
 
Abstract – Recent observations have shown that most of the attacks 
are fruits of collaboration among attackers. In this work we have 
developed a coalition formation game to model the collusive 
behavior among attackers. The novelty of this work is that we are 
the first to investigate the coalition formation dynamics among 
attackers with different efficiency. Most of the related works have 
modeled the attacker as a single entity. We define a new parameter 
called friction to represent the unwillingness of an attacker to 
collude. We have shown that the proportion of attackers in the 
Maximum Average Payoff Coalition (MAPC) decreases with 
efficiency. We have also shown that as the friction increases, size 
and heterogeneity of MAPC decrease. We show, using text analysis 
on a hacker web forum chat data, that the hacker collaboration 
network shows a strong small-world characteristics. We identify 
the leaders in these coalitions. The cluster compositions of the 
hacker collaboration network agree with our model. We also 
develop method to estimate the friction parameters for the 
attackers to decide optimal coalition to join. As this model provides 
insight into coalition formation among attackers, e.g., leaders, 
composition, and homogeneity, this model will be helpful to 
develop better defender strategies. 
 

I. INTRODUCTION 

 Most security games concentrate on abstracted scenarios 
where a single defender is up against a single attacker. But now-
a-days most of the attacks are fruits of collaboration among 
attackers. We want to emphasize that collaboration does not 
necessarily be towards a single attack, and hence, it is not 
possible to model the collaborating attackers as a metaphorical 
single attacker. It has been observed that attackers sharing 
resources among themselves can have totally different 
objectives and attack targets. For example, in many cybercrimes 
insider information is needed [1]. While the insider may not be 
involved in the attack directly, without his/her help the attack 
may not be possible. Similarly, while launching an attack, a 
hacker often seeks help from other hackers. This collaboration 
needs to be understood as the helping hackers are indirectly 
partaking in the attack.  Therefore, identifying attackers who 
can be potential members of a coalition for a successful attack 
will be useful to take precaution against imminent attacks. So, 
we need to understand the coalition formation dynamics among 
attackers to develop better defender strategy.  
 There are numerous examples of collusive attackers in real 
life. For example, in the underground market an ATM card pin 
code sells at $0.40 – $20.00 and a bank account sells at $10 – 
$100. The price for an individual’s identity, i.e., name, social 
security number, and birth day is $1 - $15 [2]. Higher level 
attackers like terrorist organizations can exploit this 
information to pull off a bigger heist which provides an 

incentive for the attackers to work together. In these cases 
finding a suitable strategy against a single attacker may not be 
useful. Attacks can also be politically motivated, e.g., the 
Stuxnet attack on Iran’s nuclear program in 2010 [3]. Most of 
the hacker communities have reputation score to represent the 
efficiency and reliability of a hacker. The hacker may also 
launch an attack to increase its reputation score. Gang of 
hackers also compete among themselves for cyberspace 
resources to establish their dominance [4]. These online crimes, 
while motivating the existence of communities among the 
attackers also bear evidence of competition among themselves. 
 Even though in this work we have tested our model against 
the data of a hacker web-forum, this model will be applicable 
to any crime where the attackers can benefit from collusion. 
Examples include cyber-crime, poaching, drug trafficking [5], 
and terrorism. In 1993 Mumbai bomb blast, it was reported that 
the main perpetrator D-company allied with several other mafia 
groups to execute the attack [6]. Many well-known terrorist 
groups have well established alliances with other terrorist 
groups [7]. Our model is applicable to these scenarios as well.  
 The objective of this work is to explore the reasons of 
collusive behavior among the attackers. We study the 
characteristics of coalitions among an infinite population of 
attackers with different efficiency and infer their implications. 
 Understanding of collusive behavior among attackers will 
help to improve defense mechanisms. For example, say a 
defender is in a hacker web-forum in disguise. If a group of 
hackers is observed sharing resources on similar topics then the 
defender can boost up its security measures according to the 
resources being shared. In another scenario, many attackers 
consulting a particular attacker repeatedly indicates that he is an 
expert. A defender may develop strategy to block the formation 
of groups which includes that expert to prevent imminent 
attacks. There can be two parallel attacks where the smaller one 
is just a decoy to divert attention from the bigger one. But 
observing the types of attackers collaborating and resources 
being shared within attacker coalitions the defender can be 
prepared against both the attacks. 
 Understanding of group dynamics among attackers demands 
attention to some observed characteristics of them. As we show 
in the data analysis section, highly efficient attackers do not 
team up with attackers of similar ranks. The reasons are:  
 i) Unavailability: One trivial reason is large number of highly 
efficient attackers may not be available.  
 ii) Tragedy of commons: Cyberspace is limited resource 
economy, e.g., only 0.00001% of the population responds to a 
phishing mail [2, 8]. In a limited resource economy, tragedy of 
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commons means that if a single player overexploits the 
resources then the whole coalition of players suffer. More 
efficient attackers are capable of dominating an attack depriving 
other efficient attackers of their expected profit. This leads to 
an unstable group dynamics. 
 iii) Efficiency of the attacker: A very efficient attacker is 
capable of launching an attack alone. He uses small attackers at 
a small cost to increase the scale of the attack. An extreme 
example of this is the Distributed Denial of Service (DDoS) 
attack where only one attacker controls the attack and uses 
millions of machines across internet to scale up the attack.  
 In our proposed model, we introduce a new parameter, 
friction between two attackers, which represents their 
reluctance to collude. Friction is defined as the fractional loss 
of efficiency for each attacker due to collusion. Qualitatively, if 
the friction between two attackers is high then they are less 
prone to collude with each other and vice versa. The less 
efficient the attacker is, the less is his/her friction with others. 
So large number of highly efficient attackers cannot collude as 
that will decrease their effective efficiency. The facts that a 
highly efficient attacker is not easily available, and can lead to 
the problem of tragedy of commons are explained by his/her 
high friction with other highly efficient attackers. But more 
efficient attackers can still form collusions with less efficient 
attackers due to small friction. Apart from the above mentioned 
coalition dynamics observed among attackers, friction also 
explains other commonly observed traits of coalition formation 
in a limited resource economy. For example, as the coalition 
size increases the cost of monitoring increases which is a key 
factor behind the existence of a stable group [9]. Similarly, as 
coalition size increases, the loss from friction increases among 
the players which is analogous to increased monitoring cost and 
this leads to a bounded coalition size. In any stable coalition, if 
a member is not following the rules, that member is banned 
temporarily or permanently. Likewise, these members can be 
modelled as having very high friction with others which ensures 
that he will be undesired in any stable collusion. 
 The contributions of this work are as follows: 

 We have proposed a game explaining the observed 
collusive behavior among attackers of different 
efficiency levels.  

 We have examined the model quite thoroughly 
establishing several characteristics of the attacker 
coalitions along with proving the existence of core. 

 We have verified the behavior predicted by the model 
against real life collusive behavior among hackers. 
Absence of analysis on real data was a major drawback 
of the previous works very of which were there. 

 To the best of our knowledge, our game theoretic 
model is the first one to investigate the mechanism and 
characteristics of coalition formation among attackers. 

 We quantify the strength of collusion and identify the 
leaders in a coalition.     

 The rest of the paper is organized as follows. Related work is 
presented in Section II. Section III presents the proposed 
mathematical model and analysis of coalition characteristics. 

We explain the model through a toy example in Section IV. 
Estimation of friction parameters are discussed in Section V. 
Simulation and data analysis results are shown in Section VI. 
We conclude the paper in Section VII.   

II. RELATED WORK 

Previous research in this area models attackers as individual 
entities or groups operating independently [10 – 14]. A few 
recent works models the scenario of multiple collusive 
attackers. The authors of [15] have considered the scenario in 
which an attacker can attack multiple nodes simultaneously. 
They have shown that Nash equilibrium for this scenario exists 
and has interchangeability property, i.e., as long as the defender 
and the attacker are playing strategies corresponding to any 
equilibrium, essentially the resulting strategy profile will 
consist a Nash Equilibrium. Even though Ref. [15] considers 
multiple attacker resources, they do not consider collusion 
among multiple attackers. Ref. [16] models the case of multiple 
attackers and single defender as a Coalitional Skill Game [17]. 
The network is modeled as a collection of different types of 
connected targets. A fixed set of skills are needed to attack a 
particular type of target. Attackers form coalitions to pool their 
skills together to attack a target. But this work assumes that the 
graph describing the coalitions of attackers is known which is 
unrealistic. A more detailed and realistic analysis of collusive 
attackers vs. single defender can be found in [5]. Ref. [5] 
obtains the optimal defender strategy by solving a Mixed 
Integer Linear Program (MILP) given the knowledge of payoff 
matrices, risks, and probability of success for each target. The 
attackers are modeled using human behavioral models using the 
data obtained from a game developed by the authors and played 
700 subjects. By far, [5] is the most extensive work on this topic 
though the exact knowledge of payoff matrices, risks, and 
probability of success for each target are strong and a little 
unrealistic assumptions. Ref. [5] does not validate their results 
through real attacker dataset. To the best of our knowledge, till 
date there is no work which considers behavioral features, and 
dynamics of hackers explicitly. Irrational competition among 
hackers have not been addressed in any work. Also, 
heterogeneity among attackers have been broadly overlooked.  

The heterogeneity and collusive behavior among hackers 
have been studied in [18 – 20]. Authors of [18] studied the 
discussions among hackers of USA and China over years on 
web forums. They have found that there are communities within 
hackers. Hackers with more diversity and novelty tend to be 
leaders. Less efficient hackers try to form group with the leaders 
for code snippets, stolen identities, and fully developed 
applications. It is stated in [19] that hackers tend to form small 
world networks with small clustering coefficient. The authors 
of [20] have discovered clustering based methodology to 
identify hacker communities and possible leaders among them. 
These works strongly support that attackers operate in 
communities, and thereby motivates the need for gaining 
insight into behavior and dynamics of collusive attackers. 

In our proposed work we have used a framework similar to 
the one in [21] to model the attackers. Ref. [21] describes 
partnerships among players of various abilities and explains 
why grand coalition may not form in this case. We extend this 
framework to incorporate friction among attackers, and explore 
other relevant properties. 



III. MODEL 

 All the notations used in this paper are defined in Table 1. In 
our proposed model we assume that attackers can be of M 
efficiencies . We do not consider 
efficiency to be task-specific. Efficiency defines the capability 
of an attacker; a more efficient attacker is more capable to 
launch and exploit an attack regardless of the resource being 
attacked. In reality, it is indeed observed that hacker web forums 
have reputation scores for its users which represent the 
efficiency of the hacker [19]. 
Definition 1: The friction between two attackers of efficiency 

 and ,  is a measure of loss of efficiency for each of them 
due to collusion, and is defined as,  

 

where  is the effective efficiency of attacker  after 
collusion,  

Table 1: List of Parameters 
Notation Meaning 

 Total number of efficiency levels 
 Efficiency of  level 

-attacker An attacker with efficiency  
 Average efficiency of a coalition  
 Effective efficiency after collusion 
 Average effective efficiency after collusion 
 Friction between two attackers of efficiency  and  
 Friction matrix,  
 A coalition of attackers  

 Incentive factor in total payoff due to scale 
 Incentive factor in average payoff due to scale, 

 
 Number of -attacker in a coalition 
 Total number of available -attackers 
 Composition of a coalition,  

 Average payoff of a coalition with composition  
 Total payoff of a coalition with composition  
 Coalition composition maximizing  
  element of  

 Identity matrix 
  diagonal matrix with diagonal elements  
  diagonal matrix with diagonal elements 

 
  vector with all elements equal to 1 
 Between Group friction,  
 Difference between Within and Between Group friction, 

 
 Collusion Index of coalition  

  dimensional real space 
 Fraction of efficiency  effective in a coalition 
 Coalition formation game with player set , payoff function 

 
  subset of a partition of  corresponding to the core of  
 Maximum Average Payoff Coalition (MAPC) size, 

 
 Marginal Contribution of attacker  

 Average  payoff of the MAPC when attacker  is left out 
 Decrease in average payoff of MAPC when -attackers 

leave 
 Leadership metric of -attackers,  
 Estimate of variable  
   
 Sum of squares of residuals while estimating  
 Small-worldness index 

 Clustering coefficient of a given (random) network 

 Average path length on a given (random) network  
 Collaboration graph among hackers 
  

Assumption 1.  
a)  and the matrix . 
b)  
c)  
 Assumption 1 reflects the facts that friction between 
similarly efficient attackers is more, and more efficient hackers 
have more friction. The total payoff of a coalition  of attackers 
is given by  where  is the coalition size. As 
we show later via real data that attackers do form coalitions, we 
assume . This is similar to economies of scale [21]. 

The average income of a coalition is denoted by . If 

a coalition  has  attackers of efficiency 
then the total payoff of  is given by 

 

         

where , and . The 
average payoff is given by,  
Assumption 2. .  
In matrix form, 
                                   
Where  
Identity matrix, and . 
In this paper we assume the payoff of a coalition is divided 
equally among its members as in [21].  
Theorem 1. The maximum coalition size is bounded as, 

 

Proof.    
  

Combining Assumption 1(b) and 1(c) we get, 
  

 

This shows that the group size cannot increase unboundedly 
irrespective of what  is. 
 We solve the following optimization by augmented 
Lagrangian method to obtain the Maximum Average Payoff 
Coalition (MAPC). 

 

Theorem 2.  has a unique global maxima and the maxima 
is achieved at . 
Proof. As  is a diagonal matrix with positive elements

Under Assumption 1,  Hessian of  is 
So is concave, hence possesses a global 

optima which is the solution to the following equation: 



           
                             
 Note that we have not restricted  to be an integer vector. In 
real life an attacker is often part of multiple coalitions among 
which it divides its resources. This phenomenon manifests itself 
as fractional presence in our model.  
 Highly efficient attackers team up with lower level attackers 
to increase the scale of the attack. If the coalition size increases 
beyond  then due to equal sharing, advantage of large 
coalition size is undermined. The total payoff of a coalition is 
maximized at a larger coalition size than .    
Theorem 3.  has a unique maxima with coalition size 
greater than or equal to   
Proof. Say,  has a maxima at  where coalition size 

. As  is strictly concave, 
 

and, So 
 

But this is a contradiction as  has a maxima at . 
So, .  As  is non-negative and due to Theorem 1, 

 is closed and bounded in , a real-valued continuous 
function in a closed and bounded interval, by extreme value 
theorem, has at least one maxima and one minima. As  is 
cubic function of , there will be a unique maxima.          
 Now, for better interpretability, let us introduce two types of 
friction: Within Groups (WG) and Between Groups (BG).   
Assumption 3. The friction matrix is of the following form: 
a) BG friction  
b) WG friction  
 This structure also ensures that  is a positive definite matrix. 
To see this,  can be written as: 

  

 All eigen values of  are 
positive. So So, . 
Note that  still ensures that the loss of efficiency due to friction 
is more for more efficient hackers because the loss of efficiency 
between two players of efficiency  and  is given by , 
i.e. the loss is proportional to efficiency.  
 We should look more closely at the relationship between 
friction and the extent of collusion among the attackers.  
Definition 2: We define the Collusion Index ( ) as the 
effective normalized efficiency of a coalition. Quantitatively, if 
a coalition  has  attackers of efficiency , 
and the friction matrix is , 

 

where ,  is the effective average 
efficiency of , and  is the average efficiency of .  
represents the fraction of efficiency  which is effective in . 
When all the friction coefficients are 0,   and  

implying full collusion, i.e., the attackers are collaborating 
towards a single attack. When ,  implying 
no attacker can benefit from this coalition and the coalition will 
disintegrate. When, , it means that attackers 
collaborate to maximize their profit but with their own, and 
possibly different attack plans.  
 Let us consider the game  being played by 

 players of efficiency  respectively, 
and  is the set of these players. The friction matrix is . The 
payoff of a player belonging to a coalition consisting of 

 players of efficiency  respectively is 
given by . In a cooperative game the core is an 
imputation which cannot be improved by any other coalition 
structure. A coalition structure is individually stable if there is 
no player who can improve his/her payoff by joining another 
coalition and that coalition welcomes that player. A coalition 
structure is Nash stable if there is no player who can improve 
his/her payoff by joining another coalition.   
Theorem 4. (Existence of core) Under Assumption 3, the core 
of the game  is non-empty. 
Proof. As F is a positive definite matrix, according to Theorem 
2, n  is maximized at . If 

, then all the attackers form  a 
coalition to maximize payoff and the grand coalition is in the 
core. Else, a subset of attackers form a coalition  to maximize 
payoff. If we eliminate this attackers, as the friction matrix is 
still positive definite, a subset of the rest of the attackers 

 form a coalition  to maximize their payoff and so 
on. Here we assume that ties are broken randomly. These set of 
coalitions  construct the core of .                    
Proposition 1 (Stability properties). The coalition structure 
formed as in Theorem 4 is strict core stable but not necessarily 
Nash stable. 
Proof. Observe that the coalition structure developed in 
Theorem 4 consists of unique MAPC among the available 
attackers at various stages. So a player cannot join a coalition 
with higher payoff than him as that coalition is a MAPC and 
admitting the new player will decrease the payoff for all the 
players in that coalition. Similarly, no player will join a 
coalition with lower payoff as he already is in a MAPC and 
joining a MAPC with lower payoff will reduce his/her payoff. 
So the solution is strict core stable.  
 We will prove that the solution is not necessarily Nash stable 
through an example. We take  Without any restriction on 
the number of available attackers, the MAPC consists of  
attackers of efficiency  where 

. Let us assume,  

Consider an example that, before any coalition formation, in 
total there were  attackers of 
efficiency . After the first MAPC has formed with 

 attackers of efficiency , the second MAPC will contain 
rest of the attackers. Let the average payoffs of two MAPCs be 

 and . Then . Now if 



an attacker with efficiency  joins the first MAPC from the 
second, then his/her new payoff, 

.  

  

Replacing     

. 
 This shows that one attacker can improve his/her payoff by 
joining another coalition showing that the coalition structure in 
Theorem 4 is not necessarily Nash Stable.          
 By properties of strict core stability, the coalition structure in 
Theorem 4 is strongly individually stable, and hence 
individually stable, and hence individually rational.  
 The marginal contribution of attacker  to the MAPC is 
measured by  where  is 
the average payoff of the MAPC when attacker  is left out. 
Proposition 2. Marginal contribution of an attacker is 
proportional to efficiency as well as WG friction. 
Proof. Let there be a MAPC with  attackers of 
efficiency , where . The BG friction is , and WG 
friction of -attacker  is . We assume . The 
marginal contribution of an -attacker is given by –  

 

In a MAPC, 

 ,     

                                 
From  and , 

 
 Observe that the marginal contribution of an attacker is 
proportional to efficiency, and, a little counterintuitively, also to 
WG friction. This is because, if WG friction is high then there 
will be less number of attackers in the coalition, in turn 
increasing their marginal contribution.  
 Marginal contribution is not a good measure to decide the 
leader of a coalition because to qualify as a leader, besides 
contributing to the coalition, the leader should also be able to 
be part of a large coalition. A leader group should be a small 
fraction of the MAPC but relatively contribute more. As 
marginal contribution can be maximized by increasing friction, 
i.e., by decreasing the coalition size, it is not a good 
representative value of leadership. Let us consider that the 
MAPC contains  attackers of efficiency 

 respectively and the average payoff is . If all the 
-attackers  leave the MAPC, the average 

payoff reduces to  .  
Definition 2: The leader group of a MAPC is defined to be the 
attacker(s) with maximum leadership metric, .   

     

 A group of attackers with less efficiency can be leader 
because they have lower friction than more efficient attackers. 

To see this, under Assumption 3, set ,  
 and  in . Figure 1 shows that when

, , i.e., the -attackers are leaders even 
though their efficiency is lesser than  -attackers. 

 
Fig. 1. Leadership index of less efficient attackers can be more than more 
efficient hackers. 
 Homogeneity of a group is another interesting aspect of a 
coalition. We measure the homogeneity of a group by the 
variance of efficiency,  of attackers in a coalition. We present 
the analysis for attackers of two possible efficiency levels here 
deferring the results for multiple efficiency levels to Section VI. 
Let there be attackers of two efficiency levels , and 

. As long as there is only one type of attackers in 
the MAPC, .  increases when MAPC has attackers of 
the other efficiency level. So we restrict our analysis only to the 
case when MAPC includes attackers of all levels of efficiency. 
With a given friction matrix  as in Assumption 3, in a MAPC, 

, and  are given by . Then, 

 

If there is no BG friction, i.e. , 

 

Right hand side of  is an increasing function of  implying 
 is a decreasing function of . Observe that  is an increasing 

function of coalition size when proportion of attackers are 
constant. When ,  takes a complicated form. We have 
shown the results in Section VI. 
 It will be interesting to see how the collusive behavior is 
affected by heterogeneity. We take MAPC size as the strength 
of collusion. Two effciency-levels case is presented here for 
better interpretability while deferring the multiplayer scenario 
to Section VI. Say, there is one type of attacker of efficiency  
with WG friction . From , the MAPC size is given by 

. Now, another set of attackers of efficiency  

becomes available. Let  be as in Assumption 3,   

 

 Here we ignore the trivial case where the friction of -
attackers is so much that they are not included in the MAPC. 
The MAPC size is 

 

Proposition 3. If , the MAPC size increases when, 



 and decreases otherwise. 

Proof. 

 

  

 

 

 As , so the loss from WG friction among -attackers 
must be less than -attackers, i.e.,

 which, combined with (3) imply, the group size 

increases when .                    

 When , the interval of Proposition 3 increases with  
when  and decreases with  when . 
For , the interval always increases with . When , 
the MAPC size always decreases which means that average 
payoff can be maximized with a smaller group size as attackers 
with higher efficiency are available.  

IV. TOY EXAMPLE 

 We have an infinite population of attackers who can be of 
two efficiencies,  and . denotes the number of 

-attacker in a coalition. The friction matrix is –  

 

Table 2: Average pay-off for the toy example 
 

 
0 1 2 3 4 

0 0.00 0.50 0.92 1.28 1.55 
1 1.00 1.40 1.72 1.98 2.15 
2 1.70 2.00 2.22 2.38 2.45 
3 2.10 2.30 2.42 2.48 2.45 
4 2.20 2.30 2.32 2.28 2.15 

Table 3: Total pay-off for the toy example 
 

 
0 1 2 3 4 5 6 7 

0 0.00 0.50 1.85 3.83 6.20 8.75 11.25 13.48 
1 1.00 2.80 5.18 7.90 10.75 13.50 15.93 17.80 
2 3.40 6.00 8.90 11.88 14.70 17.15 19.00 20.03 

Table 2, and Table 3 show average payoff per player, and total 
payoff for the coalitions of different sizes and compositions. It 
can be seen that the MAP is achieved at , and . 
The maximum total payoff is achieved at , and . 
Note that total payoff is maximized at a larger group size. Even 
though the -attackers are more efficient than the -attackers, 
the proportion of them is lower in the MAPC due to high 
friction. As the coalition size increases average payoff becomes 
negative meaning those coalitions will never form. Figure 2a, 
and 2b show that the average and total payoffs are concave 
functions of and hence both possess global maxima. 

V. ESTIMATION OF FRICTION PARAMETERS 

 So far we have assumed the friction matrix to be known. But 
unless mandated by a protocol followed by a set of attackers, 
the friction matrix is unknown. So an outside attacker needs to 
estimate the friction parameters to decide which coalition to 
join. In this section, we provide an optimization framework to 
estimate the friction parameters by observing the equilibrium 
coalition compositions. Assume that the observed MAPC has 

-attackers. There is an unknown friction 
matrix of the form in Assumption 3, controlling the dynamics 
of the coalition formation. We also assume that

. According to our proposed model in Section III, the 
MAPC should have -attackers where, 
according to , 

To estimate  and , we minimize the least square error –  

 

         

 
      (a)                                                          (b) 

Fig. 2. Average payoff, and Total payoff for the toy example.  

Proposition 4. , as a function of , and , has a unique global 
minima.  
Proof. Let us assume that there are two distinct pairs of friction 
parameters , and  which lead to the same MAPC. 
From , 

 

where . From , 

 

 

where  . Similarly, 

 
If for some , , i.e., , then . But   
cannot be 0 as that requires all  to be same. This is impossible 
when at least one  is different from the others. So . If 

, then solving  for  we obtain, , 
and . But this is a contradiction as , and  
are distinct pairs. This completes the proof.                  
 We solve the above optimization using NOWPAC (Nonlinear 
Optimization With Path-Augmented Constraints) algorithm 



which is convergent to a stationary point of the objective 
function [22]. We run the algorithm with multiple initial values 
to increase the chance of finding global maxima. In Section VI, 
we show numerically, and through data that the estimation is 
satisfactory. After estimation, an attacker can join a coalition 
which maximizes its payoff according to . 

VI. RESULTS 

 In this section we present the results on the characteristics of 
coalitions among attackers using simulations and real data. 
A. Simulation 
 We first present the result on the variation of characteristics 
of MAPCs with given friction matrix as in Assumption 3.  

 Scenario 1: Here we study the MAPC characteristics 
against WG friction when BG friction is fixed. There are 

 equally spaced efficiency levels between 0.01 
and 1. Four levels of BG friction is considered:

 and  WG 
friction  is varied from   to . It can 
be seen from Fig. 3a that the proportion of attackers in the 
MAPC decreases with efficiency except when WG 
friction is close to BG friction. When WG friction is small, 
more highly efficient attackers are present. Less efficient 
attackers are forced out of MAPC as they cannot 
withstand large BG friction from more efficient attackers. 
The composition does not change significantly with WG 
friction except when BG friction is too high. The number 
of attackers from all groups decrease in the MAPC with 
the increase in WG friction (darker to lighter shade). As 
the BG friction is constant, the loss due to friction from 
other groups of attackers also decreases with the increase 
in WG friction leading to almost constant proportion of 
attackers in the MAPC. The size of MAPC decreases with 
WG friction except when  and  as 
shown in Fig. 3b. For these cases, when BG friction is 
small only highly efficient attackers are present in MAPC 
who form small coalition among themselves due to high 
friction. Once less efficient attackers are part of MAPC, 
the size increases but then decreases as it should with 
friction. The heterogeneity of the MAPC decreases with 
WG friction as shown in Fig. 3c because the proportions 
remains approximately same but MAPC size decreases as 
explained before. 

 Scenario 2: Here we study the MAPC characteristics 
against BG friction when WG friction is fixed. There are 

 equally spaced efficiency levels between 0.01 
and 1. Four levels of WG friction is considered: 

and BG 
friction  is varied from  to . Figure 
4a shows that as the BG friction increases (darker to 
lighter shade) the proportion of more efficient attackers 
increases. When  is high, and  is close to , 
least efficient attackers disappear from the MAPC as 
explained in Scenario 1. This implies that more efficient 
hackers can afford to have large friction whereas less 

efficient hackers cannot. Figure 4b shows that the MAPC 
size decreases with BG friction as expected. Figure 4c 
shows that the homogeneity of the MAPC increases with 
BG friction as explained in Scenario 1. 

B. Estimation of friction parameters 
 We set true , and  as and . We 
solve the optimization problem described in Section V 
with the MAPC composition as input. The estimates 
of and were: and . 
 Figure 5 shows the fitted, and observed MAPC 
composition. The estimation errors of , and  are 0.75%, 
and 9.4%. 

 
(a) 

 
(b)            (c) 

Fig. 3. MAPC Composition vs. WG Friction. The composition does not change 
with WG Friction. Number of attackers decrease in the MAPC with efficiency. 
C. Data Application 
 We analyze the dataset in [23], containing details on posts 
from a hacker web-forum, to explore collaborations among the 
hackers, and verify our model. We use the following features of 
this dataset: post index, thread index, author index, author 
name, date and time of the post, content of the post, and user 
status of the hacker. This dataset contains 4242 posts by 794 
hackers over three years from 10/12/2012 to 9/20/2015. 
 To draw meaningful inference we eliminate all the hackers 
who just posted once in the span of 3 years leaving 370 hackers 
to analyze. The hackers in this dataset belong to 16 efficiency 
levels. The number of messages posted by a hacker is a 
significant predictor of a hacker’s efficiency [18]. Following 
that we quantify the efficiency of a hacker as 

 

 In the set of the normalized efficiencies, some of the 
efficiencies were same up to five decimal places which were set 



to the same value to avoid undesired noise. Hackers with non-
unique efficiency values were discarded from the study.   
 We need to identify the comments which contain useful 
information to establish connections among the hackers. We 
divide the hackers into 3 levels to identify the key words in the 
comments. The boundaries between the levels are defined by 
the 0.67 and 0.33 quantiles of efficiencies. We create a corpora 
containing 3 documents consisting of the comments 
corresponding to these 3 levels. We used

 index to identify 
the keywords [24].   is the frequency of a particular term in a 
document.  of a term is defined as: 

 

 is defined as: 
 

We consider the words with  value 0 useless. The 
comments without any useful word were discarded.  
 We construct the collaboration graph  among the hackers 
as follows: the hackers commenting on a status are considered 
as connected by edges to the hacker who initiated the post.  
had 3 small components with 3 nodes each, disconnected with 
the giant component. We restricted our analysis to the giant 
component which will be called  from now on. The observed 
characteristics on  are: 
 Small-worldness: A network is defined to be small-world if 

; The small-world index  is given by: 

 

where  and  are the average path lengths between two 
nodes on the given network and a random graph respectively; 

 and  are the clustering coefficients of the given network 
and a random graph respectively [25]. For ,  
which suggests strong small-worldness among the hackers.  
   Composition of clusters: We performed cluster analysis on 

 using hierarchical agglomerative clustering. The suitable 
number of clusters was set to 32 as decided by Dunn index. 
Dunn index is the ratio of the minimum inter-cluster distance to 
maximum intra-cluster distance [26]. Figure 6a, and 6b show 
the composition of the largest cluster, and other clusters with 
more than 10 members respectively. 
 Figure 6 shows that the proportion of hackers in the cluster 
decrease with efficiency except cluster 2 where proportion of 
hackers increase initially. This is because in real world, quite 
often, efficiency is subjective. In cluster 2, the hackers having 
maximum proportion were either very efficient or totally 
ignorant about some particular topic for which they had 
communicated more leading to their higher proportion. Except 
this small anomaly, our model seems to explain the collusive 
behavior among hackers quite correctly. 
 Figure 7 shows the estimation of MAPC composition. The 
estimated friction parameters are , and . 
This means that WG friction is greater than BG friction. Figure 
8 shows  increases with efficiency in the 
biggest cluster according to the estimated friction parameters. 
The Collusion Index of the biggest cluster is  meaning 
that the hackers are not aiming for a single attack.  
D. Discussion 

 We have shown, both theoretically and through data that, 
attackers can benefit from collusion. 

 We found out that the network among the attackers have 
strong small-world characteristic. 

 We showed that in a coalition, proportion of attackers 
decrease with efficiency. This, combined with small-
worldness, indicates that attacker communities have 
recognized leaders. 

 We have identified leaders of a coalition, and quantified 
the strength of a collusion.  

 We have theoretically shown, that as friction increases 
homogeneity of attacker coalitions increases.  

We have developed a method to estimate unknown friction 
parameters. 

 
       (a) 

 
       (b)            (c) 

Fig. 4. MAPC Composition vs BG Friction. Increase in BG friction increases 
(decreases) proportion of highly (less) efficient attackers. Number of attackers 
and heterogeneity decrease in the MAPC with BG friction. 

 
Fig.5. Observed vs. Estimated MAPC Composition 

VII. CONCLUSION AND FUTURE WORK 

 In this work we have shown that attackers form coalitions to 
pool skills, and launch a bigger attack. The novelty of this work 
lies in the fact that, we are the first to develop a coalition 
formation game among attackers to explain the observed 
characteristics in real data. We have shown that the proportion 
of attackers in the MAPC decreases with efficiency. 



 We have theoretically shown that a less efficient attacker can 
have more leadership quality than a more efficient one. This 
shows that less efficient hackers can also play a key role in the 
coalition. We have quantified the strength of a collusion. Our 
solution to coalition formation game has been shown to be core 
stable but not Nash stable. We have shown how the coalition 
characteristics vary with homogeneity. We have developed a 
method to estimate friction parameters for an attacker to 
determine which coalition to join. As this model provides 
information about the driving forces of coalition formation 
among attackers, e.g., leaders, composition, and homogeneity, 
this model will be helpful to predict imminent attacks. 

  
(a)            (b) 

Fig. 6. Compositions of clusters show that the proportion of hackers in the 
cluster decrease with efficiency (except cluster 2). Separate plots for cluster 1 
and other clusters were necessary to show the composition clearly.  

 
Fig.7. Observed vs. Estimated MAPC Composition. 

 
Fig.8. Leadership Index vs. Efficiency in the Biggest Cluster.  

 As future work, we plan to develop defender strategy which 
exploits the collusive behavior of attackers to the benefit of the 
defender. The game where multiple defenders are up against 
multiple attackers will be interesting to explore. We have only 
considered maximizing average and total payoff of a coalition. 
We plan to look at other types of payoff functions and 
corresponding equilibria in future. 

VIII. ACKNOWLEDGEMENT 
The effort described in this article was partially sponsored by 
the U.S. Army Research Laboratory Cyber Security 
Collaborative Research Alliance under Contract Number 
W911NF-13-2-0045.  The views and conclusions contained in 
this document are those of the authors, and should not be 
interpreted as representing the official policies, either expressed 

or implied, of the Army Research Laboratory or the U.S. 
Government. The U.S. Government is authorized to reproduce 
and distribute reprints for Government purposes, 
notwithstanding any copyright notation hereon. 

REFERENCES 
[1] “2014 US State of Cybercrime Survey,” http://www.pwc.com/us/en/ 
increasing-it-effectiveness/publications/us-state-of-cybercrime.jhtml. 
[2] T. Moore, R. Clayton, and R. Anderson, "The Economics of Online 
Crime." Journal of Economic Perspectives 23, no. 3 (2009): 3-20. 
[3] D. Kushner, "The real story of stuxnet." IEEE Spectrum 50, no. 3 (2013): 
48-53. 
[4] https://www.wired.com/1994/12/hacker-4/ 
[5] N. Sintov, and M. Tambe. "Divide to Defend: Collusive Security Games." 
In Proceedings of 7th International Conference on Decision and Game Theory 
for Security, 2016.  
[6] https://en.wikipedia.org/wiki/1993_Bombay_bombings 
[7] A. Moghadam, "Terrorist Affiliations in Context: A Typology of Terrorist 
Inter-Group Cooperation." CTC Sentinel 8, no. 3 (2015): 22-25. 
[8] C. Herley and D. Florencio, “A profitless endeavor: phishing as tragedy of 
the commons,” In Proceedings of the 2008 Workshop on New security 
Paradigms, 2009. 
[9] S. Afroz, V. Garg, D. McCoy, and R. Greenstadt, "Honor among thieves: A 
common's analysis of cybercrime economies." In eCrime Researchers Summit 
(eCRS), 2013. 
[10] Z. Wang, Y. Yin, and B. An, “Computing optimal monitoring strategy for 
detecting terrorist plots.” In Proceedings of the 30th Conference on Artificial 
Intelligence (AAAI), 2016. 
[11] M. Zhao, B. An, and C. Kiekintveld, “Optimizing personalized email 
filtering thresholds to mitigate sequential spear phishing attacks.” In 
Proceedings of the 30th Conference on Artificial Intelligence (AAAI), 2016. 
[12] Y. Yin, B. An, and M. Jain, “Game-theoretic resource allocation for 
protecting large public events.” In Proceedings of the 28th Conference on 
Artificial Intelligence (AAAI), 2014. 
[13] Y. Yin, H. Xu, J. Gan, B. An, and A. X. Jiang, “Computing optimal mixed 
strategies for security games with dynamic payoffs.” In Proceedings of the 24th 
International Joint Conference on Artificial Intelligence (IJCAI), 2015. 
[14] Y. Vorobeychik, B. An, M. Tambe, and S. P. Singh, “Computing solutions 
in infinite-horizon discounted adversarial patrolling games.” In Proceedings of 
the 24th International Conference on Automated Planning and Scheduling 
(ICAPS), 2014. 
[15] D. Korzhyk, V. Conitzer, and R. Parr, "Security games with multiple 
attacker resources." In Proceedings-International Joint Conference on Artificial 
Intelligence (IJCAI), 2011. 
[16] Q. Guo, B. An, Y. Vorobeychik, L. Tran-Thanh, J. Gan, and C. Miao, 
"Coalitional security games." In Proceedings of the 2016 International 
Conference on Autonomous Agents & Multiagent Systems, 2016.  
[17] Y. Bachrach, and J. S. Rosenschein, "Coalitional skill games." 
In Proceedings of the 7th international joint conference on Autonomous agents 
and multiagent systems, 2008. 
[18] V. Benjamin, and H. Chen, "Securing cyberspace: Identifying key actors 
in hacker communities." In Proceedings of the International Conference on 
Intelligence and Security Informatics (ISI), 2012. 
[19] S. Afroz, V. Garg, D. McCoy, and R. Greenstadt, "Honor among thieves: 
A common's analysis of cybercrime economies." In eCrime Researchers 
Summit (eCRS), 2013, 
[20] H. Du, and J. Y. Shanchieh, "Discovering Collaborative Cyber Attack 
Patterns Using Social Network Analysis." In SBP, 2011. 
[21] J. Farrell, and S. Scotchmer. "Partnerships." The Quarterly Journal of 
Economics 103.2 (1988): 279-297. 
[22] Augustin, F., and Y. M. Marzouk, "NOWPAC: a provably convergent 
derivative-free nonlinear optimizer with path-augmented constraints." arXiv 
preprint arXiv:1403.1931 (2014). 
[23] S. Samtani. Hacker Web Forum Collection: Hackhound Forum Dataset. 
University of Arizona Artificial Intelligence Lab, AZSecure-data, Director 
Hsinchun Chen. Available http://www.azsecure-data.org/ [3 June 2016]. 
[24] https://cran.r-project.org/web/packages/tidytext/vignettes/tf_idf.html. 
[25] M. D. Humphries, and K. Gurney, "Network ‘small-world-ness’: a 
quantitative method for determining canonical network equivalence." PloS 
one 3, no. 4 (2008): e0002051. 
[26] J. C. Dunn, "Well-separated clusters and optimal fuzzy partitions." Journal 
of cybernetics 4, no. 1 (1974): 95-104. 


