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Abstract— In cognitive radio networks, an adversary transmits 
signals whose characteristics emulate those of primary users, in 
order to prevent secondary users from transmitting. Such an 
attack is called primary user emulation (PUE) attack. There are 
two main types of primary users in white space: TV towers and 
wireless microphones. Existing work on PUE attack detection 
focused on the first category. However, for the latter category, 
primary users are mobile and their transmission power is low. 
These unique properties of wireless microphones introduce great 
challenges and existing methods are not applicable. In this paper, 
we propose a novel method to detect the PUE attack of mobile 
primary users. We exploit the correlations between RF signals 
and acoustic information to verify the existence of wireless mi-
crophones. The effectiveness of our approach is validated 
through extensive real-world experiments. It shows that our 
method achieves both false positive rate and false negative rate 
lower than 0.1. 

I. INTRODUCTION 

The popularity of wireless communication and ever-increas-
ing wireless traffic have put significant pressure on spectrum 
utilization. Recognizing the significance of spectrum shortage, 
the Federal Communications Commission (FCC) released ana-
logue TV bands, often referred to as white space, to unlicensed 
users on a non-interference basis.  

To access white space, unlicensed users (secondary users) 
must, according to FCC’s rules, sense the spectrum before 
transmitting and evacuate immediately when a licensed user 
(primary user) appears in the same band. The most important 
and commonly seen primary users in white space are TV tow-
ers and wireless microphones, which have the priority over any 
secondary users. 

While such shared-style spectrum accessing increases the ef-
ficiency of spectrum utilization, it introduces a new type of 
attack: primary user emulation (PUE) attack [1]. In such attack, 
an adversary transmits signals whose characteristics emulate 
those of primary users, thereby causing legitimate secondary 
users to erroneously identify the attacker as a primary user. The 
goal of such attacker is either selfishly maximizing its own 
spectrum usage or maliciously preventing other secondary us-
ers from communicating.  

The detection of PUE attacks is a non-trivial task, because 
FCC requires “no modification to the incumbent (primary) 
system should be required to accommodate opportunistic use of 
the spectrum by secondary users” [2]. This implies that primary 
signals just stay what they were; secondary users must rely on 
their own to sense primary signals and differentiate emulation 

attackers. In other words, conventional approaches, such as 
embedding signatures in primary signals or employing an in-
teractive protocol between a primary user and secondary users, 
cannot be applied to defend PUE attacks.  

Several advanced approaches have been proposed for miti-
gating PUE attacks [1], [3] - [6]. However, all of them focus 
on the attackers that emulate stationary primary users (TV 
towers). They are based on the fact that the locations of TV 
towers are fixed and assume that these locations are pre-known 
by secondary users. 

In the white space, wireless microphone is another important 
category of primary user. Since they are not stationary, the ex-
isting solutions cannot be applied. Detecting emulation attacks 
of mobile primary users (wireless microphones) is a much 
harder problem. 

In this paper, we proposed a novel method to detect wireless 
microphone emulation attacks. In our approach, each secondary 
user is equipped with an acoustic sensor. Correlations between 
energy level of RF signal and acoustic information received by 
the sensor are exploited to verify the authenticity of wireless 
microphones.  

To the best of our knowledge, this is the first work dealing 
with emulation attacks of a mobile primary user. In addition, 
our method does not require complex hardware. We demon-
strate the effectiveness of our approach through extensive 
real-world experiments. It shows that our method achieves both 
false positive rate and false negative rate lower than 0.1. 

The rest of this paper is organized as follows. Section Ⅱ 
discusses related work. Section Ⅲ states the problem, and 
Section Ⅳ presents our method detecting mobile PUE attacks. 
Section Ⅴ evaluates our work in real-world settings. Section 
Ⅵ concludes the paper. 

II. RELATED WORK 

Chen, et al. first proposed two location based approaches to 
detect PUE attacks [1]. The first is distance ratio test based on 
the two-ray ground reflection model. The location of primary 
signal source can be determined if two or more secondary users 
exchange their power strength measurements, which is com-
pared with the TV tower map to judge if it is a genuine primary 
user. This method is very vulnerable to signal strength fluctua-
tion. The other method is called distance difference test. It util-
izes synchronization pulses embedded in analog TV signals to 
calculate the location of primary signal, which requires strict 
time synchronization among secondary users. 



 

Chen, et al. also proposed another signal strength based 
method which is more tolerant to signal fluctuation [3] [4]. 
This method relies on an underlying wireless sensor network. 
Each sensor measures the signal strength of the primary user. 
Then local averaging smooth technique is applied and signal 
strength geo-peaks are assumed to be the location of primary 
transmitters. 

All these methods try to locate the signal source to detect 
fake primary users. The locations of genuine primary users 
must be known a priori. Therefore, they cannot be used when 
primary users are mobile or their locations are unpredictable. 

Jin, et al. presented a theoretical analysis on the distribution 
of received power, in order to differentiate an attacker from a 
genuine primary user [5] [6]. A Wald’s sequential probability 
ratio test is employed to ensure a decent false positive and 
false negative. However, they assume that the primary users 
must be far away from all secondary users, and genuine pri-
mary users and emulation attackers subject to different propa-
gation models. These assumptions do not hold for wireless 
microphones. 

Recognizing the difficulty of detecting wireless microphone 
emulation attacks, the 802.22 Task Group 1 proposed the dis-
abling beacon protocol [7] [8], which suggests transmitting a 
specially designed signal before starting wireless microphones. 
If additional information, such as signatures, is embedded into 
the beacon, this method can help secondary users to differenti-
ate genuine wireless microphones from attackers. However, 
there are still a great number of legacy wireless microphone 
users. Considering the fact that most of them have not even 
registered their wireless microphones, we cannot expect that 
they will be equipped with a separate beacon device in the near 
future. 

III. PROBLEM DEFINITION 

A. Preliminaries 

Mobile microphones are widely used in live performances, 
university lectures, sporting events, etc. They typically operate 
in VHF or UHF bands. According to FCC’s regulation, they 
should occupy a bandwidth no more than 200kHz and the 
power output is limited to 250mW or less on UHF or 50mW on 
VHF. In practice, this value is typically 10 to 50mW due to 
battery life considerations.  

Most wireless microphones use frequency modulation (FM) 
[9]. In the following methods and algorithms, FM wireless mi-
crophones are assumed for representativeness. The transmis-
sion range of wireless microphones’ RF signal is usually less 
than 100-150 meters. 

The working process of a wireless microphone is as follows. 
The microphone transforms the sound wave w(t) into current 
signal m(t), which has the same characteristics of the original 
sound wave: the amplitude stands for the loudness and the fre-
quency shows the pitch. After that, the current signal is modu-
lated by FM, and the modulated signal S(t) is sent into the air.  

In the receiver end, the demodulator listens to S(t), and de-
modulated it into current signal m'(t). Then, m'(t) is output to 
loudspeakers or power amplifiers. The regenerated sound wave 
is noted as w'(t). 

B. Attack Model and Problem Description 

The emulation attacker mimics the characteristics of a 
wireless microphone’s signal, in order to make secondary users 
erroneously identify it as a primary user. We assume that the 
attacker has full capability to emulate wireless microphones’ 
transmission power, modulation type, bandwidth occupation, 
and any other characteristics of S(t). 

We also assume attackers do not emit sound wave (to emu-
late w(t) or w'(t)), because in that way it will be very easily 
detected out. 

The problem to be solved is differentiating emulation at-
tackers from genuine primary users (wireless microphones). 
We have discussed the incapability or limitations of existing 
methods in Section Ⅱ. For our method, each secondary user is 
equipped with a sound sensor. We identify a genuine wireless 
microphone by exploiting the correlation between RF signals 
received by the secondary user and the environmental sound 
captured by its sound sensor (noted as w"(t)). If the signals do 
not pass our correlation test, an emulation attack is assumed.  

Incorporating acoustic information opens a new window for 
small-scale, mobile primary signal detection, but there are still 
substantial challenges: 

1) Correlating sound to the energy level of RF signal. This 
is simple for amplitude modulation (AM), but wireless 
microphones use FM, where the correlation is relatively 
difficult to exploit. We choose to use energy detection because 
it is fast and simple. All cognitive radio devices are able to 
detect signal power without hardware modification. 

A straightforward alternative is to demodulate S(t) into 
sound, and then compare it with w"(t). However, this means we 
have to add FM demodulators and rebuild the secondary users’ 
internal circuit. More important, although they all use FM, dif-
ferent wireless microphones have different signal format, such 
as mono, stereo, bandwidth, companding techniques, etc. It is 
very difficult for a single device to demodulate various wireless 
microphones from different manufacturers. 

2) Timing constraint. The 802.22 standard draft specifies 
that sensors must be able to detect wireless microphone signals 
over a 200kHz band within 2 seconds with both false-alarm 
and misdetection probabilities less than 0.1. Therefore, fast 
detection of emulation attacks is highly desireable. 

IV. DETECTING EMULATION ATTACK OF WIRELESS 

MICROPHONE 

A. Correlation between Acoustic Signal and FM Power 

Let w(t) be the sound wave. The microphone transforms it 
to current signal m(t). Ignoring the nonlinear distortion, we 
have: 
 m(t) = αw(t) (1) 
where α is a constant. After frequency modulation, the modu-
lated signal is: 
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where Ac is the carrier amplitude, fc is the carrier frequency, 
and kf is the sensitivity of the modulator.  

Without loss of generality, let αw(t) = )2cos( tfA mm π , and 
substitute it into Equation 2: 
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Let mf = kfAm/fm, we have: 
S(t) = Accos(ωct + mfsinωmt) 

= Ac[cosωctcos(mfsinωmt) - sinωctsin(mfsinωmt)]      (4) 
and noting the trigonometric relationship that: 

cos(mfsinωmt) = J0(mf) + 
∞

evenn

2Jn(mf) cos(nωmt) 

sin(mfsinωmt) = 
∞

oddn

2Jn(mf) sin(nωmt) 

where Jn are Bessel functions of the first kind, of order n. Sub-
stituting these two expressions into Equation 4, we have: 
S(t) = AcJ0(mf)cosωct  

+ 
∞

evenn

AcJn(mf) [cos(ωc + nωm)t + cos(ωc - nωm)t] 

     + 
∞

oddn

AcJn(mf) [cos(ωc + nωm)t - cos(ωc - nωm)t]  (5) 

Equation 5 shows the frequency components of S(t). Be-
sides fc, it also has frequency components on fc±nfm (n∈Z+), 
which are called side bands. According to the property of Bes-
sel functions, when x goes larger, the values of Jo(x), J1(x), 
J2(x), etc., become closer, which means more side bands sig-
nificantly contribute to the power of S(t). Therefore, the power 
around center frequency reduces when mf increases, because 
the total power contained in an FM wave is constant [10]. 

As we know, kf is a constant and mf = kfAm/fm. We refer to 
the power of S(t) within [fc–Δf, fc+Δf] (Δf << bandwidth of S(t)) 
as P2Δf thereinafter. Therefore, we come to our conclusion:  

Lemma: P2Δf reduces when 
m

m

f

A goes up, and vice versa.  

This conclusion applies to any FM wireless microphone, no 
matter it is mono or stereo, with or without companding. 

B. Emulation Attacker Detection 

As derived in Section ⅣA, P2Δf is related to both the fre-
quency and amplitude of sound wave. Between them, the am-
plitude is the key factor. That is because the frequency range of 
human voice is from 300 to 3000Hz, where the upper bound 
ten times the lower bound, but loudness varies more. A normal 
speaker has the sound level about 40 to 80dB, and lower than 
20dB when pauses. The power of 80dB is 106 times higher than 
that of 20dB, and 1000 times larger in terms of amplitude. 

Therefore, loosely speaking, larger is the Am, smaller is the 
P2Δf.  

Now we describe our method for emulation detection. If a 
wireless microphone signal is detected, a secondary user im-
mediately performs the operations as follows to determine if it 
is an emulation attacker.  

First, the secondary user shrinks its radio bandwidth to 2Δf, 
with the center frequency unchanged (the same as the center 
frequency of the band where the wireless microphone is de-
tected). 2Δf is set to 25kHz by default. Because most wireless 
microphones have a RF bandwidth of 100kHz or 200kHz, too 

large Δf makes it hard to capture the power change around cen-
ter frequency. On the other hand, smaller Δf can improve the 
performance of our method, but some cognitive radio devices 
may not have such narrow band-pass filters. 

Then, the secondary user synchronizes the acoustic signal 
with the RF signal, and samples w"(t) with its sound sensor. 
Every Δt, it calculates the average amplitude of the samples. At 
the same time, it measures the average P2Δf every Δt, and 
evaluates the correlation between P2Δf and averaged amplitudes. 
The algorithm is given as follows: 
__________________________________________________ 

score = 0; 
lastAvgAmp = lastAvgPwr = 0; 
diff = signalSync(); 
wait(diff); 
for (i=0; i<n; i++) 
 time = getCurrentTime(); 
 wait (Δt); 
 avgAmp = average |Am| from time to time + Δt; 
 avgPwr = average P2Δf from time – diff to time – diff + Δt; 
 if (lastAvgAmp != 0) 
  index = fix (ln (avgAmp / lastAvgAmp) / ln β ) 
  if (index * (avgPwr – lastAvgPwr) < 0) 
   score ++; 
  else score = score – |index|; 
 lastAvgAmp = avgAmp; 
 lastAvgPwr = avgPwr; 
if (score < 0) an attacker is assumed 
__________________________________________________ 
Algorithm 1.  Emulation attack detection 

signalSync() is the function that synchronizes the RF and 
acoustic signals. Because the speed of sound is much slower 
than that of radio wave, they do not reach the secondary user 
simultaneously. In this function, we make use of pauses in hu-
man voice. When a pause occurs, the amplitude of sound wave 
will suddenly drop below 5 in PCM coding (8 bit sampling, 
max amplitude is 128), and for RF signal, all the power will 
concentrate at the central frequency (max P2Δf is achieved). 
Two signals are synchronized by sensing these sudden changes. 
signalSync returns the latency of the acoustic signal. 

fix() is to round towards zero, and Δt is set to 80ms, which 
is restricted by our experiment equipment. n and β are adjust-
able parameters. n is the number of the testing rounds. The lar-
ger n, the more accurate our method is, but the longer the de-
tection takes. β determines the algorithm’s sensitivity of am-
plitude fluctuation. 

In the algorithm, only dramatic changes (greater than β 
times) of Am take effect, in order to tolerate the fluctuation of fm. 
score is the evaluation of the correlation between Am and P2Δf. 
If they vary following the lemma in Section ⅣA, one point is 
gained, otherwise, a penalty is made. If the lemma is not fol-
lowed when the Am change is extremely large (|index| > 1), the 
penalty is heavier correspondingly. At the end of the algorithm, 
if score is less than zero, an emulation attack is reported. The 
complexity of this algorithm is linear; it spends most of its time 
waiting for sampling and signalSync. 



 

V. EVALUATIONS 

In this section, we conduct real-world experiments to evalu-
ate our method for emulation attack detection. 

A. Experiment Settings 

We use wired microphones connected to laptops to collect 
environmental sound (acting as sound sensors). The raw data 
collected from sound card is 44.1kHz and PCM coded. Each 
sample is an 8-bit unsigned integer. We transform the samples 
into the range of [-128, 127] and average every four consecu-
tive samples as the input of our algorithm.  

We utilize an Agilent E4405B spectrum analyzer to meas-
ure the power of RF signals, whose minimum sweep time is 
80ms. So in all the following experiments, Δt is set to 80ms. 
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Figure 1.  Layout of experiment environment 

Two wireless microphones are used in our experiments. 
One is working on VHF band (171.9MHz) and the other on 
UHF (629.5MHz). Both have a bandwidth of 200kHz and 
10mW power output. Their receiver ends are connected to a 
pair of ordinary loudspeakers (80watt). 

We conduct our experiments in both crowded rooms and a 
spacious hall, as shown in Figures 1a and 1b, respectively. The 
loudspeaker connected to the primary user is put at P. Secon-
dary users are located in A, B and C, respectively and their 
experiment results are averaged unless otherwise specified. 

B. False Positive and False Negative 

 
Figure 2.  False positive rate 

We first evaluate the false positive rate of our method. 
False positives refers to the detection results erroneously taken 
a genuine primary user as an attacker. In the first experiment, 

we fix the amplitude sensitivity β to e (≈2.718, we will vary β 
later), and test false positive rates by varying rounds n from 5 
to 25 and with different 2Δf values (50kHz and 25kHz). 

The result is shown in Figure 2. y-axis shows the false posi-
tive rate, which equals false positives divided by total number 
of tests. x-axis is the number of rounds (n). For each point in 
the plot, 240 tests are performed (40 at each location in Figure 
1) and various voice samples are tested. 

From the figure we can see that two wireless microphones 
act very similar. The performance of 2Δf = 25kHz is much bet-
ter than that of 2Δf = 50kHz. In both cases, the performance of 
our method gets better when n becomes larger. When 2Δf = 
25kHz and n ≥ 15, the false positive rates are less than 0.1, 
and it is as low as about 0.06 when n = 25. 
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Figure 3.  False negative rate 

Figure 3 shows the false negative rate of our method. False 
negatives are the cases where an emulation attacker appears but 
our method fails to report. In this experiment, wireless micro- 
phones are acting as attackers, with the receiver end discon-
nected to loudspeakers. We eliminate w(t) by using line-in as 
the input of wireless microphones. That is to say, attackers 
emulate wireless microphones’ RF signal perfectly, but without 
emitting sound. Here 2Δf is set to 25kHz. Other settings are the 
same as the false positive experiment. 

From the figure we can see the false negative rate of our 
method is very low. As long as n is larger than 15, there is al-
most no false negatives. 

As mentioned in Algorithms 1, β determines the sensitivity 
of the amplitude fluctuation of sound wave. The larger is β, the 
less is the sensitivity. In the next experiment, we examine the 
impact of β on the false positive and false negative.  

 
Figure 4.  Impact of β on false alarm and mis-detection 



 

In figure 4, we set n = 25 and 2Δf to 25kHz. β varies from 
1.5 to 10. The solid line indicates the false positive rate while 
the dashed line refers to the false negative rate. The results of 
two wireless microphones are averaged.  

From Figure 4 we observe that the false negatives increase 
quickly when β approaches 10. That is because when β is very 
large, the sensitivity becomes very low and the algorithm can 
hardly extract any fluctuation of sound amplitude, which 
causes no penalty and also no awards for score. In our algo-
rithm settings, an attacker is not reported when score = 0. On 
the other hand, when β is very small, the false positive rate is 
relatively high. The reason lies in that high sensitivity makes 
the algorithm incapable of tolerating noise and the fluctuation 
of fm. Considering all factors, β∈(3, 6) is acceptable. 

From the three experiments above we can conclude that 
when n = 25, 2Δf = 25kHz and β∈(4, 5), our method can 
achieve both false positive rate and false negative rate lower 
than 0.05. We set β = 4 in the following experiments. 

C. Dectection Time 

The detection time of our method contains two parts: the 
execution time of signalSync and (Δt * n). The time of signal-
Sync can be further divided into two parts: time waiting for the 
first RF pause and the delay of acoustic signal (diff). It is easy 
to bound diff. The operating range of wireless microphones is 
usually less than 100 meters, and the speed of sound is about 
340 meters/sec. Hence, diff should be less than 0.3 second. For 
the other part, we perform experiments to measure the time 
waiting for the first pause. We test various sound materials, 
including news reports, lectures, talk shows, etc. The average 
value is 1.43 seconds per pause. Therefore, the total time of 
signalSync should be less than 1.7 seconds. This is consistent 
with our measured result in Algorithm 1, which is about 1.5 
seconds. On the other hand, from previous experiments, we 
observe that n should be larger than 15 in order to achieve 
good performance. Therefore, the total detection time of our 
method is approximately 3 seconds (assuming Δt = 80ms). 

However, Δt, which is restricted by our experiment device, 
can be largely reduced. The spectrum analyzer we use (Agilent 
E4405B) scans 400 points within the channel to calculate sig-
nal power. The way how it works makes Δt considerably large. 
For comparison, an 802.11 device can measure RSSI within 
1ms. Therefore, the detection time of our method can be re-
duced to less than 2 seconds if proprietary devices are used. 

D. Spatial Attenuation 

In this subsection, the attenuation of RF signal and sound 
wave are compared. The loudspeaker connected with the pri-
mary user is turned to medium volume, which is about 102.5dB 
measured one meter away. RF power of two wireless micro-
phones are tested (both power output are 10mW). Experiment 
results are shown in Figure 5. We can see that the power of RF 
signals have a significant drop at about 15 meters, which is due 
to multipath and body absorption. 

An important observation is that when the distance gets 
close to 100 meters, the power of RF signals quickly drops 
under -70dBm, and is not detectable at 110 meters. However, 
the sound level of w'(t) is still about 60dB at the same distance. 

This experiment shows that the sound level of w'(t) decreases 
more slowly than the power of wireless microphone’s RF sig-
nal. In other words, as long as the RF signal of wireless micro-
phones is detectable, acoustic information, on which our 
method relies, is always available. 

 
Figure 5.  Attenuation comparison between RF and acoustic signal 

VI. CONCLUSION 

In this paper, we proposed a novel method to detect emula-
tion attacks of mobile primary users. The correlation between 
the RF signal and acoustic signal are exploited to differentiate 
attackers from genuine wireless microphones.  

We conducted real-world experiments to evaluate our 
method. The results demonstrate that our method can achieve 
both false positive rate and false negative rate lower than 0.1 
within 3 seconds. The detection time can be further reduced 
when proprietary white-space devices are available. 
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