
Using service brokers for accessing backend servers

for web applications

Huamin Chen*, Prasant Mohapatra

Department of Computer Science, Engineering II, One Shields Avenue, University of California,

Davis, CA 95616, USA

Received 22 November 2003; received in revised form 21 February 2004; accepted 27 February 2004

Abstract

Web service infrastructures usually are comprised of front-end Web servers that accept requests

and process them, and backend servers that manage data and services. Current Web servers use

various API sets to access backend services. This model does not support service differentiation,

overload control, caching of contents generated by backend servers. We have proposed a framework

for using service brokers to facilitate these features. Service brokers are software agents that are the

access points to backend services in Web servers. Unlike the current API-based scheme where

accesses to backend services are through stateless and isolated APIs, in service broker framework,

they are undertaken by passing messages to service brokers who gather all the requests and

intelligently process them. We have prototyped this framework and validated its function in

providing request clustering and service differentiation in accessing backend services. In addition,

the performance in terms of the processing time is enhanced by this approach.

q 2004 Elsevier Ltd. All rights reserved.

Keywords: HTTP; Web services; Service broker; Service differentiation; Overload control; Dynamic content

caching

1. Introduction

Web servers have established their presence and usage in a variety of environment.

More and more servers are being deployed for complex service environments, which also

involve a variety of auxiliary servers. The platform independence and universal

accessibility of Web servers have been leveraged to access other services like database,

1084-8045/$ - see front matter q 2004 Elsevier Ltd. All rights reserved.

doi:10.1016/j.jnca.2004.02.001

Journal of Network and

Computer Applications 28 (2005) 57–74

www.elsevier.com/locate/jnca

* Corresponding author. Tel.: þ1-5172829734; fax: þ1-5172829734.

E-mail addresses: chenhua@cs.ucdavis.edu (H. Chen), prasant@cs.ucdavis.edu (P. Mohapatra).

http://www.elsevier.com/locate/jnca


mail, and directories. Web services like Microsoft.NET initiatives push such practice even

further by facilitating more services accessibility through Web interfaces. It is conceivable

that future Web servers will involve even more heterogeneous auxiliary service providers

(hereafter, referred to as backend servers) to serve various tasks. Most large Web servers

include a set of front-end servers that receive the requests from the clients. The requests are

served by accessing a set of backend servers, which provide database, directory services,

secure transactions, and other services. A schematic diagram of a typical Web server

environment is shown in Fig. 1.

Backend servers can be categorized as tightly coupled or loosely coupled based on their

connectivity and ownership with the initiating Web servers. Tightly coupled servers, like

database and directory servers, are closely connected, usually in the same LAN, to the

Web servers and belong to the same administrative authority. Tightly coupled servers are

usually reliable and of high capacity. Loosely coupled servers represent Web servers

belonging to other owners, which are not under control of the request initiating front-end

servers. Web syndicates like My.Yahoo! and My.Netscape belong to loosely coupled Web

servers. In accessing their services, the requests and response traffic must traverse WAN

networks, which may incur higher latency and jitters than LANs. In more security-

sensitive applications, authentication must proceed before further transactions. Since the

loosely coupled servers are shared resources, service guarantee becomes an outstanding

problem. We envision that in the future such services would be contract-based such that

the service availability is honored only when the incoming traffic are within the contracted

specifications. Loosely coupled services present a business model that has been existing in

the current society. For instance, a travel agency has no sole control over airliners’

ticketing services. Rather it contacts multiple airlines and selects the best deals for

the customers.

The connectivity distinction between the two categories exposes different

performance concerns. For tightly coupled services, the major performance issue is

Fig. 1. API paradigm.

H. Chen, P. Mohapatra / Journal of Network and Computer Applications 28 (2005) 57–7458



how to engineer the capacity to satisfy the front-end Web servers’ requests. The in-

equivalence of the computational complexity and different levels of replicability

between the front-end Web and backend servers make backend servers the likely

performance bottleneck. For instance, a search operation involves traversal of database

tables with many comparison operations, which only results in a few lines of output

that are rendered in HTML pages. Moreover, many companies use centralized backend

servers to serve multiple front-end Web servers to reduce the investment on the

expensive backend servers. Thus the priority in this environment is how to prevent and

control overload at the backend servers. Similar concerns were expressed by Zhang

et al. (1999). In the loosely coupled environment, the volatile network conditions and

the contract constraints demands efficient access schemes to ensure service availability

and reliability.

In this paper we introduce a new concept and propose using service brokers to

access backend services. Service brokers are software agents that act as access points to

backend services in Web servers. Unlike the current API-based scheme where accesses

to backend services are through stateless and isolated APIs, in the proposed scheme,

backend services are accessed by passing messages to service brokers who gather all the

requests and intelligently process them. In the tightly coupled environment, the service

brokers can selectively drop some requests to reduce backend servers’ load while

facilitating service discrimination and QoS provision. In the loosely coupled environment,

the brokers intelligently cluster the requests, cache the responses and prefetch the next

possible queries in idle periods. We have prototyped this scheme and validated the

feasibility in the testbed. We found that by properly clustering the backend server

accesses, service brokers can significantly reduce the response time. In the service

differentiation experiments, we demonstrate notable scalability improvement through

fidelity variations. The experimental results depict a significant performance benefit

through the usage of service brokers for backend services.

The rest of the paper is organized in this way. Section 2 discusses the current API-based

framework and its drawbacks. Section 3 introduces the service broker model and its

advantages in various aspects. Section 4 proposes two implementation approaches of

service broker model. Section 5 presents the implementation of the service broker model

and its ability in request clustering and service differentiation. It is observed that by

varying response fidelity in different QoS levels, service brokers can improve

responsiveness and scalability. The related works were presented in Section 6 followed

by the concluding remarks in Section 7.

2. API-based backend service access

Currently dynamic Web applications are in forms of CGI executables that run in

separate processes or use Servlet or scripting languages like PHP, JSP, and ASP which

usually run in Web server processes. They access backend servers (Database, LDAP, mail

or even other Web servers) through specific APIs like socket, ODBC or modules like

COM. The APIs reside inside the application process space and share no information

among different processes. The paradigm adopted in the contemporary Web servers is

H. Chen, P. Mohapatra / Journal of Network and Computer Applications 28 (2005) 57–74 59



shown in Fig. 1. In this paradigm, applications A and B need to access database, mail and

directory servers. They use the respective API sets to accomplish the tasks: in order to

access database server, a connection needs to be established before any queries are

initiated which are followed by the connection tear-down; similar procedures are applied

in accessing the directory server. Since A and B are in different process space, their use of

API sets is independent and they do not share anything. Thus even though A and B may

access database or directory service simultaneously, they each need to establish a

connection before using any services.

The drawbacks of this paradigm are:

† QoS is not guaranteed: Accesses to backend service are served on the FCFS basis.

Unless QoS specifications propagate through all backend servers, there is no guarantee

that they can be honored. Currently most of the backend servers like database servers,

directory servers, and file servers do not provide QoS support. It is also likely that

heterogeneous backend servers may have different QoS notations. For example, the file

servers may cluster requests whose accesses are in adjacent disk layout. Database

servers may cluster queries that access the same table. Thus this architecture may not be

able to enforce QoS specifications throughout the entire systems and is also subject to

the priority inversion problem.1

† Hot spot unawareness: Although overload control in Web servers has received

increasing attention recently, there has been limited research work on backend servers’

overload control. In fact, backend servers are more likely to be overloaded: backend

servers are usually centralized legacy systems; they are not as replicable as the frontend

Web servers. When the traffic to the same backend server is beyond its capacity, a hot

spot is generated and this backend sever is likely to become bottleneck of the entire

request handling process. Hot spots generated in backend servers are at most known to

those who are using the service. Other processes are unaware of the overload due to the

independence of the request handling processes. Thus overload could spread to other

processes. The increased number of processes that are trapped in hot spots could

impose serious threat to the overall server performance in some server architectures.

For example, in Apache Web server, each request is handled by a dedicated server

process. In order to process incoming requests, more child processes must be forked if

others are busy. Thus processes trapped in accessing overloaded backend resources

essentially exacerbate the overall performance.

† Accesses are isolated, and thus not optimized globally: Most of API libraries for

backend server accesses do not share states or results among individual instances.

Each application send requests and launch I/O operations separately even for identical

operations. This drawback has been recognized and techniques like connection

pooling are proposed: the front ends maintain a connection pool with the database

server so the applications can use the open connections directly. This technique,

however, is limited to database. Our service broker framework can make it available

to applicable services.

1 A low priority request could get service earlier than a high priority request.

H. Chen, P. Mohapatra / Journal of Network and Computer Applications 28 (2005) 57–7460



3. Service broker paradigm

Motivated by the shortcomings of the contemporary model of backend accesses, we

propose a service broker model in which instead of using APIs to access backend servers,

Web servers pass requests onto intermediate dedicated processes (referred as service

brokers). The schematic architecture is shown in Fig. 2. In this architecture, dynamic

applications A and B do to have to invoke APIs to access backend services. They only pass

messages to individual service brokers in some formats that contain their QoS

specification and queries. Service brokers receive, sort and rewrite these messages

according to their QoS levels and carry out the real query across connections. These

connections can be established in advance to reduce the setup overhead, which is

especially beneficial to loosely coupled environment. Upon receiving replies from

backend servers, service brokers send the results to the dynamic applications and make a

local copy, if possible, to serve similar requests. When hot spot occurs, the brokers can

take appropriate actions globally across all the requests. In short, service brokers depart

from current decentralized backend server access to a moderated control model.

As shown in Fig. 3, service brokers are independent of the Web application logic and

are built on top of the API sets. It is per service based. Though schematically similar to

COM and Enterprise Java Bean, service brokers have more meaningful attributes.

At the first glance, this new proposal appears to incur extra overhead for inter-process

communication between service brokers and web processes. However, to access backend

services, such overhead is insignificant. For a database access, database connection and

tear-down, which are required in API model for each access, would be more expensive

than inter-process communication. In the proposed approach, DB brokers maintain

persistent connection thus saving the cost of connection setup.

Fig. 2. Service broker framework.

H. Chen, P. Mohapatra / Journal of Network and Computer Applications 28 (2005) 57–74 61



The service broker framework has the following advantages:

† Accesses can be clustered and optimized: Multiple query clustering and optimization

(Sellis, 1988) has been studied in database systems. Service brokers can provide similar

optimization among requests in absence of the backend server support. For instance,

two separate accesses to a remote Web server to get page 1.html and 2.html can be

combined using MGET command (Franks, 1994) as ‘MGET URI:1.html URI:2.html’

at the broker and the results are appropriately split and sent to the request initiators. It

appears that channel multiplexing may increase the workload at service brokers, which

usually reside in the front-end Web servers. However, the transfer of computing load

from backend servers to the front-end Web servers is viable since the front-end Web

servers are easily replicable. Moreover, the same connection to backend servers can be

multiplexed. In contrast to using independent connections to access backend servers in

the API model, a single connection between the service broker and the backend server

can be multiplexed to serve multiple applications and thus reduce the connection

overhead while processing queries in bulk.

† QoS awareness: Service brokers are able to consistently honor the QoS priorities

without propagating QoS specification to backend servers. QoS rules are fed into all the

service brokers. Based on these rules, service brokers reshuffle the queued requests and

schedule according to their priorities. When traffic intensities of QoS classes exceed

their limits, their requests are dropped and other classes are not affected. Therefore

lower priority requests give way to higher priority classes, thus avoiding the priority

inversion problem. We demonstrate this functionality in Section 5.

† Backend server overload control: Unlike API-based architecture where each backend

service access is unrelated, service brokers process all the requests and thus are aware

of the states of the associated backend servers. Service brokers can notify request

schedulers about the onset of hot spots or respond to the requests with lower fidelity

results which would indicate that the system is busy. In some cases, it enables the use of

cached results from the previous queries.

† Caching of query results: Since service brokers receive all the query results from the

same backend servers, they can cache some of the results to serve similar requests.

For example, consider an online Web site that provides movie schedules. All the

schedule information is stored in a database. In the peak time, there would be a lot of

requests for the same movie schedule. If the results are not cached, the database has to

Fig. 3. Service broker layer.

H. Chen, P. Mohapatra / Journal of Network and Computer Applications 28 (2005) 57–7462



process the same query repeatedly and will contribute to the response delay. In contrast,

service brokers can be configured to cache the popular query results and promptly

return them to the front-end Web servers. This approach reduces the number of requests

to the backend servers and reduces the response time. This feature is especially

beneficial in loosely coupled environment where accesses to backend service need to

traverse high latency networks. This feature, however, gives rise to the problem of

validating cached data when the original data change in the backend server. Several

approaches (Luo et al., 2002) have been proposed to solve this problem based on

request snooping. Similar techniques can be incorporated in the service broker

framework.

† Prefetching: Service brokers enable forecasting of the next possible queries and

prefetching the necessary information. For instance, a news provider website

periodically updates the online headlines. Service brokers can be synchronized to

prefetch them when the server load is not high. So the requests for the news can be

served immediately without accessing the backend servers.

† Transaction integrity assurance: Service brokers can track the individual requests and

enable transaction integrity assurance. Server brokers can be configured to properly

allocate resources to ensure the completeness of sessions which consist of multiple

requests. Currently, HTTP requests are stateless, the failure of individual requests is

presumed to have little impact on others. In some occasions, especially e-commerce,

single request failure would lead to broken sessions. For example, a computer

manufacturer conducts an online purchase from multiple vendors. It first selects proper

monitor models from a monitor vendor site (step 1), then video cards from the other

vendors (step 2), then comes back to the monitor vendor again to match and purchase

the best models (step 3). If somehow during step 3, the channel to the monitor vendor

site is congested, the transaction could abort. The service brokers can recognize the

subtlety of each access by proper tagging and gradually increase the priority of the

subsequent accesses that belong to the same transaction. While accessing the monitor

vendor, the broker would put more weight on those accesses whose transactions are in

step 3 and selectively drop those whose transactions are in step 1 if the load is high. In

API-based access models, each access within a transaction is stateless and is processed

in the same way, i.e. access in step 3 is treated the same as that in step 1. If service

brokers are enabled to communicate with each other, they can exchange state

information to ensure that transactions involving different backend servers are properly

protected.

† Load balancing: Load balancing have been widely used to improve front-end Web

servers’ performance (Bryhni et al., 2000; Cardellini et al., 1999). The basic idea is to

select a candidate server and distribute the workload across multiple servers. Similar idea

is also applicable to backend service accesses. In the API-based architecture, since no

state information is shared in individual accesses, it can only work in a speculative

manner. The service brokers can track the traffic and monitor their workload and

accurately distribute the workload among the backend servers to achieve a balanced load.

† Amortized context switching: Accesses to backend servers are done in bulk at service

brokers to reduce the number of context switchings. The service brokers can reside

separately from the Web servers to facilitate the overall system optimization.

H. Chen, P. Mohapatra / Journal of Network and Computer Applications 28 (2005) 57–74 63



4. Implementation of service broker framework

The service broker scheme can be incorporated into current Web servers using two

different approaches: centralized and distributed models.

Fig. 4 illustrates the centralized model. In this approach, the Web server manages

all the load and QoS requirements. The load information from the service brokers is

obtained through a listener thread and all the requested URLs’ resource profiles are

accessible to the Web server. For a particular incoming request, the Web server

checks its resource requirements and current load status of the brokers before the

request proceeds to the normal handling process. If overloading occurs at any of the

processing stage, the request is aborted before any real processing starts and an error

message is sent to the end user to indicate the resource unavailability at the server.

While this approach is efficient, it is not very scalable. When the number of brokers

or the update frequency of load information increases, the listener thread which

resides in the same process space as the Web servers could be overwhelmed with

update messages, which may erode away computing power from the Web server

processes.

The distributed model is depicted in Fig. 5. In this model, the Web server imposes

no admission control restrictions. Requests are forwarded to the brokers together with

their QoS profiles. The brokers decide whether to send the requests to the backend

servers or, in case the traffic intensity exceeds pre-defined thresholds, acknowledge the

requests with some adaptive messages. Examples of such messages include cached

results from previous queries with lower fidelity or simply an indication that the system

is busy.

Fig. 4. Centralized model.

H. Chen, P. Mohapatra / Journal of Network and Computer Applications 28 (2005) 57–7464



5. Experiment

We have prototyped the service broker framework to demonstrate its feasibility and

ability in request clustering and service differentiation. The testbed configurations and

results are discussed in this section.

5.1. Request clustering experiment

We evaluated the performance of the request clustering technique. The objective of this

test is to investigate the effect of request clustering on the response time of Web servers.

5.1.1. Testbed configuration

Fig. 6 shows the testbed configuration. The front-end Web application that the client

requested was to send a request to the backend server and relay the response to the client.

The backend server’s task was to look up a database table that contained 42,000 records

and retrieve the appropriate records according the query conditions. The frontend and

backend servers ran Apache for Linux, the database was MySQL, and the client ran ab

(Apache benchmarking tool).

Since the request clustering is application specific, a general request clustering engine

implementation is beyond the scope of this paper. We used the following scheme to

simulate the clustering. The backend Web server access script was to generate a random

query command and retrieve the corresponding results from the database. If the accesses to

the backend server were not clustered, each single access to the script called only

one database query. The service broker in the front-end Web server could gather all

Fig. 5. Distributed model.

Fig. 6. Request clustering testbed.

H. Chen, P. Mohapatra / Journal of Network and Computer Applications 28 (2005) 57–74 65



the requests and rewrite the query command to notify the script to repeat the same

workload multiple times to achieve clustering.

5.1.2. Experimental results

Fig. 7 presents the experiment results from the tests in which 40 simultaneous requests

were initiated to the front-end Web server. The broker was configured to cluster various

numbers of requests (termed as degree of clustering) each time. The backend Web server

was configured to accept at most five simultaneous requests from the front-end Web

server. It is observed that the response time measured at the client side first declines with

respect to the number of the clustered requests. This is because backend server’s capacity

(no more than five simultaneous requests could be served) could not meet the traffic

intensity from the front-end Web server application, thus some of the accesses were

queued resulting in long response time. By clustering the accesses, the service broker

initiated fewer simultaneous accesses to the backend server, thus reducing the queueing

time and improving the overall performance. When the degree of clustering increased,

however, the backend server’s capacity could meet the traffic intensity and the processing

time began to dominate the performance. Since the script that processed the clustered

requests needed to repeat the same workload multiple times, it took more time to serve the

requests with a large degree of clustering.

It infers from the observation that clustering must be configured according to the

backend server’s capacity to achieve the maximum performance benefit. Nevertheless, the

performance benefits from clustering is significant as is evidenced from Fig. 7.

Fig. 7. Request clustering experimental results.

H. Chen, P. Mohapatra / Journal of Network and Computer Applications 28 (2005) 57–7466



5.2. Service differentiation experiment

As discussed in the previous sections, there have been no consistent schemes to provide

service differentiation in accessing backend servers. We designed an experiment to

demonstrate how service differentiation could be supported in the service broker framework.

5.2.1. Testbed configuration

The prototype of the service broker scheme using the distributed model was

implemented in the boa Web server. Boa is an open sourced, light-weighted, and efficient

Web server. Similar implementation can be done on other Web servers. The objective of

this experiment is to demonstrate the service broker’s capabilities for service

differentiation and the performance benefits.

As illustrated in Fig. 8, in the testbed, there were three service brokers (brokers 1, 2 and

3), each connected to a Web server as backend server (backend server 1, 2 and 3, all ran

Apache Web servers.). The brokers and the front-end Web server exchange request and

response messages through lightweight UDP. The brokers communicate with the backend

servers in HTTP. All the front and backend servers and brokers ran on Redhat Linux 7.2.

The client side used WebStone 2.5 on 4 Sun UltraSparc workstations. Three workstations

A, B, and C were designated as Web clients with QoS levels 1, 2 and 3, respectively.

The backend services provided by each backend servers are CGI requests with bounded

processing time. The processing time of each of the services is 1, 2 and 3 s at the backend

servers 1, 2 and 3, respectively. The QoS specification used in the testbed is just a binary

mode of forward or drop: QoS level i means that the request is forwarded to the backend

servers if the number of the outstanding requests is ð10 2 xÞ10% of the threshold. For

instance, a request with QoS level 2 is allowed to send query to the corresponding backend

server only when the number of outstanding requests is below 80% of the threshold. The

thresholds at each broker were set to be 20, i.e. at most 20 requests are allowed to be

outstanding in each of the backend servers. The thresholds of queues ensure bounded

queueing time. The maximum number of server processes in each of the backend end Web

servers is set to be 5, therefore only 5 requests can be processed simultaneously in each of

these servers and the rests are queued. If a request was dropped at the broker, a short

message was sent to the front-end Web server immediately. Therefore, longer the

processing time a request undergoes, higher the fidelity it receives.

5.2.2. Experimental results

We set up an experiment to demonstrate the QoS assurance provided by service

brokers. The backend servers were assured to be QoS-unaware. A normal Web request

consists of three stages which take approximately 6 s to complete. In the service broker

scheme, if a request’s QoS level does not meet the current load status, a low fidelity

response is replied immediately. Thus the longer is the processing time of a request, the

higher is the fidelity of service it receives.

The experiments were conducted for both API-based accesses and service broker-based

configurations. Fig. 9 presents the results reported by WebStone. It is observed that in API-

based accesses, the average processing time is linear with respect to the number of

requests. In the service broker model, the processing time first rises when the number of

H. Chen, P. Mohapatra / Journal of Network and Computer Applications 28 (2005) 57–74 67



clients is small so service brokers can admit most of the requests to access backend

servers. When the number of clients increases, more and more requests in lower priority

classes are dropped at the service brokers and they are informed promptly without any

backend service, so the processing time declines. Lower priority requests are dropped to

give way to process requests in higher priority classes. Thus the fidelity of each QoS class

is differentiated. In this regard, the priority inversion abnormality is avoided. Table 1

presents the number of requests completed in each QoS class from the Web server’s access

logs. The numbers of completed requests in API-based settings ranged between 740 and

750. Since WebStone clients were best-effort based, with shorter processing time, more

number of requests were initiated. As a result, more requests were processed from lower

QoS levels. We believed that the traffic intensity among QoS levels is inversely

proportional to their priorities; higher priority should be provisioned with lower request

rates such that the lower priority requests do not starve.

Fig. 8. Service differentiation testbed configuration.

H. Chen, P. Mohapatra / Journal of Network and Computer Applications 28 (2005) 57–7468



Fig. 10 depicts the average processing time of each QoS class under various loads. The

requests with higher QoS level experienced longer processing time, which means that the

fidelity of the response is higher. For each curve, an increase in processing time is

observed followed by a decline when the number of clients reaches a certain point. The

reasons behind this phenomena are: when the number of clients was low (from 10 to 20),

only a few requests were queued in service brokers, thus the increase of requests could be

accommodated; after some points, the traffic intensity exceeded the capacity and some

lower prioritized requests were responded by service brokers with lower fidelity messages

without being forwarded to the backend servers. High priority requests still enjoy high

fidelity service but the increase in traffic intensity contributes to the queueing time.

When the number of clients exceeded 50, more requests from the high QoS classes were

dropped at the service brokers and thus their average processing time declined as well.

Fig. 9. Processing time of API and service broker-based settings.

Table 1

Number of completed requests at each QoS level

Number of clients QoS 1 QoS 2 QoS 3

10 378 281 288

20 355 353 302

30 395 466 723

40 479 494 1950

50 541 820 3107

60 732 1154 25,914

70 1303 3256 37,050

H. Chen, P. Mohapatra / Journal of Network and Computer Applications 28 (2005) 57–74 69



Figs. 11–13 present the drop ratios from each QoS class at the three brokers. It is

observed that the when traffic was light (number of clients ,20), no drops occurred. When

the traffic intensified, more lower priority requests were dropped. The drop ratios were

mostly consistent with their associated QoS levels.

6. Related works

The related work can be categorized into component-based systems, content

adaptation, and Web server clustering.

Pupeteer (Lara et al., 2001, 2002) is a component-based system for mobile devices. It

shares the concepts of service brokers. In Pupeteer, network activity of mobile

applications is governed by a common middleware which determines bandwidth

allocation, content caching, and content transcoding. While the service broker framework

applies to different system environment: interaction between front-end Web and backend

servers. In addition to the aspects addressed in Pupeteer, more issues that are particular to

Web services can be solved in this framework.

Content adaptation has been proposed for Web server overload control (Abdelzaher and

Bhatti, 1999a) and QoS provision (Abdelzaher and Bhatti, 1999b; Fox et al., 1996). The

basic idea of content adaptation is to render contents of different levels of fidelity. The

adaptiveness can be based on the server load, available network bandwidth, and the end

user’s rendering capacity. Abdelzaher and Bhatti (1999a) proposed content adaptation for

web servers under various server load. Chandra et al. (2000) proposed adaptive

Fig. 10. Average processing time for each QoS level.

H. Chen, P. Mohapatra / Journal of Network and Computer Applications 28 (2005) 57–7470



Fig. 12. Drop ratios at broker 2.

Fig. 11. Drop ratios at broker 1.

H. Chen, P. Mohapatra / Journal of Network and Computer Applications 28 (2005) 57–74 71



transcoding scheme based on user type (mobile, stationary) and network capacity. Both of

these schemes provide QoS through service differentiation. However, none of these

schemes has addressed how to apply content adaptation to relieve backend server overload

or reduce cost associated with accessing backend servers. These issues can be resolved in

the proposed service broker framework.

Most of the studies on multiple servers environment in Web research are focused on

how to improve performance through load balancing techniques. SWEB (Andresen et al.,

1996) investigated how to use DNS to implement load balancing and corresponding

support in operating systems. Cluster Reserves (Aron et al., 2000) proposed a technique to

provide resource isolation among different classes. Locality-aware request dispatching

algorithms were proposed by Pai et al. (1998) and Zhang et al. (1999) to enable requests

with related URL to be sent to the same server to achieve locality. Our work is

complementary to these front-end Web server research.

7. Conclusions

Web servers have been used widely for applications that need to access backend

services. The current API-based access schemes are not well suited for various reasons.

We proposed a service broker framework that facilitates performance improvement and

QoS provisioning. In the service broker framework, every backend service access is

carried out by middleware agents that reside between front-end Web servers and backend

servers. Service brokers can cluster and optimize queries and cache the results according

Fig. 13. Drop ratios at broker 3.

H. Chen, P. Mohapatra / Journal of Network and Computer Applications 28 (2005) 57–7472



to a set of pre-defined rules. We proposed two implementation approaches and compared

their performance implications. We have prototyped the framework to demonstrate their

feasibility and evaluate their capacity to provide service differentiation. Experimental

results demonstrated that service brokers can effectively use QoS specifications and

provide scalable performance and service differentiation.

Acknowledgements

This research was supported in part by the National Science Foundation through the

grants CCR-0296070 and ANI-0296034.

References

Abdelzaher T, Bhatti N. Web content adaptation to improve server overload behavior. International World Wide

Web Conference, Toronto, Canada; 1999a.

Abdelzaher T, Bhatti N. Adaptive content delivery for web server QoS. International Workshop on Quality of

Service, London, UK; 1999b.

Andresen D, Yang T, Holmedahl V, Ibarra OH. SWEB: toward a scalable world wide web server on

multicomputers. Proceedings of the 10th International Parallel Processing Symposium, Honolulu, Hawaii,

USA; 1996.

Apache HTTP Server Project, http://www.apache.org.

Aron M, Druschel P, Zwaenepoel W. Cluster reserves: a mechanism for resource management in cluster-based

network servers. Proceedings of the ACM SIGMETRICS 2000 Conference, Santa Clara, California, ACM;

2000.

Boa Web server, http://www.boa.org.

Bryhni H, Klovning E, Kure O. A comparison of load balancing techniques for scalable web servers. IEEE Netw

2000;July/August:58–64.

Cardellini V, Colajanni M, Yu PS. Load balancing on web-server systems. IEEE Internet Comput 1999;3(3):28–39.

Chandra S, Ellis C, Vahdat A. Differentiated multimedia web services using quality aware transcoding.

Proceedings of the IEEE Infocom 2000 Conference, Tel-Aviv, Israel; 2000.

Fox A, Brewer E, Gribble S, Amir E. Adapting to network and client variability via on-demand dynamic

transcoding. ASPLOS 1996;.

Franks J. An MGET proposal for HTTP; October 1994. WWW-talkmailing list. http://www.webhistory.org/

www.lists/www-talk.1994q4/0479.html

Lara ED, Wallach D, Zwaenepoel W. Puppeteer: component-based adaptation for mobile computing.

Proceedings of the Third Usenix Symposium on Internet Technologies and Systems; 2001.

Lara ED, Wallach D, Zwaenepoel W. HATS: hierarchical adaptive transmission scheduling. Proceedings of the

2002 Multimedia Computing and Networking Conference (MMCN’02), San Jose, CA; 2002.

Luo Q, Krishnamurthy S, Mohan C, Pirahesh H, Woo H, Lindsay B, Naughton JF. Middle-tier database caching

for e-business. SIGMOD 2002;.

MySQL, http://www.mysql.com/

Pai VS, Aron M, Banga G, Svendsen M, Druschel P, Zwaenepoel W, Nahum E. Locality-aware content

distribution in cluster-based network servers. Proceedings of the Conference on Architectural Support for

Programming Languages and Operating Systems, San Jose, CA; 1998.

Sellis T. Multiple query optimization. ACM Trans Database Syst 1988;13(1):23–52.

WebStone, http://www.mindcraft.com/webstone/

Zhang X, Barrientos M, Chen J, Seltzer M. HACC: an architecture for cluster-based web servers. Proceedings of

the Third USENIX Windows NT Symposium; 1999.

H. Chen, P. Mohapatra / Journal of Network and Computer Applications 28 (2005) 57–74 73

http://www.apache.org
http://www.boa.org
http://www.webhistory.org/www.lists/www-talk.1994q4/0479.html
http://www.webhistory.org/www.lists/www-talk.1994q4/0479.html
http://www.mysql.com/
http://www.mindcraft.com/webstone/


Huamin Chen, received the B.S. and M.S. degrees from Huazhong University

of Science and Technology, China, in 1996 and 1999, respectively. He obtained

Ph.D. degree in the Department of Computer Science, University of California at

Davis in 2003. His research interests are Internet server performance

improvement and QoS provisioning, computer networks, and enterprise

applications.

Professor Prasant Mohapatra, is currently a Professor in the Department of

Computer Science at the University of California, Davis. In the past, he was on

the faculty at Iowa State University and Michigan State University. He has also

held Visiting Scientist positions at Intel Corporation and Panasonic Technol-

ogies. Dr. Mohapatra received his Ph.D. in Computer Engineering from the

Pennsylvania State University in 1993. Dr. Mohapatra is was on the editorial

board of the IEEE Transactions on Computers from 1999 to 2003, and has been

on the program/organizational committees of several international conferences.

He was the Program Chair for the PAWS Workshop during 2000 and 2001, and

the Program Vice-Chair for the ICPP-2001, and INFOCOM 2004. He was also

the Co-Editor of the January 2003 issue of IEEE Network. Dr. Mohapatra’s

research interests are in the areas of wireless mobile networks, Internet protocols

and QoS, and Internet servers. Dr. Mohapatra’s research has been funded though

grants from the National Science Foundation, Intel Corporation, Panasonic

Technologies, Hewlett Packard, and EMC Corporation.

H. Chen, P. Mohapatra / Journal of Network and Computer Applications 28 (2005) 57–7474


	Using service brokers for accessing backend servers for web applications
	Introduction
	API-based backend service access
	Service broker paradigm
	Implementation of service broker framework
	Experiment
	Request clustering experiment
	Service differentiation experiment

	Related works
	Conclusions
	Acknowledgements
	References


