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Abstract—Wearable smart devices such as smart-glasses,
smart-watches and life-logging devices are becoming increasingly
popular, and majority of them are being equipped with first-
person cameras. Such first-person cameras on smart-glasses
or lifeloggers capture photos/videos from user’s point of view,
allowing them to record and share user’s everyday events.
However, these wearable devices with first-person cameras raise
serious privacy concerns because they can also capture extremely
private moments and sensitive information of the user. Currently,
such devices lack the intelligence to understand user’s preferences
about certain scenarios being sensitive/private. To address this
problem, we present PriFir, a scheme that enables Privacy-
preserving First-person cameras. PriFir is based on the idea
that low-power sensors (e.g. accelerometer, light sensor, etc.)
embedded in smartphones and smart-watches can be leveraged
to identify sensitive scenarios. Learning from user’s preferences,
PriFir employs a cascade of classifiers that tags a scenario to
be sensitive simply based on the characteristics of the low-power
sensor data. We evaluate PriFir using real sensor traces spanning
over multiple days and show that it performs highly accurate
classification at a low energy cost.

I. INTRODUCTION

There is a tremendous rise in wearable smart devices in last
few years. New wearable devices such as smart-glasses [1],
smart-watches [2] [3] and life-loggers [4] [5] are increasingly
being adopted by end users. Many of the wearable devices
are equipped with first-person cameras (also known as point-
of-view cameras) which capture photos and videos from the
first person’s perspective. Examples of such devices include
Google Glass [1] and life-logging devices like Narrative
clip [4] and Autographer [5]. The life-logging devices can be
configured to automatically take pictures every few seconds,
allowing users to create long-lasting digital memories of their
everyday events. First-person camera devices are also shown
to be useful in health and safety (patients with memory loss
and Alzheimer’s [6]), personal informatics [7] and physical
analytics [8].

While first-person camera devices are becoming ubiquitous,
a major concern in their adoption is their privacy implica-
tions. Point-of-view photography can record the most private
moments of the user. Common examples of such sensitive
scenarios include the user visiting restroom, typing website
password on computer, engaging in a private meeting, etc.
Once captured, this imagery is vulnerable to the risks of being
mistakenly shared by the user; or other malicious applications

978-1-4673-7331-9/15/$31.00 © 2015 IEEE

installed on such smart devices are able to leak the images.
One report demonstrates a spyware on Google Glass called
Malnotes [9] that deceptively acquires the permission to access
Glass’s camera and the Internet, takes photos every ten seconds
and uploads the images to the remote server without user’s
awareness. Either way of unintentional image exposures may
lead to serious public embarrassment probably with addi-
tional social and professional consequences. Moreover, with
thousands of photos or hours of videos taken in one day
via the first-person camera, it is unsurprisingly tedious and
overwhelming for the user to manually inspect every one of
them and check for any private information.

Our initial survey about the design of such devices reveals
that they lack the intelligence to understand user’s preferences.
The devices rely on the user to turn off the first-person camera
when they are in sensitive scenarios. There exist some image
processing based solutions [10] which analyze the image to
locate pre-defined sensitive objects after it has been captured.
The problem with such post-processing design is that the im-
age has already been captured before being analyzed, making
it vulnerable to the risks of unintentional sharing and stealthy
leakage. Also, such image processing based approaches scale
poorly on mobile devices, especially on energy-constrained
wearables, due to their heavy computation load.

In this paper, we present PriFir, a scheme that enables
Privacy-preserving First-person cameras on wearable devices.
PriFir is designed to identify user-specific sensitive scenarios
purely using low-power sensors on smart devices. Because it
entirely depends on whether the user considers a given sce-
nario sensitive or not, PriFir needs to learn user’s preferences
with a small amount of training. At the core of PriFir is the
idea that: first, low-power sensors such as accelerometer, light
sensor, orientation, etc. can generate delicate signatures for
various scenarios; second, with the combination of outstanding
sensor features, PriFir identifies the sensitive scenarios with a
very high accuracy. PriFir leverages various low-power sensors
available in smartphone and smartwatch to determine a given
scenario sensitive or not. If the scenario is tagged sensitive, all
access requests to the first-person camera is denied to protect
user’s privacy.

There are three salient features of PriFir: (1) It performs
the classification of a scenario being sensitive or not in
advance, before a picture is taken (the camera is accessed).
This eliminates the risk of the image being leaked before it



is analyzed for private information. (2) Because PriFir simply
relies on monitoring of low-power inertial sensors, it is much
more energy-efficient compared to image processing based
techniques. (3) PriFir applies a cascade of machine learning
classifiers to save energy, by making classification with lower-
power sensors first and employing more energy-expensive
classifiers later only if further analysis is necessary.
The contributions of our work are as follows:

1) We show that low-power sensors such as accelerometer,
light sensor, orientation, etc. embedded in smartphones
and smartwatches can be exploited to generate finger-
prints of sensitive scenarios. In many cases, the features
of only a few such sensors are enough to determine if
the scenario is sensitive or not.

2) We design PriFir, a scheme that enables privacy-
preserving first-person cameras purely relying on low-
power sensors. PriFir consists of a cascade of low-
complexity machine learning classifiers, each of which
is trained using one or a few low-power sensors. As
classifiers based on lower-power sensors appear first in
PriFir cascade, most scenarios are classified early with
low energy cost. PriFir is user-specific as it learns and
adapts to user’s preferences with small training period.

3) We implement PriFir and evaluate it using real sensor
traces collected from smartphone and smartwatch. It is
shown that PriFir can classify the sensitive scenario with
an accuracy of 87% while restraining the false alarm
rate (percentage of non-sensitive scenarios misclassified
as sensitive) to be lower than 5%.

This paper is organized as follows. Section II described
our privacy goals and approach. Section III shows how low-
power sensors can be used to fingerprint sensitive scenarios.
The design of machine learning classifiers and their energy-
efficient cascade arrangement is presented in Section IV.
Section V evaluates PriFir in terms of its accuracy and energy
efficiency. We discuss related work in Section VI and conclude
in Section VIL

II. PROBLEM DESCRIPTION AND APPROACH

In this section, we describe our problem using privacy goals,
and provide the outline of our approach.

A. Privacy Goals

PriFir is useful in protecting user’s privacy in the following
cases.

A wearable first-person photography device (e.g. Google
Glass, Autographer, Narrative clip etc.) is configured to take
pictures periodically. User’s primary concern when using such
a device is that since it is configured to access the camera
periodically, it can also capture certain personal and private
moments which user would not like to share with others.
Examples of such scenarios include when user is in restroom
or in bedroom or when user is visiting her bank website on
her laptop. Since the life-logging devices are likely to take
hundreds of pictures in a day, it is extremely difficult for
the user to scan each picture for privacy. In this case, our
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objective is to embed intelligence in the first-person camera
device, which learns and determines when user is in a sensitive
scenario and stops accessing the camera.

Apart from this, it is possible that one of user’s smart
devices is infected with a malicious software which can
access the camera periodically. Such an application can take
pictures from user’s point-of-view and leak user’s most private
moments. [9] demonstrated a similar malicious app for Google
Glass while [11] showed the same for the smartphones. In this
case, our objective is to design an operating system service
which determines if user’s current scenario is sensitive or
not, and sets the permissions to access camera hardware. We
emphasize that our objective in this work is to protect user’s
privacy from her own first-person camera device. We leave
the issue of protecting user’s privacy from other user’s camera
devices to our future work (see Section VII).

B. Requirements and Challenges

We believe that our privacy-protecting scheme should al-
so meet the following requirements along with the privacy
goals described above. These requirements pose additional
challenges which we describe here as well.

1) A Priori Decision Making: A crucial requirement is
that a scenario should be tagged sensitive or non-sensitive
before a picture is taken. This is different from other post-
processing based approaches [10] which determines if the
picture is sensitive or not after the picture is taken using image
processing techniques. We believe that once the image is taken,
there is a far greater risk of it being leaked even before it
can be processed. A safer approach, on the other hand, is
to proactively stop taking pictures when sensitive scenarios
are detected, so we refrain from using image processing
techniques in PriFir.

2) User-centric Model: Privacy is often subjective and user-
dependent. The same scenario can be private to one user while
being non-private to another. Our scheme should respect this
user-centric phenomenon. It is challenging to design a scheme
that can learn and adapt to user’s preferences.

3) Scenario vs. Location: It is important to note that sensi-
tive scenarios are not always sensitive locations. Activities like
having a private conversation or typing personal information
on a laptop can happen at multiple places, which appar-
ently, location can not provide enough pattern to recognize.
This means that determining user’s contextual location (e.g.



bedroom, office etc.) is not sufficient and it is necessary to
determine the scenarios which user finds sensitive.

4) Minimal User Intervention: A user would ideally like
the device to make an informed decision without actively
providing input. Our scheme should learn user’s preferences
and perform decision making independently afterwards.

C. Auxiliary Goal - Energy Efficiency

An important auxiliary goal while protecting user’s privacy
is to do so using lower energy consumption. Energy efficiency
is necessary to be considered because all the devices in our
system including smartphone, smartwatch and the life-logger
are battery operated. Our scheme of determining if a scenario
is sensitive or not should not consume excessive battery
resources. For this reason, we use low-power sensors such as
accelerometer, light etc. to fingerprint sensitive scenarios. This
allows us to build a scheme which has lower cost of sensor
data collection and lower processing complexity compared
to a scheme where sample pictures are periodically taken
and computationally expensive image processing is applied.
We will quantify the energy efficiency of different sensors in
Section IV.

D. Approach

Our presented solution, PriFir, is designed to meet the pri-
vacy goals and requirements mentioned above while achieving
high energy efficiency. PriFir is based on the fact that today’s
users own multiple smart devices such as smartphone and
smartwatch, each of which is equipped with plethora of low-
power sensors. Fig. 1 shows variety of sensors available in
latest smart devices. If we are able to exploit these sensors
from both wrist and thigh areas in determining whether user’s
scenario is sensitive or not, we can achieve our privacy-
preserving goals without requiring any computationally ex-
pensive methods such as image processing.

PriFir is designed in two steps. First, we show that low-
power sensors can be used to classify a scenario in sensitive or
non-sensitive with very high accuracy in Section III. Second,
we note that most of the times one or a few low-power sensors
are sufficient to achieve an accurate classification. We leverage
this observation to build the PriFir machine learning classifier
in Section IV. The classifier is a cascade of subclassifiers each
of which is built using one or a few low-power sensors. Due
to cascade arrangements, a given scenario is first tested with
low-cost subclassifiers which are likely to result in accurate
classification at a very low energy cost. PriFir operates as
follows:

(1) PriFir collects data from low-power sensors of user’s
smartwatch and smartphone. During the initial training period,
user actively indicates when she is in a sensitive scenario.

(2) With user’s input and sensor values, PriFir builds a
classifier as described above. This involves feature extraction,
building subclassifiers and arranging them in order of energy
cost to form a cascade.

(3) After the training, PriFir classifier observes the selected
low-power sensors and classifies if user’s current scenario is
sensitive or not without requiring any user intervention.

TABLE I: List of low-energy sensor features, where sp and sw
denote sensors in smartphone and smartwatch respectively. Features
of Accelerometer, Gyroscope and Orientation are calculated for
three axes. Refer to [14] for the feature definition and abbreviations.

Sensors: Features

Accelerometer-sp, Accelerometer-sw, Gyroscope-sp, Gyroscope-sw: D-
CMean, DCArea, ACAbsMean, ACAbsArea, ACEntropy, ACSkew, ACK-
ur, ACQuartiles, ACVariance, ACAbsCV, ACIQR, ACRange, ACEnergy,
ACBandEnergy, ACLowEnergy, ACModVigEnergy, ACPitch, ACDom-
FreqRatio, ACMCR, DCTotalMean, DCPostureDist, ACTotalAbsArea,
ACTotalSVM

Light-sp, Light-sw, Sound-sp, Sound-sw, Orientation-sp, Orientation-
sw, Proximity-sp, Proximity-sw: Minimum, Maximum, Mean, Median,
Standard deviation, Skewness, Kurtosis

PriFir is built based on the assumption that user’s smart-
phone and smartwatch are equipped with low power sensors
such as accelerometer, gyroscope etc. This assumption is rea-
sonable given that most current smartphones and smartwatches
[13] are already equipped with these sensors. As shown in
Fig. 1, the smartwatch and first-person camera device can
communicate with the smartphone via Bluetooth LE. We refer
to this communication network as a wearable network. The
PriFir classifier can run on the smartphone which collects
data from its own sensors as well as smartwatch’s sensors.
Once it has processed the data and made a decision, it informs
the first-person camera device to set the camera access policy
accordingly. The process is repeated periodically in order to
constantly switch to new policy based on the current scenario.

III. IDENTIFYING SENSITIVE SCENARIOS

In this section, we provide the details of our data collection
and the methodology. Note that our presented approach works
for variety of scenarios specified by the user, and we pose three
scenarios (i.e. typing, visiting restroom and being outdoors) as
examples to show how they can be accurately classified using
low-power sensors.

A. Data Collection and Methodology

Our objective is to exploit low-power sensors in smart-
phones and smartwatches to aid the first-person camera de-
vices (e.g. smart-glasses or life-logging devices), as shown in
Fig. 1. As commercial lifeloggers and smartwatches leave little
flexibility to modify their design parameters, we employ three
Google Nexus 5 smartphones [12] in our experiment for the
ease of data collection. The first phone is hanging at the chest
area to act as the life-logger, the second phone is placed at
the wrist to operate as the smartwatch, and the third phone is
set at thigh area as the personal smartphone.

For the smartphone and smart-watch devices, we collect
the data for the following low-power sensors - Accelerometer,
Gyroscope, Light, Proximity and Orientation. On both devices,
AndroSensor [15] application gathers all sensor data 20 times
per second. Acting as a life-logger, the smartphone hanging
at chest area constantly records video through the first-person
camera for the further ground truth analysis. One user carries
all three devices for 3 days (16 effective hours in total), and
continues with regular daily life at workplace, residence and
other environment.
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After data collection, we calculate 7 basic features for
motion-irrelevant sensor data and 23 advanced features for
the motion-related sensor data as described in Table I. Those
23 advanced features, presented in [14], are used to describe
the characteristics of Accelerometer and Gyroscope, as they
show strong correlation with plentiful human activities such
as walking, standing, etc. Features are calculated for every
piece of one-second-long sensor data. Note that this complete
set of features only forms our preliminary set on which we
apply the feature selection later. For the remaining sensors,
we calculate 7 basic statistical features (i.e. min, max, mean,
median, standard deviation, kurtosis and skewness). All fea-
tures are calculated for sensors in the smartphone as well as the
smartwatch. The video footage recorded from the life-logger
is used to identify the time periods which the user regards
as “sensitive” and “non-sensitive”. As we discuss later, these
identified time periods are used for analysis, training as well
as the ground truth while testing PriFir.

B. Identifying Sensitive Scenarios using Low-cost Sensors

Based on the collected data, we now demonstrate how
low-cost sensors in smartphone and smart-watch can identify
sensitive scenarios. Here we choose three common example
scenarios as representatives.

1) Typing: Typing is considered as a sensitive activity
because a first-person camera can capture user’s passwords
or any other private information input via the keyboard. Here
we are more interested in detecting typing activity when user
inputs information on a laptop or a desktop computer, not
within her wearable network (as defined in Section II). We
claim that such typing can be detected using the accelerometer
sensor in smartwatch. This is demonstrated in Fig. 2. It
shows how two sample features of smartwatch accelerometer
change when the user is typing. DCPostureDist calculates the
differences between the mean values of the X-Y, Y-Z and X-Z
axis and is shown to be indicative of sensor’s (in this case
hand’s) orientation compared to the rest of the body posture
[14]. Similarly, DCMean also shows clear variation when user
is typing, because it is the static component of the acceleration
which changes with body posture.

We build a machine learning classifier using 1-day data out
of the entire dataset. The classifier uses simple logistic regres-
sion [16] with 10-fold cross-validation. From Table Ila, it can
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be observed that the low-power sensors such as accelerometer
in smartwatch is sufficient to identify typing with True Positive
(TP) Rate of 99%.

2) Visiting Restroom: We now consider a more complex
sensitive scenario when the user is visiting the restroom. As
discussed before, the problem can not be addressed using
indoor localization in our case because of two reasons. First,
there can be many cases where the user may or may not want
the first-person camera to take pictures at the same location
depending on the context. For example, the user might be
willing to take pictures in bedroom during the afternoon but
not at the night. Second, most indoor localization techniques
depend on Wi-Fi signal fingerprinting which requires Wi-Fi
scanning. The scanning is known to have a higher energy
consumption [17], an undesirable effect for energy-restrained
wearable devices.

By exploiting our dataset, the combination of many low-
power sensor features can create a distinct signature of re-
stroom visiting. The user visits 3 different restrooms during
the experiment, i.e. one is at home and the other two are
located in the working building. Compared to other activities,
visiting restroom is a low-frequent event, comprising only
7.2% of effective experiment time. We examine through all
low-power sensors and select two most distinguishing features
as exemplars, the mean values of z-axis orientation for s-
martwatch and smartphone, presented in Fig. 3. Orientation
features display strong correlation with the restroom visit.
Compared to the rest occasions, the restroom visiting happens
with a remarkably high percentage when the mean z-axis
readings from smartwatch and smartphone fall into range
[270° — 300°) and [120° — 150°) respectively. They appear in
separate orientation ranges simply because two x axes of the
devices point to two directions due to their different placement
(i.e. wrist area and thigh area). Exploring the sensor features
from different areas of body reveals the signatures of various
scenarios. Presented in Table IIb, low-power sensors provide
high TP Rate to distinguish user’s visit to the restroom from
other scenarios, which means that monitoring and analyzing
low-power sensors can be used to instruct the first-person
camera on and off.

3) Being Outdoors: When users are outdoors in public
places, they commonly consider the scenario to be non-
sensitive and would like the life-logging device to capture
moments. In fact, capturing events in real-time at outdoors
is the most attractive application of life-logging devices.
Compared to the restroom scenario, distinguishing outdoor
and indoor cases can be relatively easier due to the light



Class TP Rate | FP Rate Class TP Rate | FP Rate Class TP Rate | FP Rate

Typing 0.998 0.011 Restroom 0.784 0.045 Outdoor 0.948 0.058

Other 0.989 0.002 Other 0.955 0.216 Indoor 0.942 0.052
(a) Typing (b) Restroom (¢) Outdoor

TABLE II: Confusion Matrices of Logistic Regression in Three Scenarios
(True Positive Rate - TP Rate and False Positive Rate - FP Rate)
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Fig. 4: Scatter Plot to Distinguish Indoor & Outdoor

sensor. Fig. 4 shows that the values of light sensor and
smartphone accelerometer can clearly distinguish outdoors
from the indoors. Apart from higher light sensor readings,
the user is typically more active outdoors (e.g. walking,
running, changing poses etc.) resulting in a noticeably different
pattern of smartphone accelerometer. As shown in Fig. 4,
ACModVigEnergy feature of smartphone accelerometer is able
to capture high intensity activities. Table IIc shows the result
of logistic regression based classifier that low-power sensors
can distinguish outdoors from indoors nearly 95% of the time.
The mis-classification is mostly due to some very high light
sensor readings (for example when the smartwatch is placed
right below the desk lamp) in indoor scenarios.

IV. PRIFIR DESIGN

As demonstrated in the previous section, low-power sensors
can be used to identify sensitive scenarios. Based on this,
we present the design of PriFir in this section. PriFir can
monitor and analyze the low-power sensors in smartphone and
smartwatch, determine if the current scenario is sensitive or
not, and allow or disallow the first-person camera to record
images/videos accordingly. There are two steps in designing
PriFir:

(1) We first evaluate different low-power sensors in terms
of how well they can classify sensitive scenarios. At the
same time, we also evaluate the actual energy consumption of
monitoring these sensors in order to understand the average
energy cost of classification using low-power sensors. Based
on the accuracy and average energy cost of individual sensor,
we choose a subset of low-power sensors that are useful in
classification.

(2) We then develop multiple classifiers (referred as subclas-
sifiers here onward) based on the selected set of sensors, and
the subclassifiers are arranged in a cascade to form the PriFir
classifier which performs classification in an energy-efficient
manner.

A. Selecting Useful Subset of Sensors

If all features listed in Table I are used, it is possible to
build a classifier that can classify sensitive scenarios with
high accuracy. However, our objective is to perform such a
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classification using lower energy cost. We observe that not
all low-power sensors are indicative of sensitive scenarios and
hence it is possible to save energy by not monitoring them.
To identify which sensors are not useful in classification, we
first perform feature selection.

1) Information Gain-based Feature Selection: PriFir uses
Information Gain [16] to evaluate the worth of a feature.
Information gain is based on entropy of the provided data.
Entropy is a measure of impurity in the provided data. Let
D be the total number of training instances in which S
are sensitive and N are non-sensitive. Entropy of D can be
calculated as

Entropy(D) = —ps - loga ps — pn - loga pn (1)

where pg and py are the fraction of sensitive and non-
sensitive instances. Information gain is the expected reduction
in entropy when D is partitioned using a given attribute A.
This way, information gain of an attribute A is calculated as

D,
uEntropy(D,,)

Gain(S,4) = Entropy(D) = 3~ "5

veV (A)
2
where V' (A) is the set of all possible values of attribute A and
D, is the subset of D where the value of attribute A is v.
We calculate the information gain of all features of different
low-power sensors for both smartphone and smartwatch. The
information gain value is between 0 and 1 for any give feature.
We rank all the features in descending order of their infor-
mation gain and select the top 100 features. Fig. 5 shows the
average information gain of such features for different sensors.
Accelerometer and orientation sensors in both smartphone and
smartwatch are likely to have more impact on classification.
The light sensor on smartwatch is also found useful, though
the smartphone light sensor is of little use because its value
remains very low and invariant mostly when the phone is in the
pant pocket. Sound sensors also show high information gain,
but as discussed in the next section, the energy consumption of
recording sound level is much higher compared to other low-
power sensors. Other sensors such as proximity and gyroscope
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Sensor Energy Cost Sensor Energy Cost
No Sensor 0.0 Gyroscope 0.6
Proximity 0.2 Orientation 0.9
Light 0.4 WiFi 1.8
Accelerometer 0.4 Sound 2.0

TABLE III: Energy Cost of Different Sensors

are found to have less usefulness in distinguishing between
sensitive and non-sensitive scenarios.

2) Energy Depletion Rate of Monitoring Low-Power Sen-
sors: We now take a detailed look at the energy consump-
tion of monitoring different low-power sensors. To do this,
we monitor each sensor individually for 12 hours with the
sampling frequency of 20 times per second (20Hz), and
measure the remaining battery capacity in percentage (%). As
shown in Fig. 6, it is observed that accelerometer, gyroscope,
orientation, light and proximity sensors have relatively lower
power consumption. On the other hand, power consumption
of monitoring sound level is much higher making it a less
attractive choice for energy efficient classification. For com-
parison, we also provide the power consumption results for
WiFi where the smartphone scans for surrounding WiFi access
points and records their signal strength. As known from indoor
localization works like [17], WiFi scanning consumes more
power which is in line with our results.

We use the data presented in Fig. 6 to calculate the battery
depletion rate for each sensor. This depletion rate is then
used to calculate the cost of monitoring the sensor. Fig. 6
also shows the depletion rate of the smartphone battery when
no sensor’s data is being collected. This depletion is mostly
attributed to running of Android operating system and other
necessary background services. The cost of monitoring a
sensor is expressed as the depletion in battery capacity per
hour, and calculated simply by deducting the depletion rate
when no sensor data is collected from the depletion rate of
that sensor. The cost values are presented in Table III.

Generalized from Fig. 6 and Table III, gyroscope and
proximity in both smartphone and smartwatch, as well as
light sensor in smartphone, show little information gain and
their rare usefulness. Then, sound and WiFi are proven to
have higher energy depletion rates. Due to the benefit of
high information gain and low energy cost, accelerometer
and orientation sensors from both devices are selected to
generate the possible subclassifiers, along with the light sensor
in smartwatch. Hence, the further discussion regarding the
proposed classifier is based on these five selected sensors.
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B. Building PriFir Classifier - A Cascade of Subclassifiers

After PriFir finds a subset of five sensors that are useful for
classification, it is possible to design many machine learning
subclassifiers based on the selected sensors (individually and
jointly). The challenge is to determine which subclassifier
to use such that the classification accuracy remains high
meanwhile the cost of the classification is low. There is a
clear trade-off between the cost and accuracy when using
different subclassifiers, especially with different number of
sensors. Fig. 7 shows the TP rate of five different subclassifiers
- each built using different subset of sensors. The subclassifier
#1 is built only using the features of smartwatch accelerometer,
while the subclassifier #5 is built based on features of five
different sensors - accelerometer and orientation sensor in
both smartphone and smartwatch as well as the light sensor
in smartwatch. As more number of sensors are monitored and
analyzed, their subclassifiers can achieve a better classification
accuracy. Although one or a few sensors are often enough to
classify between sensitive and non-sensitive scenarios, further
improvement in classification can be obtained using additional
data from other sensors. However, the cost of monitoring more
number of sensors is also higher which shows the trade-off
between energy cost and accuracy.

To address the cost-accuracy trade-off, we propose to use
a cascade of subclassifiers as the PriFir classifier. Such a
cascaded classifier has been previously applied for face and
object detection [18], as well as spam email detection [19].
There are three steps in building the PriFir cascade:

(1) Multiple subclassifiers are built using all possible com-
binations of useful sensors. PriFir uses Logistic Regression to
design the subclassifiers due to its simplicity and avoidance
of any over-fitting. Once all subclassifiers are built, we use a
TP rate threshold (1'P;y) to remove the subclassifiers whose
TP Rate for sensitive class is lower than 7T'P;,. It ensures
that the overall classification accuracy of the PriFir cascade
is high, and enables us to create a tunable factor to manage
the cost-accuracy trade-off. When T'P;, is low, more low-cost
subclassifiers will be allowed in the cascade which is likely
to reduce the classification accuracy.

(2) The subclassifiers of useful sensors are first arranged in
order of their cost. If two subclassifiers have the same cost,
they are further arranged in descending order of accuracy. This
mechanism ensures that a new scenario which should be tested
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whether it is sensitive (S) or non-sensitive (N) is first input to
a lower-cost subclassifier.

(3) We derive the conditions for how a testing instance
traverses through the cascade. The estimated class (S or
N) of a subclassifier is accepted or rejected based on the
acceptance probability (AP) of the output. This means that
each subclassifier has two associated probabilities APg and
APy for two estimated classes. Each one of APs determines
corresponding estimation to be accepted or rejected. Here we
show how APg is calculated, and the derivation of the APy
follows similarly. APg can be calculated as

APg = P{Actual Class is S|Labeled Class is S}  (3)

Similarly, TP rate for sensitive class (T'Ps) can be expressed
as

TPg = P{Labeled Class is S|Actual Class is S} (4)

Let P{Act.S} denote the probability that actual class of an
instance scenario is S, and P{Lab.S} denote the probability
that the labeled class is S after estimation. P{Act.S} and
P{Lab.S} can be calculated using the following

P{Act.S} = Nacts/Nrotai (®)]
P{LabS} = NLabS/NTotal (6)

where N, 1S the total number of training instances, and
Nacts and N .5 are numbers of instances whose actual class
is S and labeled class is S, respectively.

As T Pg can be obtained from each subclassifier, PriFir
calculates APg for each subclassifier according to Bayes’
theorem, with two probabilities in Equations (5) and (6).

APg x P{Lab.S} = TPs x P{Act.S} )

N Block 1

L[]

Block 2

Subclassifier \ Subclassifier \ Subclassifier
1 —/] 2 —/] 3 \—>

Fig. 10: PriFir Classifier during Testing Phase

 TPs x P{Act.S}
APs = P{Lab.S}

®)

Fig. 8 presents detailed components in the model of PriFir
cascade classifier. Fig. 9 shows the entire building procedure
of PriFir cascade model. Note that the computational workload
of building the PriFir classifier can be handled by current
smartphones especially since the classifier is required to be
built only once. However, this task can also be offloaded to
user’s other computer or cloud. In this case, once the cascade
model is built, it can be imported back to the smartphone.

V. EVALUATION

User-specific PriFir models are built up with various cascade
structures corresponding to users’ understanding of sensitive
scenarios. Our PriFir model evaluation focus on the differenti-
ation of user-defined sensitive scenarios from the rest regular
non-sensitive events. In this section, one male user wears 3
smart devices and takes the 3-day experiment in three regular
working days. Since one smartphone acting as the life-logger
keeps the first-person camera recording all the time, the video
footage (approximate 16 effective hours in total) is used to
recognize the starting and ending time of one event, and serves
as the ground truth for the evaluation. Scenarios like being in
the restroom, typing on keyboards and staying in bedroom
all belong to the sensitive category ruled by the participant.
Dedicated to this particular example, we are able to discuss
both accuracy and energy cost performance in details.

PriFir cascade is trained and tested using 3 days of data
collected from user. We use first 2 days of data for training
and building the PriFir classifier, and use the third day of
data for testing. This reflects real-world behavior of users
where a user proactively turns on/off the first-person camera
device for first two days, marking as non-sensitive/sensitive
scenarios respectively. PriFir uses this input along with the
sensor data collected from the smartphone and smartwatch to
train and create a classifier that is then capable of operating
independently without user’s intervention. We use 10-fold
cross-validation on the training data to build the individual
subclassifiers.

We use 10-second time blocks as shown in Fig. 10 which
means that in the testing phase, PriFir determines the current
scenario to be sensitive or not every 10 seconds. Once the
decision is made, the camera access policy is fixed until the
next decision. Specifically, PriFir starts the classification using
first one-second sensor data tested with first subclassifier. It
then accepts or rejects the output based on the acceptance
probability of that subclassifier. If the estimation is accepted,
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the entire 10-second block is deemed sensitive or not accord-
ingly. If rejected, then sensor data is collected for the next
second. Note that at any stage of the cascade, data is collected
only for the sensors of that subclassifier. The procedure repeats
until the given test scenario (10-second block) is classified as
sensitive or not. We use Weka [16] to build the subclassifiers
based on logistic regression, and then import them to our
implementation of PriFir classifier. Note that we train and
test the classifier offline after data collection. Also, we repeat
the testing experiments 100 times to yield an average of
classification accuracy and energy cost.

We first evaluate PriFir’s performance with respect to the
TP rate threshold (7T'F;). Recall that TP, is defined as
the minimum TP rate of sensitive class that a subclassifier
should have in order to be included in the cascade. It acts
as a tunable parameter where its higher value achieves higher
classification accuracy but also causes faster battery depletion
(higher average energy cost). Figs. 11a and 11b show the
classification accuracy and the average energy cost of the
PriFir cascade for different values of T P,;,. We can observe
that both classification accuracy and average energy cost
increase with the increase in T P;j,. This is expected as more
and more subclassifiers with lower energy cost (and lower
accuracy) are eliminated from the cascade as TPy, increases.
It is also observed from Fig. 1la that TP rate of sensitive
remains lower than the TP rate of non-sensitive class. The
accuracy in Fig. 1la is a weighted average of TP rates for
both the classes. A sharp increase in classification accuracy
and energy cost in Fig. 11a and 11b is observed at two T Py,
values - 0.69 and 0.82. This is because at T'P;;, = 0.69, all
subclassifiers based on only one sensor are excluded from
the cascade since they can not meet the TP rate requirement.
Similarly, at T'P;;, = 0.82, all subclassifiers with two sensors
are excluded from the cascade, resulting in increase of energy
cost as well as the accuracy.

Second, Figs. 11c and 11d show the worst and average
case performance of PriFir cascade in terms of number of
subclassifiers that needs to be tested before the given block
can be classified. Both figures demonstrate that a classification
can be obtained faster as the value of T F;;, increases, because
higher-accuracy subclassifiers appear early in the cascade. This
tendency also matches with the trend of energy cost in Fig. 11b
that faster classification also incurs more energy cost.
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Third, we now evaluate the FP rate of PriFir which is de-
fined as the percentage of non-sensitive instances misclassified
as sensitive. It reflects how much false alarm the model raises.
Higher false alarm rate reduces the usability of the system
from user’s perspective because many non-sensitive scenarios
where user would like to take pictures are misclassified as
sensitive. Table IV shows how the FP rate varies with different
values of T'P,;,. As we can observe, PriFir is able to achieve
approximately 5% FP rate, indicating its high usability.

Forth, we compare the performance of classification accu-
racy and energy cost between PriFir cascade model and a
classifier which uses all five sensors. In the latter, we do not
use any cascade of subclassifiers but instead use all five sensors
(accelerometer and orientation sensors in both smartphone and
smartwatch and the light sensor in smartwatch) that were
found to be useful in Section IV-A. We use Logistic Regression
to build the classifier. Because such a classifier requires all
five sensors to be monitored all the time, it allows us to
evaluate how much energy savings are provided by the cascade
arrangement. Fig. 12a shows the comparison of classification
accuracy and Fig. 12b shows the comparison of energy cost.
We observe that reduction of TP rate for sensitive class due
to use of cascade arrangement is very low (around 2%) while
the energy savings can achieve 25%. When T'P;;, > 0.8, the
cascade arrangement incurs approximately 49% less energy
cost compared to the classifier based on all 5 sensors.



VI. RELATED WORK

The related work is categorized in following three topics.

(1) Wearable First-Person Devices: SenseCam [20] first
presented a wearable first-person camera based device for
life-logging as an aid for retrospective memory. Since then
SenseCam has been adapted for numerous application in
research including treating memory impairment [6], personal
informatics [7], activity recognition [21], etc. Additionally,
first-person cameras are becoming pervasive due to recent pop-
ularity of smart-glasses. Smart-glasses have enabled numerous
new directions of research such as physical analytics [8] and
attention-driven networking [22].

(2) Privacy in Wearables: Privacy issues related to wearable
devices have gained significant attention from the research
community recently. [23] did a thorough study about people’s
privacy management of life-loggers. The solution of protecting
user’s own privacy from these lifelogging devices was first ad-
dressed in PlaceAvoider [10]. Their proposed solution analyzes
the images taken by the first-person camera and compares
it with features of images that are previously classified by
the user as private. Different from computationally expensive
image processing used in PlaceAvoider, PriFir relies on low-
power sensors only. There is also some recent research in
protecting one’s privacy from other user’s camera. Marklt [24]
presents a visual privacy control system where a user can
specify regions or objects that she want to protect from being
captured by other cameras. Similarly, [25] presented a solution
where a smart-glass can indicate privacy preferences to another
wearable camera which is trying to capture video/pictures.
Smart-glass uses Infrared LED (typically visible to RGB cam-
eras but invisible to human eye) to communicate preferences
about whether or not the user would like to be recorded.

(3) Continuous Sensing and Energy Efficiency: Energy effi-
ciency is especially important when enabling new applications
based on continuous vision, audio or context sensing. The
energy minimization problem for continuous vision sensing
was presented in [26]. Although the energy efficiency problem
is similar to PriFir, their work is not concerned with the
privacy issues. A recent work GlimpseData [27] presented
a solution for continuous vision sensing where instead of
detecting human faces in every frame of the captured video,
low-power sensors are first used to predict if the frame will
have a human face in it or not. Similar to PriFir, GlimpseData
uses low-power sensors for higher energy efficiency, however
it is not related privacy problems which are central to the
design of PriFir.

VII. CONCLUSIONS

In this paper, we presented PriFir, a scheme that enables
privacy-preserving first-person cameras. We showed that d-
ifferent scenarios can be categorized as sensitive or non-
sensitive using the low-power sensors embedded in smart-
phone and smartwatch. We provide the procedure to build the
PriFir classifier based on user’s training. The PriFir classifier
is a cascade of subclassifiers that can classify the sensitive
scenarios with very low battery depletion cost. We evaluated

PriFir using real sensor traces and showed that it achieved a
classification accuracy of 87.1% for sensitive scenarios with
less than 5% of false alarm rate. In our ongoing work, we are
extending PriFir to design a scheme that can protect user’s
privacy from cameras of other users. This will allow a user
to specify her preferences to other nearby recording cameras
with low communication and energy cost.
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