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Abstract

Differentiated service approach has been proposed as a potential solution to provide Qual-
ity of Services (QoS) in the next generation Internet. The ultimate goal of end-to-end service
differentiation can be achieved by complementing the network-level QoS with the service dif-
ferentiation at the Internet servers. In this paper, we have presented a detailed study of the
performance of service differentiating web servers (SDIS). Various aspects, such as admission
control, scheduling, and task assignment schemes for SDIS have been evaluated through real
workload traces. The impact of these aspects have been quantified in the simulation-based
study. Under high system utilization, a service differentiating server provides significantly bet-
ter services to high priority tasks compared to a traditional Internet server. A combination of
selective early discard and priority-based task scheduling and assignment is required to provide
efficient service differentiation at the servers. The results of these studies could be used as a
foundation for further studies on service differentiating Internet servers.
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1 Introduction

The Internet and the World Wide Web (WWW) provides a global publishing and information
exchange infrastructure at low cost. The desire for using the Internet in business transactions
is increasing at a fast rate. Thousands of companies have set up Web sites for marketing and
interactions with customers [1]. However, many companies find the current generation of Internet
servers inadequate for core business transactions due to the problems of reliability, scalability,
security, and performance inconsistency.

The existing best-effort service with First Come First Serve (FCFS) scheduling model of the
Internet servers leads to mis-allocation of scarce and expensive network and CPU resources during
heavy load periods, causing unpredictable response delay, which is not acceptable to time-sensitive
transactions. The problem of unpredictability of response time becomes extremely serious during
information retrieval from the Web, since more and more applications with time constraints are
using the Web as their distributed interfaces. Upgrading hardware to faster CPU, more efficient OS,
and broader 1/0 bandwidth are always solutions for improving the response time and throughput of

” nature and the rapid growth of the Internet traffic volume

Internet servers. However, the “bursty
make it expensive and also inefficient to scale up network bandwidth and server capacity with the
increasing peak demand. Previous studies [2, 3] have shown that the peak workload of a web server
may exceeds its average load by orders of magnitudes. Thus the server utilization would be very
low if we design the system to satisfy requirements of the workload during peak periods.

Another approach of assuring service quality is to pre-allocate resources for value desirable tasks.
Irrespective of the intensity of workload, these cherished tasks enjoy dedicated system resources.
The analogous policy for the Internet is the end-to-end resource reservation scheme through the
Resource ReSerVation Protocol (RSVP) [4]. One major drawback of RSVP is poor scalability, since
the number of RSVP control messages processed by each router is proportional to the number of
flows passing through the router. Similarly the resource reservation approach is not appropriate
for Internet servers because of poor scalability, low system utilization, and/or long setup delay.

Differentiated service, known as DiffServ [5] in the IETF community, has been proposed as an
efficient and scalable solution to provide better service for the next generation Internet communi-
cation [6]. DiffServ creates an “express-way” for high priority traffic by selective reallocation of
network resources during peak workload periods. Similarly, prioritized services can be exploited by
a Service Differentiating Internet Server (SDIS) to provide better quality services to high priority
tasks. Especially, the response delay of mission critical requests can be bounded by allocating CPU
and I/O resources with respect to their priorities. Thus there is a need to design and evaluate
Internet servers that can provide fast response to high priority tasks, minimize the performance
penalty of low priority tasks caused by service differentiation without degrading the overall system

throughput. To summarize, the primary motivations for SDIS can be itemized as follows:



e Several evolving applications use continuous media (CM) objects, such as audio or video
stream data. These data types have time constraints that need to be met for their meaningful

delivery. Thus, they may need service priority over the non-real-time tasks.

e The exploding e-commerce market supports several types of transactions and may need to
classify services based on revenue generation or request types. Prioritized transactions may

thus be necessary to meet the objectives of e-commerce transactions.

e The possible adoption of differentiated services in the next generation Internet will make the
best-effort servers unacceptable and may defy the primary purpose of it. Thus, to provide

end-to-end QoS assurance, the Internet servers also need to provide differentiated services.

In this paper, we present a model of SDIS and evaluate its performance through simulation.
The workload for the study is derived from traces obtained from a live web server log. Priorities are
randomly introduced in the trace. During congestion SDIS provides better services to high-priority
requests compared to the best-effort service models. We have also analyzed several features of
SDIS, such as admission control, task scheduling and assignments. Impact of some of these issues
on SDIS performance are quantified in our study. The results demonstrate the feasibility and
performance advantages of SDIS. A combination of selective early discard and efficient scheduling
and task assignment approaches are necessary to derive fair service differentiation from Internet
servers.

The remainder of this paper is organized as follows. Section 2 describes policies for providing
differentiated services from an Internet Server. The server model, admission control and scheduling
issues are discussed in Section 3. The simulation environment and results are discussed in Sections
4 and 5, respectively. Section 6 describes the related works, followed by the concluding remarks in

Section 7.

2 Service Differentiation

A traditional Internet server processes requests in FCFS manner. During a high load period, each
task has to wait in a queue for a long time before getting serviced. Overhead from tasks competing
for limited resources, such as open connections and network bandwidth, is increased. “Retry”
from impatient clients worsen the load situation and cause the “snowball” effect. More elaborate
resource allocation schemes rather than the best-effort service model need to be adopted to provide
predictable services during high load periods. In this section policies of differentiating services that
could be deployed by web servers are discussed.

In the DiffServ model for the Internet, different priorities are assigned to packets. High priority

packets enjoy timely processing and service assurances. Similarly at the server, an incoming request



can be assigned to a priority group on the basis of the client, network, content, or owner of the
requested object as elaborated below.

Client based service prioritization scheme provides means for a client to purchase premium
services at a certain cost. A client can be authenticated by a combination of cookies, client host
ID, session ID provided by the server, or by other profile information of the clients maintained
at the server. More detailed user authentication gives the users more flexibility for QoS selection,
while increasing the load of the maintenance of status information at the server.

Network based service differentiation is determined by the underlying network level protocols.
Clients specify priority of packets, which is carried by the request. The server extracts the packets
priorities and sends reply at the matching service levels.

Content based service differentiation is determined by the “value” or “importance” of the web
object being requested. In an on-line stock exchange center, priority can be granted to purchase/sell
requests over queries. Similarly, in an on-line shopping web site, the transactions of someone with
items in the shopping cart or someone entering payment information should have higher priority
than the general browsing transactions.

Owner based prioritization of service provides selective QoS in a web hosting environment. A
web host can grant distinct priorities to requests made to web pages belonging to owner organiza-
tions based on the prices they paid.

One or more of the above mentioned policies can be adopted by the server based on the applica-
tion environment. Analysis and comparison of these policies are not within the scope of this paper.
The levels of priorities that can be set up to provide both flexibility and efficiency of the system
is an important metric but is considered beyond the scope of this work. Similarly, quantification
of QoS and pricing issues for different level of services also need further investigation and analysis,

and are not emphasized in this study.

3 A Generalized Internet Server

In this section, we present a model of a generalized Internet server and analyze the feasibility of
service differentiation. Although other models of Internet servers exist, the goal of the proposed

model is to study the issues involved in service differentiation, not the types of Internet servers.

3.1 Service Differentiating Internet Server Model

Figure 1 shows a queuing model of a generalized Internet server. The system consists of four major
logical components, a task initiator 77, a task dispatcher T, a task server pool S;(i = 1...N),
and the communication channel Ng. A represents the request arrival process from the clients. dA

represents the dropping probability of incoming requests. A’ denotes the requests that get service.



The task initiator 77 maintains the open connections of the system. Incoming requests are queued
awaiting acceptance by the 77. Each accepted request is assigned a task, and each task is granted
an appropriate priority level based on the system settings. The task dispatcher Tp assigns tasks
to a task server, and each task server schedules and processes tasks according to their priorities.
Responses are sent back to clients through the communication channel Ng. To simplify the model,
we assume that the server connects to the client through a high speed network. We have ignored
blocking and flow control from client side network connection as they are beyond the scope of the

proposed study.
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Figure 1: Queuing Network Model for an Web Server.

The task initiator 77 picks up requests from the incoming request queue. The queue length is
limited by the operating system constraints and allowable open connections in the server. Incoming
requests are tail-dropped if the queue is full. With the cooperation of intelligent network interface,
network layer priority setting of a request can be passed on to the application layer. 77 can be
used to collect priority information from low level network protocols and convey it to the task
dispatcher Tp. Otherwise, Tp determines the task priority based on the implementation of the
service differentiation algorithm. After determining the priority of each task, Tp selects a task
server to process the task.

Each task server, S;(¢ = 1...N), represents a processing unit that takes care of processing a task.
For a static request, the task server translates the URL into the corresponding file path, finds the
file, copies the file contents into memory, and sends back reply to the client through the Internet.
For a dynamic request, the server invokes a gateway interface. A web page is generated “on the

fly” based on the result returned from the gateway interface and sent back to the client. A task



server is an abstract concept in the sense that it can be a child process in a multi-process server,
a thread in a multithreaded server, a processor in a multiprocessor server, or a host in a server
cluster. Based on the system environment, each task server share or has an independent waiting
queue, memory, cache space, and other resources. Task servers can be symmetric, i.e., with the
same hardware configuration, or can be asymmetric with different hardware configurations.

The capacity of the communication channel Ng is determined by the bandwidth of the server
network access point. In the current Internet infrastructure, a server generally has T1 (192 KB/s)
or T3 (5.4 MB/s) connection. An Intranet web server generally connects to clients through high-
speed local area networks such as 10 Mb or 100 Mb Ethernet. Data throughput is determined by

the channel bandwidth and network utilization.

3.2 Admission Control

Admission control can be implemented using the following two steps: The first step of admission
control is provided by the initiator 77. Incoming requests are rejected when the arrival rates
exceeds the processing capacity of the system. In Figure 1, sf provides feedback of system capacity
to the initiator. To avoid bulk rejection, early overload detection can be adopted and two levels
of thresholds can be used similar to the Random Early Detection (RED) scheme [8]. Low priority
packets are dropped with increasing probability after the system load exceeds the first threshold.
All the packets are dropped when the system load exceeds the second level of threshold. Average
queue length at the initiator can be used as the threshold indicator. The value of the thresholds
can be statically configured or dynamically adjusted depending on the application environment or
on the variety of incoming requests.

The second step of admission control can be provided by the task dispatcher Tp. The task
dispatcher monitors the task server load and makes decision for dropping requests to assure that the
system works within an acceptable load level. Contrary to the first step of uninformed dropping, the
task dispatcher sends back brief explanation to clients stating why it cannot fulfill the request. The
informed dropping decreases the “retry” attempts from clients. When one task server is overloaded,
tasks are redirected to the other task servers. If all the task servers are overloaded, low priority
tasks experience “informed dropping” to relieve the overload situation. In case of communication
channel overload, low priority large size tasks are first discarded, and the continuous media data
requests are discarded when bounded delay QoS can not be assured. Available bandwidth is used

as a metric of channel load.

3.3 Scheduling

In a task server, priority based scheduling is adapted to provide faster processing of some tasks than

others. In this study, we have used strict priority scheduling policy, i.e., low priority tasks do not get



service if higher priority tasks are waiting. Tasks in the same priority group are serviced in FCFS
order. We consider a non-preemptive scheduling approach in our study to avoid the complexity of
context switching and state maintenance caused by preemption.

Scheduling in the communication channel also follows priority based queuing. Unlike the task
server, the data that is being sent out is restricted by the page size of cache memory and network

protocols. The scheduling in the communication channel is similar to prioritized process sharing.

3.4 Task Assignment

A distributed server system introduces flexibility of selecting a server for a specific task. Selection
can be based on task priority, task type, spatial and temporal locality of web objects, and hardware
configuration.

One or more high performance web servers can be reserved for high priority tasks to make sure
that the high priority tasks always encounter short queue length. Another approach of task assign-
ment could be the assignment of task type to different servers. Same type of tasks often consume
about the same amount of processing time, while tasks with different types may consume processing
time with very high variance. Task assignment schemes which lead towards lower variance of pro-
cessing time help to improve response time and throughput. CM data require streaming delivery
for a sustained time period, for which process sharing performs better than FCFS. In addition, task
assignment schemes considering temporal locality has the potential of improving caching efficiency.

Task assignment scheme can be combined with scheduling. If each task server has the facility
of prioritized processing, then tasks can be sent to the corresponding server right away to alleviate
the queuing load at the task dispatcher. Otherwise, the task dispatcher blocks low priority tasks

unless there are no high priority tasks waiting to be served at a server.

4 Simulation

The request arrival patterns at Internet servers are known to exhibit self-similarity and long-range
dependencies. Thus it is difficult to build a good analytical model that can provide us an in-depth
view of the performance estimation. In this section, we have used a simulation model and traces

from a real web server as workload to examine the performance of SDIS.

4.1 Simulation Model

We have implemented an event driven simulator for the experimental study of the server model
proposed in Section 3. The simulator model is built using the CSIM [9] simulation package according
to the model discussed in the previous section. There is one task dispatcher which assigns tasks to

four task servers. The service capacity of the task dispatcher is set to be 4000 requests per second,



and the service capacity of each task server is 1000 request per second. The queue size for each
server and the task dispatcher is 1024. The disk I/O throughput of each server is set to be 10MB
per second. Seek overhead of each disk request is set to be 1 ms per second. Cache size of each
server is 32 MB, and file with size larger than 32 KB is not cached. We have assumed two levels of
priority: high priority and low priority. The average system service time of the simulation model
is 18ms. The parameters for task processing behavior are derived from [13, 14], and by monitoring
the network traffic to and from our departmental web server. Caching hit ratio data is selected
based on the study in [15, 16]. Cache size of each server is set to be 32 MB for static objects with
size less than 32 KB. Dynamic and big, i.e., sizes equal or larger than 32 KB, web objects are
treated as uncacheable. For a dynamic object request, the service time is dominated by the CPU
computation time; and for a large size file request, it is dominated by I/O processing time. The

simulation parameters are shown in Table 1.

Table 1: Simulation Parameters.

‘ Parameter value ‘
Number of Task Servers 4
System Capacity for Static Objects 1000 req. /sec
Task dispatcher Capacity 4000 req. /sec
Disk Bandwidth 10 MBps
Disk Seeking Overhead 1 ms
Network Bandwidth 100 Mbps
Outbound Network BW 80 Mbps
Cache Size 32M bytes/server
Caching Threshold 32 KB
Dynamic Objects Processing Overhead 10 ms
Priority Level 2

The queue size for each server process in the simulation is set to be 1024. This size is quite big
compared to the server processing capacity. Thus the waiting time of low priority tasks exceeds
several thousand times of service time before the queue gets full. To save the space, we have not
discussed the drop rate here. Later while examining the EDAC scheme, the queue size is shortened

to 100 for each server to improve the response time at the cost of higher drop rate.

4.2 'Workload

Previous works [3, 10, 11] have suggested apparent self-similarity and long-term dependency of
the WWW traffic pattern. However, accurate synthesis of self-similar traffic remains an open
problem [7, 12]. In this study, we propose to generate workload from real trace files. We monitor
the logs from a departmental web server in the Computer Science department at Michigan State

University !. The trace files contain 866,587 requests in one-week period. The access logs provide

1This work was done while the authors were at Michigan State Unievrsity.



the request timestamp, client ID, object URL, service status, and reply size of each request. The
referrer logs complement burst and session information. Request type distribution from a week

access log is list in Table 2.

Table 2: Trace Data Distribution.

Item HTML | Image | Audio | Video | Dynamic | Other | Total
Reg. Ratio (%) 19.2 68.8 0.2 0.1 3.9 7.8 100
Traffic Ratio (%) 15.0 49.2 1.6 6.7 5.4 20.2 100
Mean Transfer Size(KB) | 5.76 4.98 | 579.9 | 2503.9 3.84 19.0 | 7.39
Transfer Size CoV 1.90 2.46 1.76 1.56 1.33 7.90 | 14.41

The request generators take data extracted from the traces, regenerate and send requests to the
server. The number of independent request generators is changed to generate different workload
intensity. “Burst” of the request flows is well preserved by using multiple independent request
regenerators. Timestamps have 1-second resolution, and requests with the same timestamp are
assumed to be distributed exponentially in a one second time period. Data from each day time

period, 9 AM to 9 PM, are used as input of the simulator.

4.3 Performance Metrics

The effectiveness of a scheduling scheme is measured in terms of mean response time as well as the
95th percentile response time. Mean response time is defined as the time between the acceptance
of a request and the completion of sending back the reply, which is the sum of the waiting time
and service time. The 95th percentile response time shows the response time that majority of tasks
experience, which represents the statistical predictability of system responsiveness. Other aspects,

including admission control and server side caching algorithms, have been studied as well.

5 Results

In this section, we present and analyze the results obtained from our simulator using the real
workload traces. We have examined the impact of priority-based scheduling, task assignment

policies, and admission control schemes.

5.1 Effectiveness of Priority Based Scheduling

In the Internet environment, both access interval and service time distribution are significantly
different from the widely used synthetically modeled workload. Therefore, we have used real work-
load traces for performance evaluation. The high variance of the inter-arrival time and service rate
degrades system performance [17], and forces the web server to operate in a low utilization state.

Figure 2 shows the mean response time of tasks, and Figure 3 shows the 95th percentile response



time of tasks. Curve (c) in each figure indicates the performance trends of non-prioritized process-
ing of tasks. As we can see from Figures 2 and 3, the response time increases sharply with respect
to the system utilization. Curves (a) and (b) in each figure are the response time curves of low
priority requests and high priority requests, respectively. High priority tags are assigned to half of
the requests randomly, and the other half is marked as low priority. Thus the ratio of high priority
to low priority tasks is 1 to 1, and both types of tasks are randomly distributed in the whole arrival
sequence. Tasks are assigned to each task server using Round_Robin scheduling irrespective of their
priorities. Tasks queued at each server are served based on their priority. Specific scheduling and
task assignment approaches are discussed later in this section. Performance degradation of the high
priority task group happens at a much higher utilization compared to the non-priority-based model.
On the other hand, the performance curve of low priority task is fairly close to the performance

curve without priority differentiation.
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Figure 2: Mean task response time. Figure 3: 95th percentile response time.

We only consider the stable states of the system in the study, i.e., the task response time and
slow down before the sharp performance degradation, or the “knee” of the performance curve. From
the preceding results, we observe that, the delay is bounded in an acceptable range for high priority
tasks in a system with “performance knee” at about 50% of the system capacity for static objects
with 50% or less high priority tasks. A steep rise in response time of low priority requests occurs at
about 50% of the system capacity, which is about the same as response degradation point without
priority differentiation. High priority requests incur average low delay, i.e., less than 2 seconds,
even when the system approaches full utilization. Note that the experiment could not achieve the
full system capacity due to the overhead incurred by dynamic objects. The 95th percentile response
delay of high priority requests is also within a reasonable range, which is less than 10 seconds in

the experiment.



The irregularities in the curve at low server utilization are caused by load imbalance among
servers while serving continuous media objects. Round_Robin scheduling treat each task indiffer-
ently, which fails to balance load among servers since continuous media tasks consume much more
disk and network bandwidth than other tasks. In the following subsection, we have varied the high
priority task proportions from 0.5 to 0.9, corresponding to the portions of low priority task from
0.5 to 0.1. In reality the proportion of high priority tasks would be lower than that of the low
priority tasks.

5.2 High Priority Task Performance

Next, we examine the relationship between the high priority task ratio and the “knee of the curves”
in the system. The simulation setup is kept the same as in the last experiment, the only difference
is that the high priority task ratio varies from 0.5 to 0.9.

Figures 4 and 5 show response delay curves of high priority tasks with high priority ratio varying
from 0.5 to 0.9. As high priority task ratio increases, the response time curve gets closer to the non-
prioritized system response time curve, and the benefit margin obtained from differentiating services
diminishes. Figure 4 shows that the “knee”s of the mean response time of high priority tasks move
closer to that of the non-prioritized system with the increase in high priority ratio. However, by
controlling the proportion of high priority requests, we can obtain significant performance benefit
from the SDIS. Figure 5 displays the 95th percentile response time of high priority tasks with high
priority ratio ranging from 0.5 to 0.9. The monitored time frame is set to be 60 seconds, which
is the default timeout period used in this study. It can be observed from the figure that the high
priority tasks rarely gets timed out and retransmitted. Service availability of high priority tasks is

much higher than that of low priority tasks.
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5.3 Low Priority Task Performance

Figures 6 and 7 show the mean response time and 95th percentile response time curves of low
priority tasks with the high priority ratio ranging from 0.5 to 0.9, i.e., low priority task ratio from
0.5 to 0.1, versus traffic intensity. It can be observed that the response time of low priority tasks
becomes worse with the increase in high priority task proportion, as expected. On the other hand,
we find that the spectrum of the occurrence of the “performance knee” in low priority response
time curves is relatively narrow, which reflects the minimal influence on low priority tasks with

service differentiation.
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Figure 6: Mean response time vs. priority ratio. Figure 7: 95th percentile response time.

5.4 Task Assignment Schemes

In a distributed server environment, an appropriate task assignment scheme decreases the waiting
time variance and thereby improves the system performance. We studied four types of task as-
signments, Round_Robin (rr), Shortest_Queue_First (sqf), Prioritized_Shortest_Queue_First (psqf),
and Reserved PSQF (rpsq), in the experiment. Tasks are assigned to task servers in rotational
order when we use rr task assignment scheme. sqf task assignment scheme is based on load bal-
ancing techniques, which assigns tasks to the server with lowest number of active processes. The
effectiveness of the sqf assignment scheme depends on the accuracy of system load information the
dispatcher uses. In the experiment, we assume that the scheduler always gets the updated process
number in each task server, and the overhead of system load monitoring is 10% of service time. To
adapt to the differentiated service environment, a psqf task assignment scheme is introduced in
which a new task is assigned to the server with the least number of waiting tasks of equal or higher
priority than the incoming task. We also tried a resource reservation scheme rpsq in assigning a
task, i.e., some resources are reserved for high priority tasks. A high priority task waiting time is

expected to decrease by reserving one or two servers exclusively serving high priority tasks.
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The response time of high priority tasks are shown in Figures 8 and 9. Figures 10 and 11
illustrate the corresponding response time variations of low priority tasks. Experimental parameters
are kept the same in each of the task assignment schemes. The ratio between high priority and low

priority tasks is one to one.
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The rr task assignment scheme consumes the least system overhead, which assigns tasks in
rotation order of task servers. There is no need to monitor task server load dynamically to make
the decision. However, one big task can cause temporary server overload and degrade the system
responsibility and throughput drastically. As we can see from the Figures 8 and 10, using rr scheme,
both high priority and low priority tasks experience poor response time performance than other
task assignment schemes. On the other hand, introducing load balancing techniques in the system

improves the system performance on the whole. The experimental results show improved response
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time performance in both high priority and low priority tasks using the sqf scheme compared to
the rr task assignment scheme.

The performance of high priority task under reservation based sqf and psqf schemes does not
differ much from non-reservation based sqf and psqf schemes. On the contrary, reservation based
psqf, denoted as rpsq, degrades system response time of low priority tasks. The “curve knee” of
low priority task response time moves closer to that of the rr scheme. Reservation of resources for

high priority tasks is proved to be not as effective as load balancing-based task assignment schemes.

5.5 Admission Control

The high priority tasks experience the same probability of denial of service in an overloaded system
if there is no appropriate admission control scheme. In this study, we explore the effectiveness of
reserving buffer space for high priority tasks by an admission control scheme and the early discard
admission control (EDAC) scheme discussed in Section 3. We find that EDAC is suited for light to
medium workload. During heavy load period, EDAC is not effective in assuring high priority tasks
to get system resources. The accepted low priority tasks starve for a long time for service, and those
waiting tasks occupy buffer space and cause denial of service to high priority tasks even when the
arrival rate of high priority tasks is below the system capacity (see Figure 12). The early detection
threshold of low priority tasks is set to be 0.5 of the buffer space in Figure 12. We collected the
rejection rate data of high and low priority tasks using sqf, and psqf task assignment schemes.
The slope of the rejection rate of high priority tasks is almost the same as the rejection rate of low
priority tasks irrespective of the task assignment schemes. In the following experiment with timeout
consideration, we only present rejection rate and abort rate data using sqf task assignment, since

there are no noticeable differences in performance between sqf and psqf schemes.
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The experimental result shown in Figure 12 suggest that EDAC is effective in keeping rejection
rate of high priority tasks low. We further consider adding timeout to release system resources
from starved tasks, and any operations related to tasks that have expired timeout are aborted.
The abort rate and rejection rate performance is collected and displayed in Figure 13. In results
shown in Figure 13, a timeout of 2 seconds is added to release the system resources from stale low
priority tasks. We repeat the experiment with increased high priority task traffic volume till peak
arrival rate equals system capacity. The result shows that 99.5% percentage of high priority tasks
are served within 2 seconds. No high priority task experience denial of services against various
task inter-arrival rate. The abort rate of high priority tasks varies from 0.05% to 0.5%, depends
on the distribution of high priority task access rate. It is worth noticing that the abort rate of
high priority requests decreases when the task arrival rate approaches system capacity, which is
due to the increase of rejection rate of low priority tasks. The abort rate of low priority tasks is
about the same as high priority tasks under light to medium load, and continue to increase with
the workload. The results indicate that EDAC and timeout effectively reallocate system resources

to high priority tasks during server overload periods.

6 Related Work

Although a significant amount of research has been done on the service differentiation at the
network level, the work on service differentiation in Internet servers has been limited. Almeida et
al. [18] have implemented a prototype of web server which can provide prioritized service in a web
hosting environment and studied performance issues in both user space and kernel space. They
compared performance of high priority tasks and low priority tasks using synthetic benchmarks.
Their research results encouraged us to study prioritized service in a general web server environment.
Our work is different from theirs in that we use empirical distribution input which represent the
real workload of a web server. In addition, we have also analyzed several other issues of SDIS
including task assignment, admission control, impact of memory affinity, etc. Bhatti and Friedrich
in HP Labs [19] have built a prototype of task classifier and scheduler on an Apache web server,
and studied response time and throughput issues of prioritized services on a web server. They
used stress tests which might not be adequate in simulating high variance of web server workload
environment. Our work complements to the work of these authors. In addition, we have shown
the impact of admission control and task assignment schemes, and quantified their performance
impacts on prioritized tasks. The pricing issues related to the QoS provision on the Internet was
analyzed in [20]. They discussed several QoS classification options, which can be also provided by
our server model. We extend their work in terms of service differentiation and classification. The

authors of [21] studied task assignment policies in a distributed server system model. Each host
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processes tasks in FCFS order and the task resource demand is known in advance. Their results
suggested that a size-based policy performed the best in a environment of task processing time with

high variance and linearly to reply size. However, they did not consider the QoS assurance issues.

7 Conclusions

The next generation Internet will demand differentiated services from Internet servers, which can
be achieved through priority based service. Service differentiating Internet servers are needed
to provide high quality of service to high priority tasks even under high system utilization. In
this study, we show that under near-saturation of web server utilization, differentiated services
provide significantly better services to high priority tasks compared to a traditional web server.
In addition, through a simulation-based study, we have shown the impact of admission control
and task assignment schemes on the performance of prioritized tasks. The results of our study
indicate that the combination of selective early discard, timeout, and priority queuing is necessary
and maybe sufficient to provide better response from the next generation Internet Servers. We can
configure our server system so that the response time of high priority requests can be bounded
irrespective of the volume of low priority requests. This study will instigate further analysis and

design of service differentiating Internet servers.
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