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Abstract— In cognitive radio networks, an adversary transmits
signals whose characteristics emulate those of primary users, in
order to prevent secondary users from transmitting. Such an
attack is called primary user emulation (PUE) attack. There are
two main types of primary users in white space: TV towers and
wireless microphones. Existing work on PUE attack detection
focused on the first category. However, for the latter category,
primary users are mobile and their transmission power is low.
These unique properties of wireless microphones introduce great
challenges and existing methods are not applicable. In this paper,
we propose a novel method to detect the PUE attack of mobile
primary users. We exploit the correlations between RF signals
and acoustic information to verify the existence of wireless mi-
crophones. The effectiveness of our approach is validated
through extensive real-world experiments. It shows that our
method achieves both false positive rate and false negative rate
lower than 0.1.

l. INTRODUCTION

The popularity of wireless communication and ever-increas-
ing wireless traffic have put significant pressure on spectrum
utilization. Recognizing the significance of spectrum shortage,
the Federal Communications Commission (FCC) released ana
logue TV bands, often referred to as white space, to unlicensed
users on a non-interference basis.

To access white space, unlicensed users (secondary users)
must, according to FCC's rules, sense the spectrum before
transmitting and evacuate immediately when a licensed user
(primary user) appears in the same band. The most important
and commonly seen primary users in white space are TV tow-
ers and wireless microphones, which have the priority over any
secondary users.

While such shared-style spectrum accessing increases the ef-
ficiency of spectrum utilization, it introduces a new type of
attack: primary user emulation (PUE) attack [1]. In such attack,
an adversary transmits signals whose characteristics emulate
those of primary users, thereby causing legitimate secondary
users to erroneously identify the attacker as a primary user. The
goa of such attacker is either selfishly maximizing its own
spectrum usage or maliciously preventing other secondary us-
ers from communicating.

The detection of PUE attacks is a non-trivid task, because
FCC requires “no modification to the incumbent (primary)
system should be required to accommodate opportunistic use of
the spectrum by secondary users’ [2]. Thisimpliesthat primary
signals just stay what they were; secondary users must rely on
their own to sense primary signals and differentiate emulation

attackers. In other words, conventional approaches, such as
embedding signatures in primary signals or employing an in-
teractive protocol between a primary user and secondary users,
cannot be applied to defend PUE attacks.

Severa advanced approaches have been proposed for miti-
gating PUE attacks [1], [3] - [6]. However, dl of them focus
on the attackers that emulate stationary primary users (TV
towers). They are based on the fact that the locations of TV
towers are fixed and assume that these locations are pre-known
by secondary users.

In the white space, wireless microphone is another important
category of primary user. Since they are not stationary, the ex-
isting solutions cannot be applied. Detecting emulation attacks
of mobile primary users (wireless microphones) is a much
harder problem.

In this paper, we proposed a novel method to detect wireless
microphone emulation attacks. In our approach, each secondary
user is equipped with an acoustic sensor. Correlations between
energy level of RF signal and acoustic information received by
the sensor are exploited to verify the authenticity of wireless
microphones.

To the best of our knowledge, this is the first work dealing
with emulation attacks of a mobile primary user. In addition,
our method does not require complex hardware. We demon-
strate the effectiveness of our approach through extensive
real-world experiments. It shows that our method achieves both
false positive rate and false negative rate lower than 0.1.

The rest of this paper is organized as follows. Section I
discusses related work. Section I states the problem, and
Section IV presents our method detecting mobile PUE attacks.
Section V evaluates our work in real-world settings. Section
VI concludes the paper.

Il.  RELATED WORK

Chen, et al. first proposed two location based approaches to
detect PUE attacks [1]. The first is distance ratio test based on
the two-ray ground reflection model. The location of primary
signal source can be determined if two or more secondary users
exchange their power strength measurements, which is com-
pared with the TV tower map to judgeif it is a genuine primary
user. This method is very vulnerable to signal strength fluctua-
tion. The other method is called distance difference test. It util-
izes synchronization pulses embedded in analog TV signals to
calculate the location of primary signal, which requires strict
time synchronization among secondary users.



Chen, et a. aso proposed ancther signa strength based
method which is more tolerant to signal fluctuation [3] [4].
This method relies on an underlying wireless sensor network.
Each sensor measures the signal strength of the primary user.
Then local averaging smooth technique is applied and signal
strength geo-peaks are assumed to be the location of primary
transmitters.

All these methods try to locate the signal source to detect
fake primary users. The locations of genuine primary users
must be known a priori. Therefore, they cannot be used when
primary users are mobile or their locations are unpredictable.

Jin, et al. presented a theoretical analysis on the distribution
of received power, in order to differentiate an attacker from a
genuine primary user [5] [6]. A Wald's sequential probability
ratio test is employed to ensure a decent false positive and
false negative. However, they assume that the primary users
must be far away from all secondary users, and genuine pri-
mary users and emulation attackers subject to different propa-
gation models. These assumptions do not hold for wireless
microphones.

Recognizing the difficulty of detecting wireless microphone
emulation attacks, the 802.22 Task Group 1 proposed the dis-
abling beacon protocol [7] [8], which suggests transmitting a
specially designed signal before starting wireless microphones.
If additional information, such as signatures, is embedded into
the beacon, this method can help secondary users to differenti-
ate genuine wireless microphones from attackers. However,
there are still a great number of legacy wireless microphone
users. Considering the fact that most of them have not even
registered their wireless microphones, we cannot expect that
they will be equipped with a separate beacon device in the near
future.

IIl. PROBLEM DEFINITION

A. Preliminaries

Mobile microphones are widely used in live performances,
university lectures, sporting events, etc. They typicaly operate
in VHF or UHF bands. According to FCC's regulation, they
should occupy a bandwidth no more than 200kHz and the
power output is limited to 250mW or less on UHF or 50mW on
VHF. In practice, this value is typicaly 10 to 50mW due to
battery life considerations.

Most wireless microphones use frequency modulation (FM)
[9]. In the following methods and algorithms, FM wireless mi-
crophones are assumed for representativeness. The transmis-
sion range of wireless microphones’ RF signal is usualy less
than 100-150 meters.

The working process of awireless microphoneis as follows.
The microphone transforms the sound wave w(t) into current
signa m(t), which has the same characteristics of the original
sound wave: the amplitude stands for the loudness and the fre-
quency shows the pitch. After that, the current signa is modu-
lated by FM, and the modulated signal S(t) is sent into the air.

In the receiver end, the demodulator listens to S(t), and de-
modulated it into current signal m'(t). Then, m'(t) is output to
loudspeakers or power amplifiers. The regenerated sound wave
isnoted asw'(t).

B. Attack Model and Problem Description

The emulation attacker mimics the characteristics of a
wireless microphone’' s signal, in order to make secondary users
erroneoudly identify it as a primary user. We assume that the
attacker has full capability to emulate wireless microphones
transmission power, modulation type, bandwidth occupation,
and any other characteristics of S(t).

We also assume attackers do not emit sound wave (to emu-
late w(t) or w'(t)), because in that way it will be very easily
detected out.

The problem to be solved is differentiating emulation at-
tackers from genuine primary users (wireless microphones).
We have discussed the incapability or limitations of existing
methods in Section 1I. For our method, each secondary user is
equipped with a sound sensor. We identify a genuine wireless
microphone by exploiting the correlation between RF signals
received by the secondary user and the environmental sound
captured by its sound sensor (noted as w"(t)). If the signals do
not pass our correlation test, an emulation attack is assumed.

Incorporating acoustic information opens a new window for
small-scale, mobile primary signal detection, but there are still
substantial challenges:

1) Correlating sound to the energy level of RF signal. This
is simple for amplitude modulation (AM), but wireless
microphones use FM, where the correlation is relatively
difficult to exploit. We choose to use energy detection because
it is fast and simple. All cognitive radio devices are able to
detect signal power without hardware modification.

A sraightforward dternative is to demodulate S(t) into
sound, and then compare it with w"(t). However, this means we
have to add FM demodulators and rebuild the secondary users
internal circuit. More important, although they al use FM, dif-
ferent wireless microphones have different signal format, such
as mono, stereo, bandwidth, companding techniques, etc. It is
very difficult for asingle device to demodulate various wireless
microphones from different manufacturers.

2) Timing constraint. The 802.22 standard draft specifies
that sensors must be able to detect wireless microphone signals
over a 200kHz band within 2 seconds with both false-alarm
and misdetection probabilities less than 0.1. Therefore, fast
detection of emulation attacks is highly desireable.

IV. DETECTING EMULATION ATTACK OF WIRELESS
MICROPHONE

A. Correlation between Acoustic Sgnal and FM Power

Let w(t) be the sound wave. The microphone transforms it
to current signal m(t). Ignoring the nonlinear distortion, we
have:

m(t) = aw(t) (1)
where o is a constant. After frequency modulation, the modu-
lated signal is:

S)= A cos[Zzszt ok, [ aw(r)df} )
where A. is the carrier amplitude, f. is the carrier frequency,
and k; is the sensitivity of the modulator.

Without loss of generality, let aw(t) = A cos(2Af t), and
substitute it into Equation 2:
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Let my = kAy/fm, we have:
St) =Acos(at + msinant)
= AJcosatcos(msinant) - Snaxtsin(msinamt)] 4
and noting the trigonometric relationship that:

cos(minant) = J(m) + 3" 23,(my) cos(nait)

neven

sin(msinat) = i 23,(m) sin(nad)
n odd

where J, are Bessel functions of the first kind, of order n. Sub-
stituting these two expressionsinto Equation 4, we have:

S(t) = AJo(ny)cosart
+ 3 AJ(m) [cos(@ + et + cos(ex - Na)]

n even

* > Ad(m) [cos(a + nam)t - cos(ax - nam)t] - (5)
n odd

Equation 5 shows the frequency components of S(t). Be-
sides f,, it also has frequency components on f. £ nf, (nEZ"),
which are called side bands. According to the property of Bes-
sel functions, when x goes larger, the values of Jy(X), Ji(X),
Jx(X), etc., become closer, which means more side bands sig-
nificantly contribute to the power of S(t). Therefore, the power
around center frequency reduces when ny increases, because
the total power contained in an FM waveis constant [10].

As we know, k; is a constant and my = kiA./f,. We refer to
the power of S(t) within [f—Af, f-+Af] (Af << bandwidth of S(t))
as P,y thereinafter. Therefore, we come to our conclusion:

Lemma: P, reduces when An goes up, and vice versa.
This conclusion applies to any FM wireless microphone, no
matter it is mono or stereo, with or without companding.

B. Emulation Attacker Detection

As derived in Section IVA, P,y is related to both the fre-
quency and amplitude of sound wave. Between them, the am-
plitude is the key factor. That is because the frequency range of
human voice is from 300 to 3000Hz, where the upper bound
ten times the lower bound, but loudness varies more. A normal
speaker has the sound level about 40 to 80dB, and lower than
20dB when pauses. The power of 80dB is 10°times higher than
that of 20dB, and 1000 times larger in terms of amplitude.

Therefore, loosaly spesaking, larger is the A, smaller is the
PzAf.

Now we describe our method for emulation detection. If a
wireless microphone signal is detected, a secondary user im-
mediately performs the operations as follows to determine if it
is an emulation attacker.

First, the secondary user shrinks its radio bandwidth to 2Af,
with the center frequency unchanged (the same as the center
frequency of the band where the wireless microphone is de-
tected). 2Af is set to 25kHz by default. Because most wireless
microphones have a RF bandwidth of 100kHz or 200kHz, too

large Af makes it hard to capture the power change around cen-
ter frequency. On the other hand, smaller Af can improve the
performance of our method, but some cognitive radio devices
may not have such narrow band-passfilters.

Then, the secondary user synchronizes the acoustic signa
with the RF signal, and samples w"(t) with its sound sensor.
Every At, it calculates the average amplitude of the samples. At
the same time, it measures the average Py every At, and
evaluates the correlation between P, and averaged amplitudes.
The algorithm is given as follows:

score = 0;
lastAvgAmp = lastAvgPwr = 0;
diff = signalSync();
wait(diff);
for (i=0; i<n; i++)
time = getCurrentTime();
wait (At);
avgAmp = average |A,| fromtime to time + At;
avgPwr = average P from time — diff to time — diff + At;
if (lastAvgAmp !=0)
index = fix (In (avgAmp / lastAvgAmp) / In )
if (index * (avgPwr —lastAvgPwr) < 0)
score ++;
else score = score — |index|;
lastAvgAmp = avgAmp;
lastAvgPwr = avgPwr;
if (score < 0) an attacker is assumed

Algorithm 1.  Emulation attack detection

signalSync() is the function that synchronizes the RF and
acoustic signals. Because the speed of sound is much slower
than that of radio wave, they do not reach the secondary user
simultaneously. In this function, we make use of pausesin hu-
man voice. When a pause occurs, the amplitude of sound wave
will suddenly drop below 5 in PCM coding (8 bit sampling,
max amplitude is 128), and for RF signal, all the power will
concentrate at the central frequency (max P. is achieved).
Two signals are synchronized by sensing these sudden changes.
signal Sync returns the latency of the acoustic signal.

fix() is to round towards zero, and At is set to 80ms, which
is restricted by our experiment equipment. n and S are adjust-
able parameters. n is the number of the testing rounds. The lar-
ger n, the more accurate our method is, but the longer the de-
tection takes. S determines the algorithm's sensitivity of am-
plitude fluctuation.

In the algorithm, only dramatic changes (greater than S
times) of A, take effect, in order to tolerate the fluctuation of fi,
score is the evaluation of the correlation between A, and Pay:.
If they vary following the lemmain Section IVA, one point is
gained, otherwise, a pendlty is made. If the lemma is not fol-
lowed when the A, change is extremely large (Jindex| > 1), the
penalty is heavier correspondingly. At the end of the algorithm,
if score is less than zero, an emulation attack is reported. The
complexity of this algorithm islinear; it spends most of itstime
waiting for sampling and signal Sync.



V. EVALUATIONS

In this section, we conduct real-world experiments to evalu-
ate our method for emulation attack detection.
A. Experiment Settings

We use wired microphones connected to laptops to collect
environmental sound (acting as sound sensors). The raw data
collected from sound card is 44.1kHz and PCM coded. Each
sample is an 8-bit unsigned integer. We transform the samples
into the range of [-128, 127] and average every four consecu-
tive samples as the input of our algorithm.

We utilize an Agilent E4405B spectrum analyzer to meas-
ure the power of RF signals, whose minimum sweep time is
80ms. Soin all the following experiments, At is set to 80ms.
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Figure 1. Layout of experiment environment
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Two wireless microphones are used in our experiments.
One is working on VHF band (171.9MHz) and the other on
UHF (629.5MHz). Both have a bandwidth of 200kHz and
10mwW power output. Their receiver ends are connected to a
pair of ordinary loudspeakers (80watt).

We conduct our experiments in both crowded rooms and a
spacious hall, as shown in Figures 1a and 1b, respectively. The
loudspeaker connected to the primary user is put at P. Secon-
dary users are located in A, B and C, respectively and their
experiment results are averaged unless otherwise specified.

B. False Positive and False Negative
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Figure2. False positive rate

We first evaluate the false positive rate of our method.
False positives refers to the detection results erroneoudly taken
a genuine primary user as an attacker. In the first experiment,

we fix the amplitude sensitivity fto e (=2.718, we will vary S
later), and test false positive rates by varying rounds n from 5
to 25 and with different 2Af values (50kHz and 25kHz).

The result is shown in Figure 2. y-axis shows the false posi-
tive rate, which equals false positives divided by total number
of tests. x-axis is the number of rounds (n). For each point in
the plot, 240 tests are performed (40 at each location in Figure
1) and various voice samples are tested.

From the figure we can see that two wireless microphones
act very similar. The performance of 2Af = 25kHz is much bet-
ter than that of 2Af = 50kHz. In both cases, the performance of
our method gets better when n becomes larger. When 2Af =
25kHz and n = 15, the false positive rates are less than 0.1,
and it isaslow as about 0.06 when n = 25.
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Figure 3. Falsenegativerate

Figure 3 shows the false negative rate of our method. False
negatives are the cases where an emulation attacker appears but
our method fails to report. In this experiment, wireless micro-
phones are acting as attackers, with the receiver end discon-
nected to loudspeakers. We eliminate w(t) by using line-in as
the input of wireless microphones. That is to say, attackers
emulate wireless microphones RF signal perfectly, but without
emitting sound. Here 2Af is set to 25kHz. Other settings are the
same as the fal se positive experiment.

From the figure we can see the false negative rate of our
method is very low. Aslong as n is larger than 15, thereis al-
most no false negatives.

As mentioned in Algorithms 1, 5 determines the sensitivity
of the amplitude fluctuation of sound wave. The larger is 3, the
less is the sensitivity. In the next experiment, we examine the
impact of 5 on the false positive and fal se negative.
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Figure4. Impact of S on false alarm and mis-detection



In figure 4, we set n = 25 and 2Af to 25kHz. S varies from
1.5 to 10. The solid line indicates the false positive rate while
the dashed line refers to the fase negative rate. The results of
two wireless microphones are averaged.

From Figure 4 we observe that the false negatives increase
quickly when £ approaches 10. That is because when fis very
large, the sensitivity becomes very low and the agorithm can
hardly extract any fluctuation of sound amplitude, which
causes no penaty and also no awards for score. In our algo-
rithm settings, an attacker is not reported when score = 0. On
the other hand, when S is very small, the false positive rate is
relatively high. The reason lies in that high sensitivity makes
the algorithm incapable of tolerating noise and the fluctuation
of f. Considering dl factors, S<(3, 6) is acceptable.

From the three experiments above we can conclude that
when n = 25, 2Af = 25kHz and S<(4, 5), our method can
achieve both false positive rate and false negative rate lower
than 0.05. We set =4 in thefollowing experiments.

C. Dectection Time

The detection time of our method contains two parts: the
execution time of signalSync and (4t * n). The time of signal-
Sync can be further divided into two parts: time waiting for the
first RF pause and the delay of acoustic signal (diff). It is easy
to bound diff. The operating range of wireless microphonesis
usually less than 100 meters, and the speed of sound is about
340 meters/sec. Hence, diff should be less than 0.3 second. For
the other part, we perform experiments to measure the time
waiting for the first pause. We test various sound materials,
including news reports, lectures, talk shows, etc. The average
value is 1.43 seconds per pause. Therefore, the total time of
signalSync should be less than 1.7 seconds. This is consistent
with our measured result in Algorithm 1, which is about 1.5
seconds. On the other hand, from previous experiments, we
observe that n should be larger than 15 in order to achieve
good performance. Therefore, the total detection time of our
method is approximately 3 seconds (assuming 4t = 80ms).

However, At, which is restricted by our experiment device,
can be largely reduced. The spectrum analyzer we use (Agilent
E4405B) scans 400 points within the channel to calculate sig-
nal power. The way how it works makes At considerably large.
For comparison, an 802.11 device can measure RSSI within
1ms. Therefore, the detection time of our method can be re-
duced to less than 2 secondsiif proprietary devices are used.

D. Spatial Attenuation

In this subsection, the attenuation of RF signal and sound
wave are compared. The loudspeaker connected with the pri-
mary user is turned to medium volume, which is about 102.5dB
measured one meter away. RF power of two wireless micro-
phones are tested (both power output are 10mW). Experiment
results are shown in Figure 5. We can see that the power of RF
signals have a significant drop at about 15 meters, which is due
to multipath and body absorption.

An important observation is that when the distance gets
close to 100 meters, the power of RF signas quickly drops
under -70dBm, and is not detectable at 110 meters. However,
the sound level of w'(t) is still about 60dB at the same distance.

This experiment shows that the sound level of w'(t) decreases
more slowly than the power of wireless microphone's RF sig-
nal. In other words, as long as the RF signal of wireless micro-
phones is detectable, acoustic information, on which our
method relies, is aways available.
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Figure 5. Attenuation comparison between RF and acoustic signal

VI. CONCLUSION

In this paper, we proposed a novel method to detect emula
tion attacks of mobile primary users. The correlation between
the RF signa and acoustic signal are exploited to differentiate
attackers from genuine wirel ess microphones.

We conducted real-world experiments to evaluate our
method. The results demonstrate that our method can achieve
both false positive rate and false negative rate lower than 0.1
within 3 seconds. The detection time can be further reduced
when proprietary white-space devices are available.
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