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Abstract— Video source identification is very important in valida-

ting video evidence, tracking down video piracy crimes and regu-

lating individual video sources. With the prevalence of wireless 

communication, wireless video cameras continue to replace their 

wired counterparts in security / surveillance systems and tactical 

networks. However, wirelessly streamed videos usually suffer 

from blocking and blurring due to inevitable packet loss in wire-

less transmissions. The existing source identification methods ex-

perience significant performance degradation or even fail to work 

when identifying videos with blocking and blurring. In this paper, 

we propose a method which is effective and efficient in identifying 

such wirelessly streamed videos. In addition, we also propose to 

incorporate wireless channel signatures and selective frame pro-

cessing into source identification, which significantly improve the 

identification speed. 

I. INTRODUCTION 

Source identification is a major component of video foren-

sics. When presenting a video clip as evidence in a court of law, 

identifying the source (acquisition device) of the video is as 

important as the video itself. For instance, if a surveillance 

camera captured the scene of a suspect’s alibi, it is necessary to 

prove that the video was truly recorded by the claimed camera. 

Otherwise it can be forged or derived from an untrustworthy 

source, which makes the evidence invalid. In the movie indus-

try, significant revenue loss is caused every year by surrepti-

tious recording in movie theaters and the subsequent illegal 

distribution. Video source identification is employed to track 

down such piracy crimes [1] [5]. While Internet enables video 

sharing at a large scale, it also opens doors for propagation of 

illegal or inappropriate materials, such as the video including 

child porn or racial hatred. Video source identification can be 

used to regulate the individual video sources [2]. 

Easier access to high-quality digital camcorders and sophis-

ticated video editing tools urges the improvement of video 

source identification techniques. However, the research on this 

topic is still in its early stages. The most straight forward way 

to identify the video source is embedding digital watermarks 

into video when recording, but this method is computationally 

expensive and requires modification to recording devices, thus 

cannot be applied to most off-the-shelf cameras or camcorders. 

Some researchers [4] proposed to utilize defective pixels (hot 

or dead pixels) on the camera sensor to distinguish different 

devices. However, there are many cameras or camcorders do 

not have defective pixels. The most reliable method reported so 

far for source identification is based on the sensor pattern noise, 

which mainly results from the non-uniformity of each sensor 

pixel’s sensitivity to light, and can be treated as the inherent 

fingerprint of a video capture device [3].  

On the other hand, wireless communication has seen a tre-

mendous growth in the recent years. Wireless cameras have 

also become increasingly popular. In the security camera mar-

ket, wireless video cameras continue to replace their wired 

counterparts due to the ease of deployment. In tactical networks, 

wireless cameras are widely used as video sensors. Such came-

ras usually do not have local storage; video is captured and 

wirelessly streamed to a sink. Because of the inevitable packet 

loss and unpredictable transmission delay in wireless streaming, 

blocking and blurring frequently appear in the received frames. 

For such videos, experiment shows that the existing source id-

entification methods suffer from significant performance dete-

rioration or even fail to work. Blocking and blurring caused by 

the lossy wireless channel severely tamper with the sensor fin-

gerprint recognition. 

In this paper, we propose a systematic methodology for 

video source identification which can achieve excellent per-

formance not only for the conventional videos but also for the 

wirelessly streamed videos with blocking and blurring. In addi-

tion, we propose to incorporate both the wireless signature and 

sensor signature for video source identification. Together with 

other optimizations, we are able to identify the video source in 

a near-real-time fashion.  

The remainder of this paper is organized as follows. Section 

II introduces our method for video source identification which 

tolerates video blocking and blurring. Section III evaluates our 

work and Section IV concludes the paper.  

II. SOURCE IDENTIFICATION OF WIRELESS VIDEOS 

A. Background 

Wireless video cameras (shown in Figure 1a) are mostly 

used for security / surveillance purpose. The majority of com-

mercially available products transmit via 802.11 channels, 

while the video sensors in tactical networks may use dedicated 

links. Wireless cameras do not have local storage; they capture 

the scene and stream to the sink in real time. The pixels of a 

video frame from a wireless camera can be presented as: 

   
      (a)                            (b)   

Figure 1.  Wireless camera and frames with blocking and blurring 



  

( ) where ( )ij ij ij ijz L y y P x                 (1) 

xij is the incoming light captured by the camera sensor at the 

pixel (i, j), where i = 1, 2, …, m and j = 1, 2, …, n. m×n is the 

sensor resolution. Here we assume the video resolution is equal 

to the sensor resolution for convenience. P indicates the sensor 

distortion and onboard processing. L is the distortion caused by 

wireless transmission. Because of the real-time requirement of 

security systems, typically UDP is used by wireless cameras for 

the video streaming and thus no retransmission occurs above 

the MAC layer. As a result, packet loss is the major factor of L.  

B. Sensor Pattern Noise Extraction 

Sensor pattern noise is mainly caused by the non-unifor-

mity of each sensor pixel’s sensitivity to light. For every frame 

of the video, various types of noises exist, such as white noise, 

shot noise and ISO noise. Fortunately, most of them are ran-

domly distributed, which tend to cancel out if we extract from a 

large number of frames and add them together. However, sen-

sor pattern noise is the same for different frames (taken by the 

same camera) and going to be strengthened after being added 

up. Therefore, we can simply extract all the noise as a whole 

from each frame; the sensor pattern noise is supposed to sur-

vive the averaging while other noises would not [6].  

   
    (a)  F              (b)  FdN          (c)  (F - FdN)×10 

Figure 2.  Extracting noise from a frame 

The basic idea for noise extraction is that for an image (a 

video frame), correlated signal is compressible and predictable 

but uncorrelated noise is not. Denote a frame extracted from 

the video as F. For each color channel of F, data is viewed as a 

locally stationary i.i.d. signal plus a zero mean and stationary 

white Gaussian noise; we calculate its fourth-level wavelet 

decomposition with the 8-tap Daubechies wavelets. For each 

level, the horizontal, vertical and diagonal subbands are noted 

as h(i, j), v(i, j) and d(i, j), respectively. Then we calculate the 

local variance of each subband using MAP estimation, and 

obtain the denoised frame FdN by using Wiener filter (due to 

the space limitation, please refer to [3] and [7] for details). 

Note N as the extracted noise from frame F: 

dNN F F                                     (2) 

Figure 2 shows an example of an original frame, the de-

noised frame (using the above method), and the noise extracted 

from this frame. For visualization, the noise (Figure 2c) is up 

scaled 10 times. The noise extraction process will repeat for a 

sequence of frames from the same video. Based on our previ-

ous discussion, the sensor pattern noise will survive the aver-

aging while other noises tend to cancel out. Therefore, the sen-

sor pattern noise N can be expressed as: 
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k

 N                                    (3) 

where Ni is the noise extracted from the i
th
 frame and k is 

the number of the frames processed. Typically, if the video 

quality is good, the sensor pattern noise can be well established 

when k is larger than 300 to 500. For source identification, we 

calculate the sensor pattern noise of the video to be identified 

(noted as Nv), and compare it with the sensor pattern noise ex-

tracted from the camera (camera reference pattern for short, 

noted as Nc) using the metric of correlation coefficient: 
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Calculating Nc is relatively easy because the source camera 

is typically accessible to law enforcers. We can use it to take a 

video with sufficient length and high quality, and derive the Nc 

accurately. However, as to the video to be identified, the length 

and quality are pre-given; we have to sit on what we have. 

Chen et al. reported that generally 40 seconds video ( 450kbps) 

is good enough for a reliable identification, but 10 minutes of 

video is required if the video quality is low (150kbps) [1]. Our 

experiments further show that, the videos contaminated by 

blocking and blurring are worse: even with decent bit rate 

(about 500kbps), in some cases, the Nv simply cannot converge; 

in other cases, it may require more than 20 minutes of video to 

get a decent accuracy using the existing method. It means that 

the wireless video evidence shorter than this length cannon be 

identified, which is not acceptable. 

C. Video Source Identification under Packet Loss 

Video blocking affects the extraction of sensor pattern noise 

in two folds. First, within the blocks, the details as well as the 

pattern noise are lost. Typically when including more frames, 

the extracted sensor pattern noise will be strengthened. How-

ever, when adding a frame with blocking, within the blocking 

areas, the pattern noise would in fact be weakened (because in 

Equation 3, the denominator increases and numerator remains 

almost unchanged). Second, the borders of the blocking be-

come a strong signal which will survive the extraction and av-

eraging; eventually they form a “grid”, which interferes with 

the real sensor pattern noise. Figure 3a shows a sensor pattern 

noise contaminated by such “grid” (blockiness artifacts [1] 

have already been removed). It is extracted from a wirelessly 

streamed video of 360 frames with frequent packet loss, and it 

is up scaled 50 times for visualization purpose. 

Video blurring can result from multiple reasons, such as 

high compression ratio or fast motions. But in this work, we 

only consider the blur caused by packet loss. Video is encoded 

based on blocks. Instead of losing all the data of a block, blur-

ring is the result of losing high frequency component, but this 

information loss is still block based. That is, one block may 

look more blurred than another. By zooming in the red area in 

Figure 1b, we can see that the blur caused by packet loss is 



  

essentially smaller-size blocking (see Figure 3b). Therefore, we 

treat the blocking and blurring uniformly thereinafter, which 

makes our method more clear and time efficient. 

   
   (a) “grid” disturbs pattern noise         (b) zoom in the blurred area 

Figure 3.  Blockish effects in video 

The basic idea of our method is as follows. For the frames 

with blocking, we rule out the blocking areas but still use the 

rest of the frame for pattern noise extraction. Such frames are 

not completely discarded because it would waste useful infor-

mation and make the identification slower.  

First, we introduce our method for blocking detection. Be-

cause we do not have the access to the original video without 

packet loss, a non-reference method is required. The existing 

work, such as [8] and [9], are based on block boundary detec-

tion or Fourier transform. Since we have to perform the wave-

let transform for noise extraction (see Section IIB), we propose 

a blocking detection method which is also wavelet based. In 

this way, we can largely reduce the computational overhead.  

Taking a close look at the first-level wavelet transform re-

sult, we have two observations on frames with heavy blocking:  

1) More elements in the diagonal subband d(i, j) are zeros 

or close to zero compared with clean frames. 

2) If we add the absolute values of d(i, j) by rows (or by 

columns), the sum demonstrates periodic characteristics like 

the teeth of a saw. 

1
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                (5) 

Equation 5 adds absolute values of d(i, j) by rows and then 

takes an average. Here we assume the size the frame (or part of 

the frame involved in the blocking detection) is 2p×2q, and still 

use the 8-tap Daubechies. Figure 4 shows an example. Figure 

4a is a clean frame and 4b is the same scene but with blocking. 

The Si values of Figure 4a and 4b are shown in Figure 4c and 

4d, respectively. We can verify two observations mentioned 

above. In fact, they are not only true for this example, but gen-

erally applicable for the blocking areas of a video frame. 

  
   (a) clean frame                (b) frame with blocking 

 
(c) Si of the frame in (a), i = 1, 2, …, 128 

 
(d) Si of the frame in (b), i = 1, 2, …, 128 

Figure 4.  Obervations of d(i, j) under video blocking  

Apparently, between two observations, the first is easier to 

exploit. But other than blocking, it is also true for big chunk of 

objects in plain color, such as a clean sky or white walls, which 

happen to be the best sources for extracting sensor pattern noise 

(they have fewer details, so sensor pattern noise is better pre-

served). Fortunately, observation 2 is unique to video blocking 

and is our better choice. In order to detect the periodic pattern 

in Si efficiently, some tricks are needed. We maintain two cur-

sors: one from the very left (i = 1), looking for the first local 

maximum, and another from the very right (i = q), seeking the 

first local minimum. Considering Figure 4d as an example, 

after this step, the left cursor should stop at bar 5 while the 

right one at bar 124 (marked by arrows in Figure 4d). Then, 

treating these two cursors as end points, we “fold” the x-axis in 

half and the values of overlapping bar pairs are added and then 

divided by 2. We get: 

1 1

1 2
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w v
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Here v is the index where the left cursor stops and w for the 

right one. j is a positive integer. We then compare the variance 

of Sj’ and Si: 
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C0 is a small positive constant to make sure the denomina-

tor is not zero. If  is lower than a threshold, we assume the 

periodic pattern (observation 2) is found, and thus report video 

blocking. The rationale behind is that if Si is periodic, and 

within each period it is monotonic, Sj’ calculated by Equation 7 

should be much more evenly distributed than Si. Here  reflects 

the degree of video blocking (the smaller, the heavier). The 

performance and time costs of our blocking detection approach 

are given in Section III. 

Now we briefly describe our source identification method 

for wireless videos as a whole. A frame is divided into 32×32 

pixel squares, where each square is parsed by the blocking de-

tection algorithm presented above (it is equivalent to dividing 

d(i, j) into 16×16 squares and calculating Si separately). If the 

result is positive (video blocking exists), this square is discard-

ed; otherwise, it is adopted for pattern noise extraction (using 

the method in Section IIB). When accumulating the noise from 

multiple frames, k in Equation 3 may have different values for 

each square. We use this method to calculate the sensor pattern 



  

noise for the video to be identified (Nv). For the camera refer-

ence pattern (Nc), usually blocking detection is not necessary 

because in this case video recording condition is under the con-

trol. 

Next, Equation 4 is employed to judge whether Nv and Nc 

are from the same source or not. The correlation coefficient be-

tween Nv and Nc is typically from 0.1 to 0.7 when they have 

the same source. If the videos used to extract Nv and Nc are of 

the same bit rate, the correlation tends to be higher. Otherwise, 

it is slightly lower. When Nv and Nc are not from the same 

camera, corr(Nv, Nc) is almost always lower than 0.01, where 

the gap is significant enough for us to perform identification 

(the threshold is noted as ). For videos with blocking and 

blurring, our method exhibits significant higher performance 

than the existing method (see Section IIIC).  

D. Expediting the Identification Process 

The existing forensics methods are mainly used for post- 

mortem analyses. Although we deal with blocking and blurring 

uniformly, and have developed a fast blocking detection tech-

nique, the overall identification time is non-trivial. Processing a 

640×480 video frame (including blocking detection and noise 

extraction) still takes about 10 seconds on an average laptop 

(with an Intel Core 2 Duo CPU). Being set to the highest video 

quality (1~1.5 Mbps), we need approximately 200 frames to 

make a reliable decision. In this subsection, we introduce sev-

eral measurements to further expedite our method.  

1) Parallelization. Simply shifting to a more powerful com-

puter will not help much because the original approach is sin-

gle-threaded. We parallelized the computationally expensive 

operations, such as wavelet transform and local variance esti-

mation. With this modification, our method shows good scala-

bility and the speed boosts accordingly in multi-core computers. 

For example, the modified version is more than 8 times faster 

when migrating from a 2-core laptop to a 2-CPU 12-core work-

station (Xeon X5650×2). 

2) Selective frame processing. In a video clip, compared 

with P- and B-frames, an I-frame contains more fundamental 

information and details. By extracting noise exclusively from 

I-frames, we find that only 20~40 I-frames are able to achieve 

acceptable performance.  

3) Combining wireless fingerprints. We propose to incor-

porate wireless channel signatures with the sensor fingerprint 

for source identification. Profiles of wireless characteristics are 

built for each legitimate camera base on their history informa-

tion. The metrics include: packet loss ratio, jitter, average sig-

nal strength, signal strength variance, and the percentage of 

blocking frames. Using the channel profile, we need even less 

frames to make a reliable identification. 

 With these improvements, our method is able to perform 

the video source identification in a near-real-time fashion, and 

thus can be used to defend against the wireless camera spoofing 

attack. Due to the space limitation, the details are omitted. 

III. EVALUATIONS 

A. Experiment Settings 

The wireless cameras we use to evaluate our source identi-

fication method are listed in Table I. We choose these models 

because they are of the most popular brands in the market and 

have very similar specifications, which puts higher requirement 

on source identification. The sink is wiredly connected to a 

Cisco Linksys WRT160N V2 wireless-N router, to which the 

wireless cameras send the video. The webcam of X301 streams 

its video using VLC through the laptop’s 802.11- n wireless 

network card. MPEG4 videos are used unless otherwise speci-

fied. 

TABLE I.  CAPTURE DEVICES OF OUR EXPERIMENTS 

Model Amount Sensor Format Net 

Linksys WVC80N 4 

640×48
0 CCD 

MPEG4/
MJPEG 

802.11n 

D-Link 942L 1 

Axis M1011-W 1 

webcam of 
Lenovo X301 

1 

B. Performance on Video Blocking Detection 

The false alarm and mis-detection rate of our blocking de-

tection method are shown in Figure 5. False alarm is defined as 

the video blocking reported by our approach while there is ac-

tually none; mis-detection refers to the cases where over 50 

percent area of the square is occupied by blocking but our ap-

proach fails to detect. A total number of 6000 squares (32*32 

pixel units in frames) are calculated (about 2300 of them are 

blockish), which are evenly collected from the cameras listed 

above. The x-axis shows the video bitrate. The threshold of  is 

set to 0.6. From the results we can see both the false alarm and 

mis-detection rates are very low, especially for high bit rate 

videos, which is sufficient for our succeeding processing.  

Figure 6 shows the time cost of our blocking detection ap-

proach for ten 640×480 frames using an average laptop. The 

method provided in [9] is referred as the baseline. The third bar 

plots the time of our approach without including the time spent 

on wavelet transform. Since it has been done during the noise 

extraction, we do not need to calculate the wavelet transform 

again. By using our own blocking detection approach, we 

speed up about 15 times.  

C. Performance on Source Identification 

We first test the corr(Nv, Nc) where Nv and Nc are from 

different cameras. Linksys WVC80N is used as the reference 

device to calculate Nc (via a 20-minutes-long video, at highest 

quality). 60 videos are shot by other 6 cameras for Nv calcula-

tion (10 videos each), all of which are 3 minutes long and in 

high quality (but with heavy blocking). Figure 7 plots the re-

sults, from which we can see the correlations are very low (the 

absolute values are mostly less than 0.003).  

In Figure 8, we calculate the corr(Nv, Nc) where Nv and Nc 

are of the same camera (also with blocking). The solid curve is 

an approximation of the bars; the same approximations for 

lower-bit-rate videos are plotted in the dashed curves. We can 

see that the correlations are high (greater than 0.2). The huge 

difference between the results exhibited in Figure 7 and Figure 

8 offers us enough room to establish a threshold and differenti-

ate the source with high confidence. We set the threshold  = 

0.01. That is, if corr(Nv, Nc) is larger than 0.01, we assume the 

video to be identified are from the same source as Nc; other-

wise it is not.  



  

Now we compare the performance of our method with the 

existing source identification method. Figure 9a gives the 

comparison result when only light blocking occurs (less than 

20% of the frames are contaminated by blocking and blurring). 

Three bit rates are tested respectively. For each rate, 140 videos 

are collected (20 from each camera). All videos are 640×480 

and 10 fps. Accuracy is defined as the correct identifications 

divided by the total number. x-axis denotes the number of 

frames used for Nv extraction. The solid lines show the perfor-

mance of our method while the dashed lines are from the exist-

ing method (provided in [1]). We can see that under the same 

bit rate, our method achieves the perfect accuracy with much 

less frames. For low bit rates, the gap is even larger. Short vid-

eos (with blocking) cannot be accurately identified by the ex-

isting method.  

In Figure 9b, we show the performance comparison under 

the heavy blocking (about 40% of the frames are contaminated). 

For 6400 and 12800 frame cases, we test 70 videos; the other 

settings are the same as the test above. The result clearly shows, 

under heavy blocking, the existing method cannot achieve ac-

ceptable performance even if the video is long enough. We also 

conduct the experiments on detecting wireless camera spoofing 

attack using our method, but cannot present the results here due 

to the space limitation. 

IV. CONCLUSION 

In this paper, we introduced a systematic method for source 

identification of wirelessly streamed videos. Our method exhi-

bits excellent performance even in the presence of video block-

ing and blurring. To achieve this goal, we developed a novel 

blocking detection approach. We also proposed to incorporate 

wireless channel signatures and selective frame processing to 

accelerate our method, which enables the near-real-time video 

source identification.  

Real-world experiments are conducted to evaluate the ef-

fectiveness and efficiency of our method. The results show that 

it largely outperforms the existing method in both accuracy and 

time efficiency. 
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                                                            (a) light blocking                               (b) heavy blocking 

 
Figure 8.  Correlation between blockish 

videos from the same source 

 

Figure 9.  Identification accuracy compared with the existing method 

Figure 5.  Accuracy of our blocking 
detection approach 

 

Figure 6.  Time efficiency of our block-
ing detection approach 

 

Figure 7.  Correlation between blockish 
videos from different sources 

 


