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ABSTRACT 

Facial recognition is a popular biometric authentication 

technique, but it is rarely used in practice for device un-

lock or website / app login in smartphones, although most 

of them are equipped with a front-facing camera. Security 

issues (e.g. 2D media attack and virtual camera attack) 

and ease of use are two important factors that impede the 

prevalence of facial authentication in mobile devices. In 

this paper, we propose a new sensor-assisted facial au-

thentication method to overcome these limitations. Our 

system uses motion and light sensors to defend against 2D 

media attacks and virtual camera attacks without the pen-

alty of authentication speed. We conduct experiments to 

validate our method. Results show 95-97% detection rate 

and 2-3% false alarm rate over 450 trials in real-settings, 

indicating high security obtained by the scheme ten times 

faster than existing 3D facial authentications (3 seconds 

compared to 30 seconds). 

Categories and Subject Descriptors 

Security and privacy>software and application securi-

ty>domain-specific security and privacy architectures 

Security and privacy>Security services>authentication 

General Terms 

Algorithms, Security, Verification. 

Keywords 

Biometric, mobile devices, user authentication, mobile 

sensors 

 

I. INTRODUCTION 
 

Biometric authentication has many advantages over 

the traditional credential-based authentication mechanism. 

It is widely considered to be more secure, because it is 

based on “who the user is” and biometric information is 

difficult to forge or spoof. On the contrary, credential-

based authentication relies on “what the user knows”, 

which can be lost or stolen and more likely to result in 

identity theft. If dictionary words are used as password, 

the risk becomes even higher. In addition, biometric au-

thentication is much easier to use. Users do not need to 

remember a list of passwords for various websites and 

apps. Of course, devices or browsers can remember the 

username and password for users. While eliminating users’ 

memory burden, it introduces additional security threats. 

For example, when users leave their smartphones or tab-

lets on the desk and leave the office for a while, others 

can easily get access to their social networks or even bank 

accounts if the password is memorized. Mobile industry 

also has paid more and more attention to biometric au-

thentications. For example, Apple launched its latest iPh-

one with fingerprint readers. 

Among various biometric authentication methods, fa-

cial recognition is a popular technique that has been con-

tinuously improving for the past decade. The recognition 

accuracy is high for practical use [1] [2]. It is recently 

reported that facial recognition has already been used for 

commercial payment systems which requires very high 

accuracy [16]. On the other hand, most of today’s smart-

phones and tablets are equipped with a front facing cam-

era, and the resolution is now typically higher than one 

mega pixels, which is very handy and able to capture us-

ers’ face in high quality. Based on these facts, it seems 

that facial recognition can be widely used for device un-

lock and website / app login in smartphones.  

However, in practice, facial authentication is rarely 

used in smartphones even if the device has a front facing 

camera. Android provides face recognition function (to 

unlock the device) starting from version 4.0, but not many 

users are using it. For the login of social networks, forums, 

online services and other apps, credential-based authenti-

cation is still dominating other methods. Since biometric 

authentication has great advantages, what is the cause of 
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the current status? Apart from the privacy concerns, the 

following two factors are very important, which impede 

the prevalence of facial authentication in mobile devices. 

First, there is a trade-off between security and ease of 

use. The simple 2D face recognition, such as the one used 

in Android 4.0, can be easily fooled by a photograph of 

the user (referred to as photo attack), which is not difficult 

to obtain in social networks. An improved version re-

quires the user to blink their eyes during the authentica-

tion (e.g. Android 4.1 and [3]), but it still can be circum-

vented by photo editing [4] or playing a clip of video (re-

ferred to as video attack) [5]. Apparently, these schemes 

are not secure enough for serious authentication service. 

More sophisticated 3D facial authentication techniques 

have been developed to achieve higher security [6] [7]. A 

practical example is Toshiba Face Recognition Utility 

used in recent Toshiba laptops. It requires that users turn 

their heads towards four directions according to a se-

quence of arrows shown on the screen. In this way, the 

authentication program is able to differentiate a real 3D 

face from a flat photo. However, the whole authentication 

process takes approximately 30 seconds, which is too long 

and compromises the ease of use (one of the important 

advantages of biometric authentication). Since it is more 

complex than entering a password, why would users 

choose it? In short, current facial authentication schemes 

cannot achieve 2D-media-attack-safety and the ease of 

use simultaneously (photo attack and video attack togeth-

er are referred to 2D-media attack).      

Second, the availability of virtual cameras. Virtual 

camera is a category of software which adds a layer be-

tween the real physical camera and the operating system. 

Virtual Webcam, ManyCam, Magic Camera, etc. are all 

examples of such software. Currently most of them are 

developed for PC or tablet platforms, but it is easy to mi-

grate to smartphones. The purpose of these software is to 

add dynamic effects to the webcam, making the video 

look more beautiful and live chat more interesting. How-

ever, they have now become so powerful that they can not 

only modify the face, hair and backgrounds, but also 

stream a pre-recorded video, making the operating system 

believe it is captured by the physical webcam in real time 

[8]. Therefore, despite their original purpose, virtual cam-

era software in fact puts a serious threat on the security of 

facial authentication. While the device unlock lies in the 

system level and has more control of the hardware (so it is 

less likely to suffer from virtual camera attacks), website 

and app logins are very susceptible to this type of attack if 

they choose to use facial authentication.  

We want to point out that the security issues we men-

tioned above are not the weakness of biometric infor-

mation itself; instead, they stem from the methodology 

people currently use.  

In this paper, our goal is to develop a new facial au-

thentication method which is not only more secure but 

also easy and quick to use. This method should be safe for 

2D media attacks and virtual camera attacks; at the same 

time, the authentication speed needs to be comparable to 

or faster than credential-based methods (and much faster 

than the existing 3D facial authentications). If such a 

method is achievable, it will make facial authentication 

more practical and useful in smartphones. It will have the 

potential to become a practically better solution than cre-

dential-based authentication methods, and change the cur-

rent state of human-device interaction.    

To achieve this goal, we propose a sensor-assisted fa-

cial authentication system. In our method, motion sensors 

are employed to infer the position and orientation of the 

front camera. User head movement is replaced by a small 

movement of the cellphone, which is able to ensure a real 

3D face, and results in a much easier operation and faster 

authentication. Figure 1 gives an overview of proposed 

scheme, which is simple and intuitive. In addition, the 

shake of the video and the shake of the smartphone are 

extracted separately and then compared to each other, in 

order to defend against virtual camera attacks. To the best 

of our knowledge, this is the first work to enhance the 

security and usability of facial authentication by utilizing 

motion sensors of smartphones. The main contributions of 

this work are as follows: 

1. We propose a sensor-assisted facial authentication 

system for smartphone users. A Nose Angle De-

tection algorithm is proposed to counter 2D media 

attacks.  

2. We propose a Motion-Vector Correlation algo-

rithm to counter virtual camera attacks. 

3. We implement the proposed algorithms on a Gal-

axy Nexus smartphone with Android 4.2.2 on top 

of existing face recognition application. Our sys-

tem is able to achieve very high detection rate for 

both 2D media attacks and virtual camera attacks. 

The average authentication time of our method is 

approximately 2 seconds, which is about ten times 

faster than the existing 3D facial authentication 

methods. 

The remainder of this paper is organized as follows. 

Section II discusses related work. Section III outlines the 

overall picture and describes the attack model of our work. 

Section IV introduces our method that defends against 2D 

Figure 1. Proposed sensor-assisted user authentication 

scheme 



media attack while still conserving the ease of use. Sec-

tion V presents our technique dealing with the threats of 

virtual cameras. Section VI evaluates our method and 

Section VII discusses related issues. Section VIII con-

cludes the paper. 

II. RELATED WORK 

Face recognition can be divided into two categories: 

verification and identification [2]. Face verification is a 

one to one match that compares a face to a template, 

whose identity is being claimed. Face identification, in-

stead, is a one to N problem that compares a face to all the 

templates in a face database to determine the identity of 

the face being queried. Apparently, facial authentication is 

closely related to the former category.  

2D media attack has been a well-known but difficult 

problem for a long time. The existing efforts can be cate-

gorized into three groups. Liveness detection tries to cap-

ture spontaneous eye blinks or lip movements [3] [9]. 

While it is useful for photo attacks, it cannot deal with 

recorded videos. Besides eye-blinks, the authors in [9] 

also use scene context, which matches background image 

to a template of background to check for forged video 

playback. It is effective against imposters but not safe 

against replay attacks. Moreover, the assumption of fixed 

camera is not valid for smartphones. Texture analysis re-

lies on the different texture patterns of a photo or a real 

object. It can be further divided into two subcategories. 

The first focus on the printing failures or overall image 

blur of the printed photo [10]. However, this method will 

fail if the photo is of high quality. The second detects mi-

cro-textures presented on the printer paper [11], but it 

requires the input has an extremely high resolution, which 

is not applicable for front facing cameras on smartphones. 

Motion analysis explores one or multiple images, trying to 

find clues generated by the planar counterfeits. For exam-

ple, Tan et al. [12] investigated the Lambertian reflectance 

information, in order to differentiate 3D faces from 2D 

images. Bao et al. [13] compared the difference of the 

optical flow fields under various conditions for the same 

purpose. These methods require high-quality inputs and 

the computational complexity is very high. Optical flow 

computations, for example, are 10000 times slower than 

regular pixel level operations on a video frame [24]. Be-

sides, their performance largely depends on the complexi-

ty of the ambient illumination.  

3D face recognition has been widely studied in the re-

cent years [14] [15]. It compares the input to a pre-built 

3D head template instead of 2D templates. If the face cap-

turing in each authentication trial is also 3D, this approach 

is robust to 2D media attacks. However, 3D face recogni-

tion is still in its infancy. Sandbach et al. [21] presented a 

survey on 3D face expression recognition and concluded 

that the high frame rate requirements and frame resolution 

limit its practical usage. More importantly, the 3D captur-

ing process is much more time consuming than 2D meth-

ods or entering a password, therefore it is not suitable for 

device unlock or app login. We will further discuss it in 

the next section.  

There have been some studies on extracting non-inten-

tional motions from videos. For MPEG and MPEG2, mo-

tion vectors can be directly used to estimate the motion 

between frames, but it is not a generally applicable meth-

od for arbitrary video formats. Deshaker [17] calculates 

the shift that can achieve maximum likelihood between 

frames in a top-down fashion. Vella et al. [18] separated 

foreground from background before movement estimation. 

Xu et al. [19] analyzed video motions based on extracted 

feature points. All these works aimed at improving video 

quality instead of security purpose, and they were not 

optimized for facial authentication videos which have 

their own unique characteristics.  

Biggio et al. [23] proposed a multi-modal technique 

where outputs of fingerprint and face recognition tech-

niques are fused together. [22, 24] presented a magnetic 

user authentication system to avoid both credentials and 

images to authenticate a user. It requires users to hold a 

magnetic pen to draw 3D signature in air which are then 

authenticated using the magnetic sensor in the smartphone. 

Unlike those approaches that rely on independent pro-

cessing of different sensors, our approach relies on inte-

grated processing of accelerometers and camera readings. 

III. METHOD OVERVIEW 

 

III.A Sensor Assisted Facial Authentication 
 

Today’s smartphones are typically equipped with a 

plethora of sensors, some of which are not fully utilized. 

Motion sensors (accelerometers and gyroscopes), proxim-

ity sensor, digital compass and ambient light sensor have 

become de facto equipment. Microphone can be viewed 

as a sound sensor, and sometimes GPS is referred to as 

the positioning sensor. Traditional facial authentications 

only use cameras to capture the user’s face image / video 

and then compare it with pre-known templates. In our 

proposed sensor-assisted facial authentication, we addi-

tionally utilize sensors in smartphones, in order to en-

hance the security or / and improve the performance of the 

authentication process.  

In this paper, in addition to the video camera and ex-

isting face recognition schemes, we use motion sensors 

and ambient light sensor to defend against 2D media at-

tacks and virtual camera attacks. Motion sensors are used 

to intelligently choose the necessary frames in the video 

for further processing, while the ambient light sensor trig-

gers screen brightness adjustment to improve the authen-

tication accuracy. 



 

Figure 2. Block diagram of proposed approach. Existing face recognition schemes use 2D frames from smart-

phone camera to authenticate the user. Our approach builds on top of regular face recognition algorithms to 

counter 2D media attacks and virtual camera attacks. 2D media attacks are countered by Nose Angle Detection 

(NAD) algorithm while virtual camera attacks are countered by Motion-Vector Correlation (MVC). The ambient 

light sensor is used to improve the lightening conditions of face-capture from different angles. The accelerometer 

sensor is used to select inputs to NAD algorithm and as an input in MVC algorithm 

Because these sensors are already built-in for almost 

all the smartphones, our approach is naturally suitable for 

smartphone unlock and app login without introducing any 

extra costs.  

 

III.B Overview of Our Method 
 

As mentioned in Section II, liveness detection and tex-

ture analysis have critical limitations, while motion anal-

ysis is not reliable under complex illumination. 3D facial 

authentication is robust to 2D media attacks. However, 

they are much more time-consuming and difficult to use. 

The typical implementation requires that the motion of the 

user’s head is synchronized with system instructions (e.g. 

the arrows shown on the screen in Toshiba Face Recogni-

tion Utility), which puts the burden on the user side. In the 

experiment (see Section VID), we find that a single trial 

in Toshiba Face Recognition Utility takes more than 20 

seconds, and even for a genuine user, it often needs mul-

tiple trials to successfully log in. This fact significantly 

hurts the usability of 3D facial authentication, for it is 

more troublesome than simply using a password. 

Our proposed approach is simple, intuitive and easy to 

use. It only requires the user to pick up the phone, move it 

horizontally for a short distance in front of the face, and it 

is done. In Section VI, we will show that the average time 

cost for authentication is less than two seconds, which is 

significantly faster than the existing 3D recognition meth-

ods and comparable to the credential-based method. One 

of the differences between our method and the existing 

3D capturing is that for the former, the synchronization 

process mentioned above is not needed, which significant-

ly eliminates users’ burden. The basic intuition behind our 

approach is that by utilizing smartphones’ motion sensors 

and object recognition techniques, we are able to infer the 

relative position between the camera and the user’s face, 

so that the synchronization can be performed automatical-

ly and quickly.  

Motion sensor readings are also used to compare the 

shake of the cellphone with the shake of the video been 

recorded during the authentication process. In this way, 

our method can also defend against virtual camera attacks, 

and more importantly, no extra operation is imposed on 

users. Since our method is of high security and very easy 

to use, it is a promising technique that can bring the 

smartphone users with more pleasant authentication expe-

rience.  

Our work does not touch upon regular face recognition 

techniques that focus on recognition of facial features to 

identify and authenticate a person (from adversaries), 

which are orthogonal to our work (see 4
th
 paragraph of 

Section VII). The main contribution of our system is nose 

angle detection algorithm to counter 2D media attacks 

and motion-vector correlation algorithm to counter virtual 

camera attacks. Figure 2 gives a block diagram explain-

ing the main working logic of our scheme which will be 

detailed in the following sections. Section IV discusses 

nose angle detection scheme, and Section V presents mo-

tion vector correlation algorithm, respectively. 

 

III.C Attack Model for 2D Media Attack 
 

In the context of facial authentication, 2D media at-

tack refers to the attacks that use planar photos or video 

clips containing user's face to cheat the authentication 

system, making it believe it is a real user’s face. When 

using photos, such an attack is also referred to as photo 

attack or print attack in some literatures. 

In our attack model, attackers can use either photo-

graphs or videos containing user’s face to spoof the au-



thentication system, and we assume the quality of these 

photos or videos can be sufficiently high. In the authenti-

cation process, the users’ faces or planar counterfeits are 

captured by the front-facing camera of smartphones, 

whose typical resolution is approximately 1 to 2 mega 

pixels. There is no specific requirement on the illumina-

tion conditions when the attack happens. 

 

III.D Attack Model for Virtual Camera At-

tack 
 

As mentioned in Section I, virtual camera attack re-

fers to the attack that virtual camera software streams a 

clip of pre-recorded video containing a genuine user’s 

face, circumventing the authentication system by making 

it believe the video is captured in real time. 

In the attack model, attackers have the full knowledge 

of the authentication requirements (e.g. eye-blinks, face 

expressions, the movement of the head or the movement 

of the cellphone, etc.). In addition, the attacker may be 

able to obtain the video in which the genuine user is per-

forming required actions (to log in). In the attack, the pre-

recorded video is streamed via virtual camera software to 

cheat the authentication system. Here we assume the at-

tack’s target is websites or smartphone apps, whose au-

thentication system typically locates at the server side.  

We also assume the attacker uses the market-available 

virtual camera tools or lightly modified version of such 

tools. Their ability is to stream a recorded video, making 

the operating system believe it is a real-time video cap-

tured by a hardware camera in the smartphone. The attack-

er does not have the power to forge the motion sensor 

readings of the phone (see last paragraph of Section VII). 

  

IV. NOSE ANGLE DETECTION 
 

In this section, we explain how our proposed method 

defends against 2D media attacks without penalizing the 

authentication speed. 

 

IV.A Differentiate 3D Face from 2D Counter-

feits 
 

Assume we have a sequence of images (or video 

frames) captured by a front-facing camera during the hor-

izontal move in front of the face. In this subsection, we 

present how to differentiate real 3D faces from 2D coun-

terfeits based on these images. Theoretically two images 

are good for the detection (one from the left side of the 

face and the other from right), but more images can im-

prove the accuracy, as well as prevent the attacker from 

changing the photo in the middle (clever attackers may 

use different photos to perform the attack). We leave the 

timing of the image capturing to the next subsection. 

 

 

Figure 3. Change of the nose in a sequence of frames 

Given an image or video frame   containing user’s 

face, we first transform it to a grayscale image, noted as 

  . This operation is trivial; we do it because some librar-

ies only take grayscale inputs. Let the histogram of    be 

  , we perform histogram equalization on    to enhance 

the contrast. Assume (x, y) is a pixel in    and its gray 

level is i, let: 

  ( )  
  

 
 (     )  

where n is the number of pixels of the image, ni is the 

number of occurrences of gray level I, and L is the total 

number of gray levels. Viewing p as a probability density 

function, the corresponding cumulative distribution func-

tion is: 

   ( )  ∑  ( )
 

   
  (1) 

The gray level of the pixel (x, y) in the new image (af-

ter histogram equalization) is: 

   ( )  (   { }     { })      { }  (2) 

 

 
    a. original frame           b. grayscale transform     c. histogram equalize  

 
       d. nose detection            e. edge detection              f. lines fitting 

Figure 4. Nose border detection 



Here i is the gray level of (x, y) in   .  max{i} (min{i}) 

is the largest (smallest) gray level existed in   . Note the 

new image we get as    , and all of the following pro-

cessing is performed on    . 
In the next step, we extract the nose region from    . 

We put emphasis on the nose because it tends to show 

significant differences between a real face and a planar 

photo in our method. Given a series of images (captured 

by the front-facing camera) of a planar face photo, even if 

they are taken from different angles, the noses in these 

images are of the same shape and can match each other 

after necessary rotation, translation and scale. Instead, 

given a real 3D face, the noses in multiple images from 

different angles cannot simply match each other this way. 

The images taken from left and right will show different 

sides of the nose. Figure 3 illustrates the change of the 

nose (of a real 3D face) captured by a front-facing camera 

when the smartphone moves horizontally from left to 

right. The solid lines depict the outlines of the nose. We 

would like to emphasize that in Figure 3, the face on the 

left and the one on the right are not mirrors, but they pre-

sent either side of the face respectively.  

There are two approaches to detect the nose. The first 

is using face detection tools to figure out the face region, 

and then infer the approximate position of the nose based 

on biology knowledge. The second approach detects the 

nose directly by utilizing Haar-like features. Haar-like 

features are useful for real-time detection of face and faci-

al regions such as eyes or nose. They are used in popular 

Viola-Jones face detection algorithm [20] and implement-

ed in tools such as Haar Cascades in OpenCV. We use 

the second approach for its higher accuracy and faster 

implementation. Figure 4 illustrates each step starting 

from the original frame (Figure 4a, 4b, and 4c illustrate  , 

   and     respectively for a sample image). Figure 4d is 

the output of nose detection algorithm. 

After obtaining the region of the nose in    , we calcu-

late the nose edges. We test various edge detection opera-

tors, such as prewitt detector, marr detector, canny detec-

tor, etc., and their performances are compared in Section 

VIB. The detected edges are presented in Figure 4e (in 

this example, prewitt operator is used), and here we only 

focus on the edges within the nose region which is given 

by the previous step.  

Next, we use two straight lines to perform curve fitting 

on the nose edge. MMSE (minimum mean square error) is 

employed for the estimation. Assume a line is expressed 

as ax + b, we have: 

    ∑(        )
 

 

  (3) 

where (xi, yi) are the points in the nose edge (i.e. the 

edges within the green rectangular in Figure 4e). For a 

single straight line, we can easily calculate the values of a 

and b that minimize MSE. However, for the fitting prob-

lem with two uncorrelated lines, the computational com-

plexity becomes much higher. We use a heuristic to re-

duce this complexity. First, we mask the lower half of the 

nose area and fit the edge within the upper half with a 

single line (using Equation 3), noted as   . Second, we 

unmask the lower half, erase all the points that are close 

to    (within a threshold) or its extension, and then fit the 

rest of the points by the other line (again, using Equation 

3), noted as   . The result is illustrated in Figure 4f. De-

spite a heuristic approach, it shows good accuracy in ex-

periments (see Section VIB) and largely reduces the com-

putational overhead.  

Apparently,    and    (or their extensions) will form an 

angle. If it is a real face, the orientation of this angle will 

reverse when the camera passes the midline of the face (as 

the green lines shown in Figure 3). However, if it is a pla-

nar photo, this orientation change does not happen. In this 

way, we are able to differentiate a real face from a 2D 

counterfeit. The detection accuracy of our method is pre-

sented in Section VI.         

IV.B Cooperation of Motion Sensor and Cam-

era 

In the previous subsection, we talked about how to tell 

the difference between a genuine user’s face and a 2D 

counterfeit (photos or videos). However, the advantage of 

our method not only lies in the ability of detecting such 

attacks, but also it is easy to use and much faster than the 

existing 3D face authentication methods. To achieve this 

goal, the key is to utilize smartphones’ motion sensors 

and capture users’ face image cleverly. The authentication 

process of our method is described as follows.  

1) As soon as the authentication starts (time noted as 

  ), the front-facing camera begins to capture video and 

perform face detection (detect the existence of human face, 

OpenCV haarcascade is used). Once the face area is 

greater than or equal to a threshold (in experiment, we set 

the default value to 40% area of the video frame), the 

front-facing camera starts recording video (time noted as 

  ). The area of the face is approximated by the area of 

the face detection output (ususally a rectangular). At the 

same time (  ), our system starts sampling the readings of 

accelerometers. If no face is detected, the authentication 

system will show a prompt and ask the user to move the 

phone closer to the face. 

2) During the video recording, once the face area is 

smaller than a threshold (by default, 30% of the frame 

area) or the face can no longer be detected, the video 

recording stops. If no horizontal move is detected, a 

prompt will show on the screen asking user to move the 

phone horizontally in front of the face. If the horizontal 

move stopped for a time period longer than a threshold, 

the video recording also stops. The accelerometer sam-

pling always terminates at the same time when video 

stops recording (time noted as   ).  



3) During the horizontal move, if the light sensor 

detects that the ambient illumination is very low, the 

system will change the majority of screen area to brighter 

colors and turn the screen brightness up, which helps 

increase the illumination, make the nose outline clearer, 

and thus improve the accuracy of edge detection. 

4) Our system analyzes the accelerometer readings 

(from    to    ), based on which it calculates the time 

when the phone is at its left most and right most position 

during the horizontal move, noted as    and   , 

respectively. Then, the video frames captured around time 

   and    are used for 2D media attack detection, in which 

the method introduced in Section IVA is applied. More 

details are presented as follows.    

X

Y

Z

X

Z

Y

 
                     a                                                                     b 

Figure 5. Three axes of the accelerometer and orienta-

tion in smartphones 

The accelerometer in smartphones typically has three 

axes, as shown in Figure 5 (z axis is orthogonal to the 

plane of the phone screen). In order to perform a success-

ful facial authentication, the virtual line linking two eyes 

should be approximately parallel with the width dimen-

sion of the front facing camera. Therefore, the horizontal 

move required by our method is mostly related with the 

acceleration along the x axis. As we know, accelerometers 

measures the acceleration applied to the devices. An im-

portant fact is that when a cellphone is stationary, its ac-

celerometer reads a magnitude of about 9.81 m/s
2
, point-

ing to the direction of gravity; when the phone is in free 

fall, the accelerometer reads 0. If we use the smartphone 

when standing or sitting, it is most likely that the gravity 

only affects y axis (Figure 5a). However, if a user plays 

with his phone on bed or lying on sofa, gravity can influ-

ence x axis readings (Figure 5b). Therefore, we first need 

to filter out gravity to get the real acceleration of the 

phone. Let  ⃑  
represent the estimate of gravity. Note the 

accelerometer readings as  ⃑⃑ (this vector has three compo-

nents: x, y, and z), we calculate: 

 ⃑  
   ⃑⃑  

 (   ) ⃑    
  (4) 

and note the real acceleration as  ⃑, we have: 

 ⃑  
  ⃑⃑  

  ⃑  
   (5) 

In Equation 4 and 5,    (i   Z
+
) are the time points that 

the sensor readings are collected. The basic idea is using 

exponentially-weighted moving average as a low-pass 

filter, which isolates the force of gravity. Then the re-

maining high frequency part is thereby the real accelera-

tion of the device.   in Equation 4 is a smoothing factor, 

which defined as: 

  
  

    
  (6) 

here    is the sensor sampling interval (i.e.        ), 

and T is a time constant. By default, we let T = 5  . 

Having obtained the real acceleration of the device, 

we can calculate its displacement during the horizontal 

move. It can be safely assumed that the velocity of the 

cellphone at    is 0 or close to 0, because the horizontal 

move has not started yet. So we have: 

 ( )  ∬   ( )
 

  

     (7) 

where A
x
(t) is the x-component of  ⃑, that is, the real 

acceleration of the phone along the x axis. s(t) is the rela-

tive displacement from the original position (position at 

  ). Due to the discrete nature of sensor readings, Equa-

tion 7 equals: 

 ( )  (  ) ∑ ∑   
 

  

  (8) 

The smaller    is, the more accurate s(i) we get. By 

default, we use    = 0.01s. Then we calculate the min and 

max values of s(i) based on Equation 8 such that    ≤    ≤ 

  . They stand for the left-most and right-most position 

during the horizontal move respectively. Note the values 

of    as    and    where s(i) reaches its minimum and max-

imum. 

We examine the recorded video around time   , and 

pick up three frames at    – 0.1s,   , and    + 0.1s (if the 

video is 30 fps, they are approximately 3 frames away 

from each other). These three frames are processed using 

our method discussed in Section IVA, and the frame with 

minimum MSE is retained (refer to Equation 3). The same 

operation is performed on the frames around time   . Fi-

nally, two retained frames are compared to each other on 

the orientation of the angle between    and    (see Section 

IVA). 

So far we have discussed how to quickly differentiate 

a real 3D face from a 2D photo (or video) with the help of 

motion sensors. Apart from the frame processing men-

tioned above, we perform anomaly detection on each 

frame between    and   . Face detection is applied on 

these frames to detect the absence of user’s face or dupli-

cated faces, in order to prevent the attacker from changing 

photos in the middle. Although this operation has to be 

performed on all the frames between    and   , the cost is 

much lower than the 2D counterfeits detection discussed 

above. Clever attackers will be further discussed in Sec-

tion VII.  

Besides, the frame around time (   +   ) / 2 is used as 



the input for routine face recognition (matching with a 

template whose identity is being claimed); but for this 

task, we can employ the existing methods and it is or-

thogonal to our work. 

 

V. MOTION VECTOR CORRELA-

TION 
 

In Section IV, we present our method that defends 

against 2D media attacks. Now we move on to the detec-

tion of virtual camera attacks, which is another important 

threat to the facial authentication. 

The attack model of the virtual camera attack is de-

scribed in Section IIID. Since smartphones are hand-held 

devices, non-intentional shakes are inevitable for facial 

authentication videos captured by the front-facing camera. 

The basic idea of our method is to extract these shakes 

from the video, and compare with the shakes detected by 

the motion sensors. If it is a match, we can infer that the 

video is captured in real time; otherwise, it is very likely 

to be a pre-recorded video streamed via virtual camera 

software. 

An important rule is that only small-scale random 

shakes (non-intentional hand shaking) are used for the 

matching, because large-scale motion trajectory can be 

easily emulated. Our virtual camera detection is per-

formed by reusing the video and sensor readings recorded 

during    and    (see Section IVB); no extra operation is 

required from users.  

Now we present our method for video motion extrac-

tion. Given two consecutive frames,    and     , we first 

reduce them in scale (resize to m×n). Assuming the frame 

aspect ratio is 3:4, by default, we let m = 24 and n = 32. 

The resized frames are noted as  ̅  and  ̅    respectively. 

Then we apply panning (vertical and horizontal), rotation 

and zooming on  ̅ , and the frame after processing is noted 

as  ̃ . Our goal is to find the  ̃  that best matches  ̅   . In 

our method, we set a range for the panning, rotation and 

zoom operations. For example, the panning should be no 

more than 5 pixels (in each direction) and rotation is less 

than 10 degrees. The limitation is introduced for two rea-

sons. First, we are only interested in small-scale shakes. 

The time interval between two consecutive frames is only 

around 0.03 second. If the difference between them is 

large, it is very likely that what we detect is large-scale 

motion instead of a small shake. Second, since we need to 

try all the combinations of panning, rotation and zoom to 

find the best match, the search space is considerably large. 

Putting these physical restrictions on the search space 

accelerates our method without any negative implications 

on results. 

The degree of match between  ̃  and  ̅    is measured 

by correlation coefficient. Compared with absolute value 

matching, it better tolerates the ambient light change and 

camera ISO / aperture auto adjustments. Correlation coef-

ficient of  ̃  and  ̅    is defined as follows: 
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Figure 6. Small shake extraction from video 
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where      is the value of pixel (x, y) in  ̅   , and      

is the value of pixel (x, y) in  ̃ .  ̅ is the mean value for all 

     while  ̅  is the  average  of      . For each   ̃ , we  

calculate   ,  and  the  one  with   highest    is  memorized  

 (noted as  ̂ ). The operation performed between  ̃  and  ̂  

is noted as OPi. 

If the largest   is smaller than a threshold (0.7 in our 

settings), it means very likely the motion between    and 

     is so large that any minor shift will not let them 

match. In this case, the result is discarded and we move 

on to the next frame pair (     and   ). Otherwise, the 

following steps are performed. 

We divide    into small blocks. For each block, we 

calculate a shift to make it best match      (in their origi-

nal resolutions) by using the same approach as for  ̂ . The 

only difference is that previously we apply panning, rota-

tion and zooming, but now only vertical and horizontal 

panning is allowed. In other words, now OPi is fine-tuned 

in the block level. The results of the best shift for each 

block is illustrated on a sample frame in Figure 6 (the 

arrows stand for the adjustment added to OPi for each 

block; OPi itself is not included). If the majority of these 

adjustments are the same (or very close), we use this val-

ue (or the average) as the shake of   , noted as  ⃑⃑⃑ . Other-

wise, we assign a priority to each block. The blocks in the 

background but with details have the highest priority 

(such as region A in Figure 6), the blocks in the fore-

ground rank the next (e.g. region C), and the background 

blocks with few details have the lowest priority (e.g. re-

gion B). We choose the average adjustment of the blocks 

with the highest priority as  ⃑⃑⃑ . Foreground and back-

ground are differentiated by the previous face detection 

output (blocks within the face region is considered as 



foreground, otherwise background), and details are judged 

by the diagonal subband of the wavelet transform of    

(diagonal subband values are close to zero if few details 

exist). If the panning component of OPi is smaller than a 

threshold, we add this component to  ⃑⃑⃑  and note the result 

as  ⃑⃑⃑ . Otherwise,  ⃑⃑⃑  is the same as  ⃑⃑⃑ . Similarly, we cal-

culate  ⃑⃑⃑ for each frame during    and   . 

Compared with the standard motion vector extraction 

method, our method includes a number of modifications 

to improve the performance. Authentication videos have 

their unique characteristics. For example, the foreground 

of an authentication video is always a human or human’s 

face; these videos usually do not contain fast moving ob-

jects, etc. By utilizing these characteristics, our method 

presented above can extract motions faster than the stand-

ard method without negative implications on results.   

In parallel to the motion extraction from video frames, 

we extract shakes from accelerometer readings, where the 

method is similar as in Section IVB. The shake of the 

phone ( ⃑) is calculated by Equation 5 (see Section IVB). 

In order to remove large-scale motions, we redefine   by 

letting T = 2   in Equation 6. As T decreases,   increases, 

and the cutoff frequency of the filter becomes higher. The 

value of T is determined by the experiments (please refer 

to Section VIC). Since  ⃑⃑⃑ is a two dimensional vector that 

only includes the shifts parallel to the camera sensor plane, 

we remove the z-component of  ⃑, making it consist of 

merely the comparable information as in  ⃑⃑⃑. The trimmed 

 ⃑ is noted as  ⃑. 

 ⃑⃑⃑ and  ⃑ are then aligned according to the time scale. 

As mentioned previously, some elements of  ⃑⃑⃑ could be 

dropped in our method, so we also remove the corre-

sponding elements in  ⃑ if necessary. Correlation coeffi-

cient is employed to measure the similarity between  ⃑⃑⃑ 

and  ⃑: 

  
  ( ⃑   ( ⃑))( ⃑⃑⃑   ( ⃑⃑⃑)) 

  ⃑  ⃑⃑⃑

  (9) 

where   is expectation and   stands for standard devi-

ation. The closer     is to one, the better  ⃑⃑⃑ and  ⃑ match-

es. Otherwise, if     is close to zero, a virtual camera at-

tack is assumed. The threshold is determined by experi-

ments (please refer to Section VIC). 

 

VI. EVALUATIONS 
 

We implement our method and conduct real-world ex-

periments to evaluate it. We first talk about the implemen-

tation details and experiment settings. Then, we evaluate 

the accuracy of our 2D media attack detection scheme and 

virtual camera attack detection approach respectively. 

After that, the authentication speed of our method, exiting 

3D facial authentication and credential-based authentica-

tion methods are compared.  

VI.A System Implementation and Experiment 
Preparation 

Our system is implemented in a Samsung Galaxy 

Nexus smartphone. The operating system is Android 4.2.2 

and the front-facing camera has 1.3 mega pixels. The vid-

eo captured in facial authentication is 480×720@24fps, 

and in the succeeding processing we chop them to 

480×640.  

We use Haar Cascades in OpenCV for face and facial 

region detection. haarcascade_frontalface_alt2.xml and 

haarcascade_mcs_nose.xml are employed to detect face 

and nose region respectively. JavaCV is used as a wrapper 

to call the native functions.   

The main objective of our system is defending against 

2D media attacks and virtual camera attacks without in-

troducing high costs. Face identification techniques are 

orthogonal to our work; any authentication system using 

2D face recognition can benefit from our method. But for 

the completeness, we do include a PCA (principal com-

ponent analysis) based facial identification module, which 

is also implemented using OpenCV. The video frames 

around time (   +   ) / 2 are used (see Section IVB) as the 

input for template matching.  

We now compare the face detection accuracy (using 

the module mentioned above) when the normal operation, 

hand-picked best frame, and automatically extracted 

frame (by our method) are used, respectively. The pur-

pose of this experiment is to check whether our method is 

able to pick the appropriate frame for template matching, 

since face recognition algorithms are usually sensitive to 

the orientation between the camera and the user. 
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Figure 7. Performance of automatic frame selection 

In Figure 7, traditional authentication is the case 

where a user holds the smartphone, keeps it still, and the 

smartphone takes a picture of the user’s face and performs 

the recognition. Other two cases use the video collected 

by our method (horizontally move the phone in front of 

the user’s face); the difference lies in that, “hand-picked 

frame” refers to the approach in which we manually pick 

the best frame (where the face squarely opposite to the 

camera) from the video, while “automatically picked 



frame” fully utilizes our method and the frame is picked 

by calculating (   +   ) / 2. For each case, we plot the ac-

curacy of 180 trials, where data are from 9 volunteers 

(volunteers will be detailed in Section VIB). The results 

show that our method is good enough in automatic frame 

selection (for succeeding template matching). 

VI.B Accuracy of 2D Media Attack Detection 

In this subsection, we evaluate the 2D media attack 

detection accuracy of our system. 

10%

20%

30%

40%

50%

60%

70%

80%

90%

roberts sobel prewitt marr canny

Legend

Detection Rate

False Alarm Rate

Figure 8. 2D media attack detection accuracy 

We have 9 volunteers, each of them performing 20 tri-

als of facial authentication using our system. Besides, we 

take two pictures and one clip of video for each volunteer, 

all of which are of high quality and with the head centered. 

Volunteers include 8 males and 1 female. 6 of them are in 

their twenties while the other 3 are in their thirties. They 

are all friends of authors but are not inside or related to 

our research lab. They participated in experiments volun-

tarily without compensation and were not aware of the 

purpose of experiments. For the facial authentication trial 

using our system, each volunteer was asked to hold the 

Galaxy Nexus in front of his / her face, click a “start” but-

ton on the screen, move the phone horizontally for a short 

distance, and then click the “complete” button. Besides 

two buttons mentioned above, the screen shows the real 

time scene captured by the front facing camera as well as 

a large green square. We asked the volunteers to locate 

their face approximately inside this square when moving 

the phone. 

During the attack, pictures are printed on white paper 

in high quality (in case of the video attack, videos are 

played in another device), facing the smartphone that is 

used for authentication. Distance is carefully adjusted, 

making the size of the face on the planar media the same 

as the real one. We give each photo (video) ten trials. 

Therefore, in total we have 180 genuine user trials and 

270 attacks (180 photo attacks and 90 video attacks). Half 

of them are performed indoor and the other half outdoor. 

For each test, the smartphone is moved horizontally for a 

short distance in front of the face (real faces or 2D coun-

terfeits). The experiment result is shown in Figure 8. 

Here detection rate refers to the number of detected at-

tacks divided by the total number of attacks, while false 

alarms stand for genuine users’ trials which are reported 

as attacks by our system. Therefore, a good detection sys-

tem is expected to have a high detection rate and a low 

false alarm rate. In Figure 8, x axis exhibits 5 different 

edge detectors (for nose border extraction, refer to Section 

IVA). For each detector, we try different thresholds and 

the best one is used in the final settings. Figure 8 shows 

that prewitt and canny detector have the best detection 

rate (97% and 93%), while prewitt and marr have the best 

false alarm rate (3% and 5%). Combining the results, we 

choose prewitt detector for our method. Hereinafter, we 

use this detector in the rest of experiments unless other-

wise specified.  
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Figure 9. Detection accuracy under different configu-

rations 

In Figure 9, we show the detection accuracy of the 

photo attack and video attack separately. We also twist 

some configurations of our method to see how they affect 

the performance. In x axis, A is the standard configuration 

of our method. B uses brutal force search instead of the 

heuristic (see Section IVA) to find    and    (two lines 

used to fit nose edges). The brute force method has negli-

gible performance gain as compared to the increased 

computational cost (15 times slower). In C, we disable the 

brightness auto adjustment described in 3) of Section IVB, 

and a performance drop is observed. Because only half of 

our tests are performed indoor, the actual influence might 

be even stronger than shown in Figure 9.  For D and E, we 

change the motion sensor sampling rate. It can be seen 

that increased sampling time leads to lower performance.  

For all the tests, an observation is that video attacks are 

slightly harder to detect than photo attacks.  



Next, we compare the performance of our method to 

the 3D authentication method as well as the Android face 

unlock (in version 4.2.2) under 2D media attacks. For the 

3D method, we use Toshiba Face Recognition Utility. The 

results are shown in Figure 10. The result shows that the 

detection rate of the 3D method is only marginally better 

than ours for both photo attack and video attack. However, 

our scheme has a lower false alarm rate than 3D authenti-

cation method (up to 10% difference). More important, the 

detection time of the 3D method is significantly longer 

than ours, which will be shown later. 
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Figure 10. Comparing the detection accuracy with 
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As to the face unlock alternative embedded in the An-

droid system, since it includes an “eye blink” detection 

mechanism starting from version 4.1, it does a decent job 

in photo attacks, but it cannot effectively detect video 

attacks, since many videos naturally contains spontaneous 

eye blinks.  In sum, our method can achieve a detection 

rate of 97% in 2D media attack detection, and its false 

alarm rate is as low as 3%. The speed of our method will 

be evaluated and compared in Section VID. 
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Figure 11. Detection accuracy under different illumi-

nance 

We now compare the accuracy of our 2D media attack 

detection algorithm under different illumination condi-

tions. The indoor environment has illuminance of 10 - 50 

lux, while the outdoor tests are performed under illumi-

nance that varies from 50 to 200 lux. The averaged results 

for this set of experiments are shown in Figure 11. We 

can see from the results that the performance of our meth-

od is not greatly affected by the variation of illumination 

conditions (in contrast, as mentioned in Section II, the 

performance of motion analysis methods largely depends 

on the illumination). We also find that if we disable the 

light sensor and our automatic-screen-brightness-increase 

(Section IV-B) mechanism, in the indoor backlighting 

case, the false alarm rate will increase approximately 10 

percent.   

VI.C Accuracy of Virtual Camera Attack De-

tection 

Now we evaluate our system’s detection accuracy of 

virtual camera attacks. In our implementation, 2D media 

attacks can be detected either in the smartphone or at the 

server side (in order to apply to device unlock and website 

/ app login respectively). However, the virtual camera 

attack detection can only be performed at the server side. 

A laptop (Toshiba Z930 with Intel i7-3667U CPU) is act-

ing as the server, and the authentication video and sensor 

readings are streamed to it from the smartphone in real 

time.  

We implement our system this way for two reasons. 

First, as mentioned in Section I, device unlock lies in the 

system level and has more control of hardware, so it is 

less likely to suffer from virtual camera attacks. On the 

other hand, for website / app login, which are susceptible 

to this attack, the authentication is always performed at 

the server side. Second, the computation overhead of vir-

tual camera attack detection is relatively high. Implemen-

tation in the server can achieve better performance. 
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During an attack, a pre-recorded video (with a genuine 

user’s face in it) is streamed to the server instead of the 

live video captured by the front-facing camera. Mean-

while, the same horizontal move of the smartphone is also 

performed. The dataset we use is the same as the previous 

experiments. We have 180 genuine users’ trials and 90 

pre-recorded videos. They are divided equally into two 

sets, referred to as D1 and D2 respectively (each contains 

90 genuine trials and 45 attacks).  

First we use dataset D1 to determine the threshold for 

    (see Section V; if     is smaller than the threshold, an 

attack is assumed).     of 90 genuine trials and 45 attacks 

in D1 are calculated using Equation 9 (T is fixed at 3  ) 

and presented in Figure 12. From the result, we can see 

that the genuine trials and the attacks are separated fairly 

clearly.     of most attacks are smaller than 0.4 and genu-

ine trails are the opposite. Based on this observation, we 

set the threshold of     at 0.4, which is used as the default 

value of our method thereinafter.  

Next, we vary the value of T (see Sections IVB and V) 

and see how it affects the detection accuracy. As men-

tioned before, in our method, large-scale motions are fil-

tered out from both sensor readings and video motion 

vectors, but the amount that is removed from two sides 

(sensor readings and video motion vectors) should be ap-

proximately the same. Intuitively speaking, adjusting the 

value of T is the operation that twists the sensitivity of the 

sensor filter and makes two amounts to be removed ap-

proximately the same. The test is performed on dataset D2. 

The detection rate (solid line) and false alarm rate (dashed 

line) are plotted in Figure 13. 
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Figure 13. Detection accuracy of virtual camera at-

tacks 

The experiment results show that when T is around 

2  , the best performance can be achieved. So we use T = 

2   as the default value in our method for virtual camera 

attack detection. From the experiment, we can see that our 

method is able to achieve a detection rate of 95% while 

the false alarm rate is as low as 2% in virtual camera at-

tack detection. 

VI.D Authentication Speed and Usability 

In this subsection, we compare the authentication time 

of our method, 3D facial authentications, and credential 

based authentications.  

In addition to the 180 trials in our system mentioned 

above, our volunteers perform 90 trials on Toshiba Face 

Recognition Utility (to log into a Toshiba laptop) using 

3D facial authentication, as well as 90 trials to login a 

website by entering the username and password. For all 

three schemes, time is counted until the authentication 

result is sent back. To reduce the influence of network 

latency, we use local servers in the LAN. The time costs 

of three schemes are averaged and plotted in Figure 14 

(gray bars). We can see that speed-wise, our system is 

comparable to the credential-based system, and 9 times 

faster than the 3D facial authentication method. 
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All the trials used for calculation in the last experi-

ment are in fact successful trials. In some cases, a trial can 

fail even for a genuine user. For example, the user may 

fail to synchronize the head movement with the instruc-

tions given by the 3D scheme; user’s face may be too far 

away from the front camera; the required horizontal move 

is not detected by our method; or the user enters the 

wrong password by mistake, etc. In the following test, we 

include all the trials and calculate the time cost per a suc-

cessful trial. The result is plotted as dotted bars in Figure 

14. Our method is still very close to the credential-based 

scheme in speed, and its advantage over the 3D facial 

authentication becomes even larger (13 times faster), 

which exhibits good usability of our method. 

 

VII. DISCUSSION 
 

We claim that our method can detect 2D media attacks, 

including photo attacks and video attacks. In Android 4.2, 

users are required to blink their eyes during the face un-

lock, which can be easily spoofed by a video containing 

eye blinks. Our method is safe for such videos. However, 

clever attackers may think about using more sophisticated 



videos. Since our system requires a short move of the 

smartphone from left to right in front of the face, how 

about using a video in which the genuine user slowly 

turns his / her head from right to left? 

This method sounds good but in fact it can hardly 

compromise our system. The reason is as follows. First, 

the feasibility of the video attack against the Android face 

unlock is based on the fact that videos containing eye 

blinks are relatively easy to obtain (e.g. through social 

networks). Blinking is a spontaneous or voluntary action 

of human eyes. A video with a clear user’s face in it has 

high probability to contain eye blinks as well. On the con-

trary, finding a video in which the user turns head slowly 

is much more difficult.  

Second, as mentioned above, our method also collects 

sensor readings during the horizontal move of the smart-

phone. Keeping the phone still and only relying on the 

head turn in the video can be easily detected by our sys-

tem. The attacker must move the phone horizontally and 

synchronize the smartphone movement with the head turn 

in the video (making it look like the phone is moving, but 

the user is not turning head), which is very difficult.  

In this work, we have shown a prototype implementa-

tion of our system on the top of haarcascade face recog-

nition utility available in openCV. On one hand, the 

recognition accuracy of this default face recognition 

scheme can limit the overall accuracy of our system. Iris 

recognition or other advanced facial feature recognition 

schemes can be used instead of haarcascade to achieve 

higher detection rate and lower false alarm rate for our 

authentication system. On the other hand, different recog-

nition schemes mentioned above are orthogonal to our 

research. The method discussed in this paper can still be 

used to counter against 2D media attacks and virtual cam-

era attacks when the face recognition schemes other than 

haarcascade are used. 

As mentioned in Section IIID, the proposed method is 

based on the assumption that motion sensor readings from 

the smartphone that performs facial authentication are not 

compromised. If an attacker is able to forge the sensor 

readings and manipulate the video (i.e., use a pre-recorded 

video as if it is captured by the physical front-facing cam-

era of the smartphone) at the same time, our system can be 

compromised. In this paper, we focus on defending against 

the virtual camera attacks which take advantage of virtual 

camera software or lightly modified versions of such soft-

ware, instead of an omnipotent Trojan which can compro-

mise the OS, manipulate the video and forge the sensor 

readings simultaneously. The former is the tools that are 

available on market, while the latter does not exist for now. 

Of course, an attacker may think of using virtual camera 

software as well as a Trojan that can modify the sensor 

readings at the same time. However, it requires that the 

virtual camera and Trojan cooperate together and synchro-

nize perfectly, which is difficult and significantly raises the 

bar for breaking into the authentication system. 

 

VIII. CONCLUSION 
 

In this paper, we proposed a novel facial authentica-

tion method for smartphones, which can defend against 

2D media attacks and virtual camera attacks without pe-

nalizing the authentication speed. Motion sensors inside 

smartphones are employed to achieve this purpose. 

We conduct extensive experiments to evaluate our 

method. The result shows that the attack detection rate of 

our method is very high, while its speed is comparable to 

credential-based methods, and over ten times faster than 

the existing 3D facial authentications. Our work over-

comes the most important limitations of current facial 

authentication techniques, making it more practical and 

useful for smartphones. It has the potential to change the 

current state of smartphone authentications. 
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