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Abstract— In this paper, we study the deployment issue of
a wireless sensor network. We address the following problem:
given the required lifetime of a sensor network, the initial energy
of each sensor node, and the area to be covered, what is the
minimum number of nodes needed to construct such a network
and what is the corresponding deployment scheme? Finding
an efficient deployment scheme involves location management,
routing, and power management. Our analysis focuses on lin-
ear networks. We formulate two optimization problems with
numerical solutions. Then, we propose and analyze a greedy
deployment scheme that achieves close to optimal performance.
We reveal the relationship among different design parameters,
namely, the number of sensor nodes, the desired lifetime, and the
coverage distance. The study sheds light on the design, analysis,
and evaluation of sensor network deployment.

I. I NTRODUCTION

Wireless sensor networks have attracted a lot of attention for
their broad applications and potentials. For many applications,
the desired lifetime of a sensor network is of the order of a few
years. It may be infeasible or undesirable to change batteries
in sensor nodes once a wireless sensor network is deployed.
Thus, it is critical and challenging to design long-lived sensor
networks under the energy constraint. In this paper, we study
the deployment of sensor nodes to satisfy the desired lifetime
requirement of the sensor network. The degree of freedom for
such a design is multi-fold. It involves topology management,
power management, and routing, as elaborated in the next
section.

We focus on a many-to-one sensor network. In a many-
to-one network, data from all nodes is directed to a sink-
node/fusion-center. Many-to-one communication scenario is
typical for sensor networks for monitoring/surveillance pur-
poses. Unlike a distributed peer-to-peer wireless networks, the
traffic load is highly asymmetric in a many-to-one network,
i.e., nodes closer to the sink node have heavier relay load,
as illustrated by the bigger gray nodes in Figure 1. Thus,
the traffic load and the corresponding power consumption in
different nodes can be location-dependent. The lifetime of a
network can be limited by nodes with heavy traffic load or
power consumptions. This problem is adequately captured in
the proposed study.

In this paper, we use data density to model the amount
of data generated and assume that the data density is uniform
unless otherwise stated. Given the initial energy of each sensor
node and data density of the field, our objective is to answer
the following questions:

What is the minimum number of sensor nodes we
need to construct a sensor network and how these
sensor nodes should be placed such that the network
can satisfy the predetermined life-time and coverage
requirement?

An alternative question to answer is:given the number of
sensor nodes, and the desired life time of the sensor network,
how large an area can this sensor network cover and how?Yet
another objective is:given the number of sensor and the area
to be covered, what is the maximum lifetime of the network
and what deployment/placement scheme can achieve it?

In this paper, our primary focus is on thelinear sensor
networks, in which the sensor nodes are deployed in a linear
topology. Possible applications include sensor networks for
border surveillance, highway traffic monitoring, safeguarding
railway tracks, oil and natural gas pipeline protection, struc-
tural monitoring and surveillance of bridges and long hallways.
A sensor network can be deployed along the borderline or the
boundary of a restricted area. Any irregular activities will be
monitored by sensor nodes and reported to a control center.
Another example is to deploy sensors along a street to monitor
traffic situations and/or parking violations. Furthermore, oil
industry spends hundreds of millions of dollars to protect
oil pipelines. Building a sensor monitoring network along an
oil pipeline can significantly improve the protection of oil
pipelines and reduce cost. Such a sensor network can also be
used to detect corrosion of pipelines when different types of
sensors are used. Furthermore, a line topology can be used to
model a narrow and long sensor network, as shown in Figure 1.
Another advantage of a linear network is its tractability and
the results in a linear network help us understand the more
sophisticated planar networks, as discussed in Section V.

In this work, we focus on the case where the deployment
of sensor nodes is carefully planned and controlled instead of
randomly performed. First, in a majority of sensor network
deployments, sensor nodes are manually deployed instead of
randomly thrown into the field of interest. Furthermore, there
are scenarios where controlled deployment is desirable. For
example, sensors used to monitor bridges are usually precisely
placed. In addition, a hierarchical structure is likely to be
needed in a large-scale sensor networks. The higher hierarchy
may be responsible for data back-hauling, which requires more
powerful, sophisticated, and expensive sensor/communication
nodes. These nodes are more significant and in a small number,
which justifies careful planning and placement. The results in
this paper apply to such communication back-haul networks



Fig. 1. A Hierarchical Linear Network

(e.g., the higher layer in the hierarchy), as shown by the
bigger gray nodes shown in Figure 1. (Note that the back-
haul network considered here also collect data along the way
back to the fusion center.)

The paper is organized as follows. We first discuss related
work in Section II. In Section III, we elaborate the problem
and give formal objective functions. Numerical results are
obtained. In Section IV, we propose and analyze a greedy
deployment scheme. We show that the performance of the
greedy scheme is close to that of the optimal ones. The closed-
form analysis of the greedy scheme allows us to understand
the relationship among the design parameters. Extensions to
planar networks and the effect of data aggregation are briefly
discussed in Section V. We conclude our paper in Section VI.

II. RELATED WORK

In this section we briefly discuss the related work on the
capacity and lifetime of wireless adhoc/sensor networks. In
[8], the authors identify the energy-hole problem, i.e., uneven
energy consumption in many-to-one sensor networks. Mobile
sink and hierarchical structures are proposed to address the
problem. Bhardwajet al have provided upper bounds on
the lifetime of sensor networks [1], [2] where sensor node
locations are given. In [10], the authors propose a transmission
range distribution optimization scheme to maximize the net-
work lifetime given fixed node locations. In comparison, our
work is to address the deployment issue of sensor networks.

Energy conservation and lifetime extension is investigated
in [3] using cell-based techniques [13]. In comparison, our
work focuses on many-to-one networks, which is significant
different from random distributed peer-to-peer networks.

In [9], the authors study the problem of placing the sink-
node to maximize the life-time of the network in a two-
tiered wireless sensor network. Furthermore, the placement of
additional relay nodes and their power provisioning are also
considered in [7]. The joint design problem is formulated as a
mixed-integer nonlinear programming problem and heuristic
algorithms are proposed. Our work is different because we
assume one and fixed sink node.

The most related work is by Ganesanet al [6], where our
work differs in terms of the data aggregation model. For the
general data aggregation model, the problem is not solved in
[6], and the optimal scheme presented in [6] assumes that
each node has the same amount of data regardless of its
coverage distance. In comparison, we assume uniform data
density across the network, and thus a node that covers a
larger distance has more data. In our model, more complexity
is involved because the data volume at each node is a function

of its distance from its neighboring node. In other words, the
total amount of data relayed to the fusion center is linearly
proportional to the total number of nodes in [6], while it is
proportional to the total distance that the network covers in our
work. Thus, their results do not yield our results. We justify
our assumption using the following example of a borderline
surveillance network. Assume that events happen uniformly
and randomly in the surveillance area. Then it is reasonable
to assume that the total number of events reported to the
fusion center is proportional to the length of the borderline. In
other words, a node that covers a larger area/distance observes
more events and thus generates a higher amount of data. This
phenomena is particularly evident when we consider the higher
layer in a hierarchical network.

In our preliminary result of a related work [4], because its
specific applications, the number of nodes in the network is
small and the boundary effect is significant. Furthermore, the
performance analysis, miscellaneous power consumptions, and
non-uniform data density are not considered in [4].

III. PROBLEM DESCRIPTION

It is well-known that in a many-to-one communication
network, the sink node is usually the capacity bottleneck. It is
also noticed that the sink node can cause energy bottleneck.
Let’s elaborate the problem in a linear network. Consider a
linear network with the sink node at the end of the network.
Sensor nodes closer to the sink node will have much higher
relay loads. When deployed uniformly, nodes close to the sink
will consume more power and die quickly, which causes the
wireless sensor network to be disconnected. Thus, nodes closer
to the sink node limit the lifetime of a sensor network. There
are different approaches to address the problem.

One possible approach is to allocate more energy to nodes
closer to the sink node. This possibility is captured in the
formulation of Problem IDEAL where we only have a total
energy constraint, which serves as a benchmark. On the other
hand, such a heterogeneous energy allocation may be incon-
venient and impractical in sensor production and deployment.
Thus, in Problem HIE (Homogeneous Initial Energy), we
assume homogeneous sensor nodes; i.e., all nodes have the
same initial energy. In the problem formulation, we also
include the possibility of load balancing, i.e., a node with
lower traffic load can send data over longer hops to release the
burden of other nodes. Our objective is to place sensor nodes
in an optimal way such that the network can cover as large
an area as possible givenn sensors and the desired lifetime
of the sensor network.

Another possible approach is data aggregation. Data aggre-
gation decreases the amount of traffic and certainly prolongs
the lifetime of a sensor network. Preliminary results show that
data aggregation has significant impacts on the deployment and
further examination is among future research topics.

Hierarchical sensor networks have been studied in the
literature. Our approach applies to the higher layer of the
hierarchy which is responsible for data back-hauling along
with collecting data from their own clusters.



A. Assumptions

In this paper, we assume a perfect medium access control
as in [10], [6]. Due to low energy supplies in sensor networks,
many research efforts have suggested (localized) TMD-type of
access schemes, which is in accord with our assumption.

We next introduce the communication model used in the
paper. Letd be the distance between the sender and the
receiver, andP be the transmission power. Then the data rate
R is proportional the received signal strength; i.e.,

R =
P

βdγ

where γ is the distance loss factor,2 ≤ γ ≤ 5, and β is
a constant, which can be considered as the signal strength
requirement. We are interested in the case whered is relatively
large (e.g., at least on the order of tens of meters). We assume
that background noise is at a constant level, and therefore the
received signal strength infers signal to noise ratio (SNR).
Thus, the energy consumption to convey one unit of data over
a link with distanced is

P × 1
R

= βdγ . (1)

Note that we only consider the transmission power here.
Other power consumptions, such as receiving power and
miscellaneous power at the transmitter, will be considered in
the future.

In practice, due to shadowing and fading phenomena in
the transmission environment, the received signal strength is
often random. However, without precise information about
the territory and considering the long-term average, it is
reasonable to assume a direct relationship between distance
and signal quality. Thus, we use Eq. (1) as a starting point to
understand the deployment issue in wireless sensor networks.

The ideal power-rate model in Eq. (1) can also be extended
to a more practical power-goodput model. Basically, we ex-
plore the fact that goodput increases as SINR increases. First,
with the advances in DSP and sensor developments, newer
versions of sensors have the capability to adjust data rates
based on channel conditions. In addition, for a given modula-
tion/coding rate, where SINR is higher, the BER (bit error rate)
is lower, and thus the probability of failure is smaller, which
implies higher goodput and thus lower energy consumption.
All results in this paper can be applied to systems with
power-goodput model whereP = CrefR(d/Dref )η where
1 < η ≤ γ, d ≤ Dref , Dref is a reference distance, andCref

is a reference constant. It models a less aggressive correlation
between power and distance, which takes into account less-
than-ideal hardware realizations.

In this communication model, we do not have a notion of
“communication range”. Instead, it is possible for two far-
away nodes to communicate with each other at the cost of
high transmission power. Thus, the model is more general.
On the other hand, imposing an additional “communication
range” constraint will not change the problem significantly
for the following reason. The communication over a long
link is severely penalized because power consumption over
a long link is much higher than that of several short links,

d i
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Fig. 2. A Linear Network

i.e., (d1 + d2 + · · · + di)γ >> dγ
1 + · · · + dγ

i . We note that
the proposed greedy algorithm does not rely on the assumption
of unlimited communication range, yet yields close-to-optimal
performance. Thus, the impact of unlimited communication
range is minor.

We assume each unit coverage distance generatesc unit
of data per unit time. An example where this assumption
holds is a surveillance sensor network where incidents happen
uniformly along the surveillance line (e.g., a border line).
Another example is that sensor nodes are uniformly deployed
in the lower hierarchy and report collected data to their cluster
heads (higher hierarchy).

B. Problem Formulations

Let E be the initial energy of each node andT be the desired
lifetime of the sensor network. We are interested in the case
of a relatively largeT . Let di be the distance between the
ith the (i + 1)th nodes,i = 1, · · · , n − 1 andd0 be the area
covered by node1. We call di the coverage distance of node
(i + 1) because node(i + 1) is responsible to collect data
between nodesi and (i + 1). Node n is the sink node, as
shown in Figure 2. We havedi ≤ D for all i, whereD is
the predefined maximum distance between two nodes. Note
that D can be determined by the sensing range of a sensor
node so that all area is covered. In the case of a hierarchical
network,D limits the distance between a sensor node to its
cluster head in the higher hierarchy. We assume that the node
i will collect all the data between nodes(i− 1) and i, which
is di−1c per time unit.

Let fij be the amount of traffic sentdirectly from node
i to node j per time unit, wherei < j. Note that fij

infers both the routing decision (from nodei to node j)
and the power allocation for this route. To elaborate,fij is
the amount of traffic sent from nodei to node j per unit
time, and thusβfij(

∑j−1
k=i dk)γ is the corresponding energy

consumption per unit time. LetF = {fij}, which is ann×n
matrix. Thus, a sensorplacement schemecan be defined by
a tuple (~d, F ), where ~d = {d0, · · · , dn−1}. The placement
scheme,(~d, F ), includes location management, routing, and
power management.

We first define Problem IDEAL. In this problem, we assume
that energy can be allocated arbitrarily among nodes. In other
words, we only have a total energy constraint forn nodes.
Given n nodes, the total initial energy is(n − 1)E. (Note
that noden is the sink node.) This is an idealized case, and
its result serves as abenchmarkof the system. We will show
later that the performance of the proposed scheme under more
realistic assumption is close to that in the benchmark case, and
thus the effect of arbitrary power allocation is limited.

When energy can be allocated arbitrarily among nodes, all
nodes can die at the same time. The network dies only when



there is absolutely no energy left in any nodes. Thus, the
definition of the lifetime of such a network is very general.

The following lemma presents a nice property of such a net-
work, which can be used to simplify the problem formulation.

Lemma 1:When energy can be arbitrarily allocated among
nodes, a necessary condition for a placement scheme to be
optimal is

fij = 0, ∀j ≥ i + 2.

In other words, nodei should relay all the data to nodei + 1,
which is its nearest neighbor toward the destination.

Proof: We have(a + b)γ > aγ + bγ , wherea, b > 0. In
other words, it consumes more energy to transmit data over
longer hops than over two shorter hops. Because energy can
be arbitrarily allocated among nodes, the Lemma holds.

By Lemma 1, an optimal placement scheme can be pre-
sented by~d instead of(~d, F ) becauseF is determined by~d.
Given ~d, we have

fij =

{
c
(∑i−1

k=0 dk

)
if j = i + 1

0 otherwise
.

The objective of Problem IDEAL is to find a placement
scheme such that it can cover the maximum distance given
n sensor nodes and the lifetime requirement. The problem is
formulated as

maxmize
~d

n−1∑

i=0

di (2)

subject to cd0β(dr
1 + dr

2 + · · ·+ dr
n−1)

+cd1β(dr
2 + · · ·+ dr

n−1)
+ · · ·
+cdiβ(dr

i+1 + · · ·+ dr
n−1)

+ · · ·
+cdn−2βdr

n−1 ≤
(n− 1)E

T
(3)

0 ≤ di ≤ D, i = 0, · · · , n− 1. (4)

The objective function is to maximize the total coverage
distance. In the above equation,cd0 is the amount of data
collected by node1 in one time unit. This data is relayed by
node2, ... nodei, node(i+1), ... node(n−1) to noden. The
power consumption of the relay iscd0β(dr

1+dr
2+ · · ·+dr

n−1).
Similarly, cdi is the amount of data collected by node(i + 1)
in one time unit and it is relayed to node(i + 2), ... node
(n− 1), to noden. Furthermore,(n− 1)E is the total initial
energy andT is the required life time, and thus(n− 1)E/T
is the maximum amount of energy consumed per time unit by
all nodes. Therefore, Eq. (3) is the energy constraint. Eq. (4)
is the distance constraint.

Problem IDEAL serves as abenchmarkbecause of its
general energy assumption and the corresponding definition of
lifetime. However, as discussed earlier, it may be infeasible in
practical systems to allocate energy arbitrarily among different
nodes. Thus, we present Problem HIE (Homogeneous Initial
Energy) where each node has its own energy constraint. We
consider homogeneous sensor nodes, i.e., each node has the
same fixed initial energyE. Our objective is to maximize
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Fig. 3. Possible relay scenarios

the length of the linear network thatn sensors can cover for
time T . Recall thatfij is the amount of data directly sent
by node i to node j. Lemma 1 does not hold in this case
because energy is not allowed to be allocated arbitrarily among
different nodes. Thus, we need all possible communication
patterns as shown in Figure 3. Problem HIE is formulated as

maxmize
~d,F

n−1∑

i=0

di (5)

subject to
n∑

j=i+1

fij =
i−1∑

k=1

fki + di−1c,

i = 2, · · · , n− 1 (6)
n∑

j=2

f1j = d0c, (7)

n∑

j=i+1

βfij

(
j−1∑

l=i

dl

)γ

≤ E

T
,

i = 1, · · · , n− 1 (8)

0 ≤ di ≤ D, i = 0, 1, · · · , n− 1. (9)

In the problem formulation, Eq. (6) is the flow constraint:∑i−1
k=1 fki is the amount of data relayed to nodei by other

nodes,di−1c is the amount of data collected by nodei itself,
and

∑n
k=i+1 fik is the total amount of data that nodei sends

to all other nodes. Eq. (7) is the flow constraint at node1. Note
that (

∑j−1
l=i dl) is the distance between nodesi andj andfij

is the amount of data fromi to j. Thus, Eq. (8) is the energy
constraint at each node. By Eq. (8), the lifetime of a network
is defined as the time until one node runs out of energy first.
Thus, the definition of the lifetime is less general than that in
Problem IDEAL. The last equation is the distance constraint.
Compared to Problem IDEAL, we notice that the number of
variables of Problem HIE is much larger, i.e.,n(n+1)/2 vs.n.
Thus, it is more difficult to find a numerical solution.

In this section, we present two problems formulations with
and without the assumption of homogeneous power allocation
among nodes. Because closed-form solutions for the two
problems are difficult to obtain, we find numerical results for
both. Next, we present a heuristic deployment scheme with the
following features: 1) it achieves close-to-optimal performance
compared to the numerical solutions of Problems IDEAL and
HIE; 2) it allows closed-form analysis and thus reveals the
relationship among design parameters; and 3) it can be easily
adopted to more general cases, such as the case with non-
uniform data density.



IV. GREEDY DEPLOYMENT SCHEME

In this section, we present a greedy sensor deployment
scheme. We will show that the performance of our greedy
scheme is close to that of the optimal ones. The greedy
algorithm is defined as follows:

{
d0 = D

di = min
(
D, xi : β

(∑i−1
j=0 djc

)
xγ

i = E
T

)
,

(10)

for i = 1, · · · , n−1. Note thatdi is monotonically decreasing,
i.e., di ≤ dj if i ≥ j. The reasoning is that the closer the
node is to the sink node (larger index), the heavier is the relay
load. To compensate for it, its relay distance should be shorter.
Define a constant

C =
E

cβT
.

When D ≥ C(1/(γ+1)), we havexi ≤ D for all i. This is
the case where the required lifetime is long and/or the initial
energy in each sensor node is low. The greedy algorithm is
simplified as:





d0 = D

di =
(

CPi−1
j=0 dj

) 1
γ

, i = 1, · · · , n− 1.
(11)

The algorithm is greedy in the sense a node tries to push its
data as far away as possible. Note thatc

(∑i−1
j=0 di

)
is the

total traffic load of nodei, andxi is the maximum distance
that nodei can push this amount of data given its energy
constraint. We callxi the pushing distance. The intuition of
the approach is that nodei should not directly send data to
nodej, wherej ≥ i+2, because it consumes more power. In
the greedy algorithm, all nodes run out of power at the same
time. In other words, at any given time, the residual energy of
all nodes are kept the same given the same initial energy.

On the other hand, ifD < C(1/(γ+1)), then there exists
nodes such that its maximum pushing distancexi > D, e.g.,
node 1. Because of the maximum distance constraintdi ≤ D,
we havedi = min(D, xi). Some nodes (leftmost nodes) will
have left-over energy when other nodes run out of energy. In
such cases, it is clear that the greedy algorithm is not optimal.
A heuristic remedy is to let nodes with leftover energy to send
data farther away. For example, node 1 can send a portion of
its data directly to node 3, etc, as illustrated in Figure 3.

A. Numerical Comparison

We compare the performance of the greedy scheme with
that of the numerical solutions for Problems IDEAL and HIE.
Figure 4 compares the numerical solution of Problem IDEAL
with the result of our greedy algorithm. In Problem IDEAL,
energy can be arbitrarily distributed among different nodes.
The objective is to find an optimal placement to maximize
the coverage distance given the lifetime requirement and the
total energy constraint. Problem IDEAL serves as a benchmark
because of its general energy distribution assumption and the
corresponding life time definition. In the numerical result,C =
1, D = 1, andn = 50. We setγ = 4 for all numerical results
in this paper.
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Fig. 4. Compare the locations of sensor nodes in the greedy scheme with
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scheme with the numerical solution of Problem IDEAL.

Numerical results show that the performance of our greedy
algorithm is very close to the optimal solution. In Figure 4, the
x-axis is the index of nodes and the y-axis isdi, which is the
distance between two consecutive nodes. In the legend,Dn is
the total coverage distance for the givenn nodes. We notice
that the difference of the greedy algorithm with the optimal
one is very small. Figure 5 compares the energy allocation of
the two schemes. In the greedy scheme, all nodes consume the
same amount of energy by definition in Eq. (11). In the optimal
solution of Problem IDEAL, we notice that the leftmost nodes
have slightly higher energy allocations, which infers from the
slightly largerdi in Figure 4.

Figure 6 compares the coverage length of the greedy algo-
rithm with the optimal solution of the Problem IDEAL where
D = 1 andC = 0.4, 1, 2, respectively. It includes both cases
whereD ≥ C(1/(γ+1)) andD < C(1/(γ+1)). The x-axis is the
number of nodes and y-axis is the total distance covered. For
each fixedC, we can see that the performance of the greedy
algorithm is almost indistinguishable from that of the optimal
scheme with arbitrary power allocations.

In summary, the comparison indicates 1) the advantage
of allowing arbitrary energy allocation is negligible; 2) the
greedy algorithm where each node has the same initial energy
performs very well. Its coverage distance is almost equal to
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that of the optimal placement. Thus, it justifies the greedy
placement of homogeneous sensor nodes.

In Figure 7, we compare the numerical result of Problem
HIE with the performance of our greedy scheme. In Problem
HIE, all nodes have the same initial energy. Thus, the per-
formance of its optimal placement is upper-bounded by the
performance of the optimal solution of Problem IDEAL where
we only have total energy constraint, and is lower-bounded by
the performance of the greedy scheme where each node has
the same initial energy. We setC = 1, andD = 1. We can
see the two curves match each other closely.

B. Performance Analysis

We first obtain a closed-form approximation for our greedy
algorithm. Let Di =

∑i−1
k=0 dk, i.e., Di is the total length

covered byi nodes. We have

di =
(

C

Di

) 1
γ

(12)

Di =
i−1∑

k=1

dk + d0, i = 1, · · · , n. (13)

To obtain the coverage distance withn nodes, we can use the
above equations iteratively. We also obtain an approximation

of Dn. We claim

Di ≈ C
1

γ+1

(
γ + 1

γ
i

) γ
γ+1

, (14)

di ≈ C
1

γ+1

(
γ

(γ + 1)i

) 1
γ+1

, (15)

for i = 1, · · · , n. To justify our claim, we only need to show
that the above two equations satisfies Eqs. (12) and (13).
Assume

di = C
1

γ+1

(
γ

(γ + 1)i

) 1
γ+1

, i = 1, · · · , n. (16)

By Eq. (13), we have

Di =
i−1∑

k=1

dk + d0

≈
∫ i

1

C
1

γ+1

(
γ

(γ + 1)x

) 1
γ+1

dx + d0

≈ C
1

γ+1

(
γ + 1

γ
i

) γ
γ+1

(17)

In the above equations, approximations occur when replacing
a summation by an integral, and when the impact ofd0

is ignored. The approximation is very close, especially for
relatively largen (e.g., n ≥ 5). Substituting Eq. (17) into
Eq. (12), we have

di =
(

C

Di

) 1
γ

≈ C
1

γ+1

(
γ

(γ + 1)i

) 1
γ+1

,

which is the same as the hypothesis in Eq. (16). Thus, Eq. (14)
is an approximation of the total distance covered byi nodes
in the greedy algorithm. We compare the numerical result to
a network upto 10000 nodes, and observe that the maximum
discrepancy between the approximation and the actual value
is smaller than0.1% for all n, where5 ≤ n ≤ 10000.

This closed-form approximation in Eq. (14) reveals the
relationship among the design parameters, i.e.,n, the number
of sensor nodes needed,T , the life time of the sensor nodes,
L, the total distance that the network can covered (L = Dn

when there aren sensor nodes). To elaborate, we have

Lγ+1 =
E

Tcβ

(
γ + 1

γ
n

)γ

. (18)

Having any two design parameters fixed, we can obtain the
third. For example, givenT , n ∝ L

γ+1
γ is super-linear increase

of the coverage distance. GivenL, n ∝ T
1
γ is a sub-linear

function. Suppose thatγ = 4 and all other parameters are
fixed. To double the lifetime of a sensor network, we only
need19% more sensor nodes. To double the length of the
sensor network, we need138% more nodes. This closed-form
approximation also enables us to observe the marginal effect
of adding one more node, which is sub-linear, and the result
is useful for the design of planar networks.

Numerical results show that the result of the greedy place-
ment is very close to the optimal solutions to both Problems
IDEAL and HIE. Thus, we expect that Eq. (18) will provide



close approximations for the performance of the optimal
placement schemes as well.

Finally, we compare the greedy scheme with the homo-
geneous placement scheme. In the homogeneous placement
scheme, nodes are placed along the line with equal distance
dh. We assume the routing decision is to relay data to the
nearest node toward the sink node. Because noden − 1 is
the closest to the sink node and has the most heavy relay
load, it exhausts its energy first. Thus, its lifetime limits the
lifetime of the network. Letdh be the distance between two
consecutive nodes. The traffic load at noden − 1 per time
unit is (c(n − 1)dh + cd0) ∼ cndh for large n. Its energy
consumption per unit time is approximatelyβcndh(dh)γ . We
have

cβndh(dh)γ ≈ E

T
,

and thus

dh ≈
(

C

n

) 1
γ+1

.

The total coverage distance ofn nodes,Dh
n, is

Dh
n ≈ ndh = C

1
γ+1 n

γ
γ+1 .

Compared with Eq. (14), we can see that givenn, E and
T , our greedy scheme can cover((γ + 1)/γ)γ/(γ+1) longer.
For example, the coverage distance of our greedy scheme is
24% and16% longer than the homogeneous placement when
γ = 3 and γ = 4, respectively. Alternatively, the lifetime
of the greedy deployment is(1 + 1/γ)γ times of that of the
homogeneous deployment, which is237% and 244% when
γ = 3 andγ = 4, respectively.

V. D ISCUSSIONS

a) Planar Networks:As mentioned earlier, the emphasis
of the paper is on linear networks. However, some results
can be extended from linear networks as heuristic placement
schemes in planar networks. In [6], linear approaches are
extended to planar networks by dividing a planar network as
strips or pieces of pies. Similar approaches can be applied
here, as shown in Figures 8 and 9.

Consider a rectangular area where there is a road along the
right boundary of the area and thus a mobile data-collecting
agent can move back-and-forth to collect data. In such a case,
the result in the linear network can be extended easily to the
planar network which can be considered as a set of linear
networks, as shown in Figure 8. When the width of each strip
is larger thanD, the sensing range, inter-strip communication
is not desirable. Thus, nodes may be aligned vertically as show
in the upper seven strips in Figure 8. On the other hand, if
each strip is thin, then inter-strip communication may help
reduce power consumption by placing nodes interleaved with
each other, as shown in the lower three strips in Figure 8.
Furthermore, if there is no mobile collecting agent, a (dense)
linear data back-hauling network can be deployed along the
right boundary of the area to collect data from all strips and
send the the sink node.
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Fig. 8. Placement of sensor nodes in the strip mode.
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b) Data Compression:We have considered a simple data
compression model in the case when data compression is
performed at each node. At each node, we assume the traffic
is compressed by a factorα, where0 < α ≤ 1. Preliminary
results show that performing data compression and aggregation
has significant impact on the size of the network. For instance,
the total coverage distance is10% longer than the case where
no data aggregation is performed forn = 15 and α = 0.9.
In general, data compression needs to be taken into account
when sensor nodes are deployed.

c) Miscellaneous Power Consumption:In the previous
section, we only consider the transmission power, to be more
specific, the power emitted by the antenna at the transmit-
ter. However, in a wireless device, power consumption is
multi-facet. It consumes energy to keep the circuit awake,
to receive signals and perform signal processing, etc. Such
power consumptions are significant, especially in small less
sophisticated devices. In our preliminary approach, we take
into account such miscellaneous power consumptions in the
greedy algorithm defined into Eq. (11). We assume that nodes
transmit at the maximum power to the nearest neighbor toward
the sink to minimize the transmission time. We will further
investigate the effects of miscellaneous power consumptions.

VI. CONCLUSION

In this paper, we study the sensor deployment issue in wire-
less sensor networks. To find a deployment scheme involves
location management, routing, and power management. We
first assume a uniform data density model, (i.e., the amount



of data generated per unit area per unit time is a constant,)
and address the following problem: given the required lifetime
of a sensor network, the initial energy at each sensor node,
the number of sensor nodes, how large an area can this
sensor network cover and how to construct the network?
Alternatively, given the lifetime, the initial energy, the area to
be covered, what is the minimum number of nodes required
to construct such a network and how?

We formulate the general optimization problems
(IDEAL/HIE) with/without the possibility of arbitrary
energy allocation among different sensor nodes. Numerical
results are obtained for the proposed optimization problems.
We then propose a greedy algorithm that performs close
to optimal compared to the benchmark case formulated by
Problem IDEAL. The closed-form analysis of the performance
of the greedy algorithm revealed the relationship among the
design parameters, i.e., the required lifetime, the number
of sensor nodes, and the length of a linear network to be
covered. We expect such relationship holds in the case of
optimal deployments because the greedy scheme obtains
close-to-optimal performance. We have conducted preliminary
study on planar networks and the effect of data aggregation.
Due to the importance of these issues, further investigation
is certainly desired. Other issues that are currently being
investigated include the effect of miscellaneous power
consumptions and the case of non-uniform data density.
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