future work is to investigate how to incorpo-
rate spatial and temporal correlation of multiple time series
into our compression algorithm.
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