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Abstract Interactive online video applications, such as video telephony, are known for

their vulnerability to network condition. With the increasing usage of hand-held wire-

less mobile devices, which are capable of capturing and processing good quality videos,

combined with the flexibility in an end-user movements have added new challenging

factors for application providers and network operators. These factors affect the per-

ceived video quality of mobile video telephony applications, unlike conventional video

telephony over desktop computers. We investigate this impact on video quality of mo-

bile video telephony in varying network conditions and end-users movement scenarios.

Based on 312 live traces, we quantitatively derive the correlation between the perceived

video quality and the network Quality of Service (QoS) and user mobility. With the

results, we develop a Quality of Experience (QoE) prediction model for mobile video

telephony using Support Vector Regression techniques. The prediction models display

≈ 0.8 pearson correlation with experimental data. Our methodology and findings can

be used to guide the video telephony application providers and network operators to

work towards satisfying end-user experience.
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1 Introduction

With the increase in smartphone users and the rapid growth of video applications

(apps) [5], mobile video traffic keeps gaining major portion of the mobile traffic. The

smartphone video apps, being the major contributor of mobile video traffic, can be

categorized into interactive and non-interactive video apps. Among interactive apps,

gaming and video telephony are the two most sought-after smartphone video apps.

Particularly, the use of mobile video telephony is on a rapid rise in both enterprise and

consumer worlds [13]. Many video telephony applications for mobile phones have been

rolled-out in the market. Fring, Tango, Skype, FaceTime, Vtok, ooVoo are just a few

examples of them. With improvement in access network bandwidths (LTE 4G networks,

802.11ac), video coding (HEVC or H.265 codec) and device technology (quad-core

processors), we expect a big leap in the user expectations of the quality of experience

(QoE) in video telephony in coming years.

It is obvious that the state of the network impacts the quality of video transmitted

through it. If the network path suffers from significant jitter or loss, the perceived

video quality at the smartphone gets deteriorated. Buffering techniques, which are

useful for non-interactive videos, such as streaming applications, cannot be of help for

delay-intolerant interactive videos, in particular, video telephony applications. These

stringent network Quality of Service (QoS) requirements and demand for anywhere

any-time connectivity for smartphone video telephony apps have posed tremendous

challenges to the network operators. It, therefore, becomes quintessential to examine

the impact of the underlying network on the performance of such video apps.

However, for end-users, they only care about the quality of experience (QoE) of the

delivered multimedia services. Most of the mobile video telephony apps are proprietary

software with undisclosed communication protocols and often using encrypted channels.

Thus, it is insufficient for network operators to evaluate the end-user QoE by simply

inspecting video packets in the network. In addition, application providers need to

know how their apps performed in given networking conditions. Hence, both network

operators and application providers can benefit from QoE prediction models that map

end-user perception of delivered video services to the network QoS parameters.

Furthermore, mobile devices make the treatment of video quality of video telephony

apps different than what has been perceived conventionally [14]. The smartphones are

not stationary as laptops or desktops during video call conversation. Hence, unlike

other end-devices, smartphone end-users have the flexibility to hold the end-device

and move around. This leads to the following questions:

1. How a given networking condition impacts the perceptual video quality of smart-

phone video telephony apps?

2. Does end-user mobility impact end-user perceptual video quality? In other words,

for video quality assessment, should the brisk movements by the end-user with

his/her smartphone be treated differently as compared to the scenario when the

end-device is stationary like a laptop or a desktop?

3. Can prediction of perceptual video quality of the apps be based on the networking

conditions? If so, what guarantees can be made and what not?

Although many works have characterized the performance of video telephony apps

[19, 26, 31, 16, 25], to the best of our knowledge, very limited work has been done in

terms of video telephony apps’ perceptual quality. Also, to the best of our knowledge, no

work has been done in this aspect with end-devices being mobile (for example, smart-
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phones). For concreteness, we choose two representative video telephony applications,

Skype and Vtok (based on Google Talk API) for studying their perceptual video qual-

ity in various network states and end-user mobility scenarios. The main contributions

of this work can be summarized below:

– In this work, we characterize the performance of two major video telephony appli-

cations (Skype and Vtok) in terms of perceptual video quality. To the best of our

knowledge, this is the first effort in this direction;

– Our study provides application providers and network operators with a deeper

understanding of how video telephony works, the impact of network impairments

such as packet losses, bandwidth and delay as well as the influence of user mobility;

– Based on objective and subjective evaluations, we build QoE prediction models for

both Skype and Vtok.

Note, we have used the terms QoE prediction model and Mean Opinion Score (MOS)

prediction model interchangeably. We substantiate our claims using 312 live traces, each

trace lasting for around 4 minutes of video conversations over smartphones. Although

some findings we draw are specific to these two applications, most of them are generic

to video telephony applications. The insights gained from our work can be used by the

application providers of mobile video telephony to properly handle motion in videos

without sacrificing video quality. The network operators can also use these prediction

models to plan ahead to optimize network resources and take appropriate steps to

troubleshoot any issues arising in the network that may deteriorate the video quality.

For example, in a cellular network, the base station can intelligently schedule the scarce

bandwidth resource according to the video applications running on the user equipment

based on the QoE prediction model.

The rest of this paper is organized as follows. Section 2 details experiment setup

and evaluation metrics. In Section 3 we present our experimental results and discuss

its implications in Section 4. In Section 5 we map our objective metrics to MOS scores

using subjective evaluations as per the ITU Standards [12] and in Section 6, we develop

a video telephony QoE prediction model, VTQoE. Section 7 discusses the related work.

In Section 8, we conclude our findings.

2 Methodology

We develop QoE models from live video telephony sessions of both Skype and Vtok

mobile apps. In this section we present the layout of experimental setup used to capture

live traces of these apps and also discuss evaluation metrics employed to arrive at the

required QoE models.

2.1 Experimental Setup

We use an experimental approach to examine the relationship between the video qual-

ity of video telephony apps and the network-layer parameters. To examine these rela-

tionships, we set up a controlled testbed between two Android SAMSUNG Exhibit II

smartphones. Smartphone 1 and Smartphone 2 are in different network domains.

Figure 1 shows the experimental setup. The data collection is done for following

two scenarios:
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Fig. 1 Setup and layout of experimental environment. Two smartphones are configured on
two non-interfering WiFi access points connected with each other via a network emulator and
backbone Internet connection.

1. Stationary− In the Stationary scenario, both Smartphone 1 and Smartphone 2

are stationary during video telephony. But the end-users are free to have body

movements.

2. Mobile− In the Mobile scenario, Smartphone 2 is recording Smartphone 1. End-

user does brisk movements in the surroundings with Smartphone 1.

In both the scenarios, smartphone cameras are focused to capture the facial part

body movements only. Smartphone 2 is connected to a Campus Access Point. A HP

compaq nc6000 laptop is also configured as an access point to which Smartphone 1

connects. The laptop is equipped with Athores 802.11abg wireless cards operating using

Madwifi driver. Each nc6000 has two Wifi antennas. The packets from and to the laptop

access point are forwarded using Ethernet. The network emulator is also installed on

the laptop. We use NETEM [18] for network emulation functionality. NETEM is used

for testing protocols by emulating the properties of wide area networks. The network

emulator is connected to the Internet via Ethernet. It emulates variable delay, loss,

incoming and outgoing bandwidth by the command line tool ’tc’ which is a part of

the iproute2 package of tools. The packets are captured at both the smartphones using

tcpdump.

We took 312 live video telephony traces. Each session is more than 4 minutes long.

We capture the video of the chat session using Screencast Video Recorder. Screencast

captures smartphone screen at 21-22 fps and saves it into a MPEG4 video with reso-

lution 240x400. We use FFMPEG [8] to convert the captured video into sequence of

bitmap image files loaded later into Matlab for further analysis.

We did our experiments in a dedicated environment and at dedicated wireless

frequency channels. We did repeated experiments to measure the last access-link losses

due to the end-user brisk movements with smartphones at the same location and found

it to be negligible. This indicates that mobility or brisk walk doesn’t induce packet

losses or delays in the network and ensures that all ‘effective’ packet losses are occurring

at NETEM and not at wireless hop.

2.2 Evaluation Metrics

Subjective and objective assessments are two major techniques to evaluate QoE. In

subjective assessment, Mean Opinion Score (MOS) are collected using human subjec-

tive evaluation. Objective measurements do not capture the video quality perceived by
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(a) Blocking snapshot (b) Blurring snapshot

Fig. 2 Sample of (a) Blocking and (b) Blurring (zoomed) snapshots from video call sessions.

HVS (Human Visual System), but nonetheless, provide a good approximation of video

artifacts. Moreover, the cost of subjective assessment is very high in terms of time and

required man-power.

Given that our dataset has 312 video recordings of each being at least 4 minutes

long, it will be highly tedious (both in terms of time and resources) to perform subjec-

tive evaluations of all these videos. Hence, we first analyze the experimental data using

objective metrics. In later Section 5, we perform subjective evaluations with lesser

number of videos to evaluate the efficacy of the objective metrics used.

There are three basic models for video objective assessment. Full-reference and

reduced-reference, two of the three models, require full or partial knowledge of original

video signal. Mobile video telephony being real-time proprietary applications, it is not

possible to obtain the original video transmitted by the sender. We therefore, use no-

reference model, which is oblivious of the original video signal, to evaluate the quality

of video telephony. In our model we use no-reference spatial metrics - Blocking &

Blurring [27] to evaluate the spatial component, and use no-reference temporal metric

- Temporal Variation Metric (TVM) [2] to evaluate the temporal component of the

video.

Blocking - Existing video compression standards such as MPEG-x and H.26x, have

adopted block-based methods. In block-based methods, the image of a video is parti-

tioned into 8 × 8 blocks. Discrete Cosine Transform (DCT) is applied to the pixels in

each block and then each block is independently quantized prior to encoding.

The blocking artifact is induced by two main reasons - compression in efficiency and

network packet losses. During compression, each block being quantized independently

may cause blocking artifact where as packet losses lead to full or partial loss of the

block information. In such cases, the reconstruction of the video at the decoder will

be erroneous, in turn causing visually apparent discontinuities across block boundaries

(Figure 2(a)). We implement the technique proposed in [28] for measuring the amount

of blocking artifact in video traces captured during video telephony.
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Blurring - Blurring happens due to the loss of high frequency information. Natural

images have typically much lower energy at high frequencies. Therefore, the high-

frequency DCT coefficients have lower magnitudes. During the process of quantization,

these high-frequency coefficients tends to be zero. Consequently, the decoded image will

be blurred (Figure 2(b)).

The reasons for blurring varies from image acquisition to packet loss in blocked

images. The packet loss can lead to loss of partial information which may cause blurring.

We implement the model proposed in [17] to evaluate the amount of blurring in the

captured videos. The images in video are divided into 8 × 8 blocks. Based on the

histogram computations of the DCT coefficients of the entire image, and filtering out

the ones with zero DCT values, blurring metric is calculated. Finally, the metric is

normalized to remove dependency on the image size.

Temporal Smoothness - Blocking and blurring evaluate the video quality in the

spatial dimension. But, in addition to the spatial dimension, video also has the temporal

dimension. Temporal information is the measure of the motion of objects in a video or

movement of background including scene changes. We use the recently proposed metric

TVM [2], to measure the temporal information of the video conversations. Due to the

specific scenarios and video content, i.e. video telephony, are studied in this paper,

we modified TVM so that it can measure the temporal impairment. According to [2],

TVM is for temporal information measurement due to its high correlation with optical

information. Numerically, TVM is calculated as log of mean square value of difference

between two consecutive frames (Fp−1 and Fp) of the video (measured in dB).

TVMp = 10 log10

(

k2

d

)

(1)

where k is the color depth of a video. It depends on the number of bits used to represent

a pixel in a video frame. k = 255 if 8 bits are used. d is the mean square difference of

the corresponding pixels in two frames, Fp−1 and Fp.

d =
1

MN

M−1
∑

i=0

N−1
∑

j=0

(

Fp(i, j) − Fp−1(i, j)
)2

Logarithm is used to compensate the non-linearity of human visual system.

In a particular video content, for example, the scenarios we studied video telephony

has typical head-and-shoulder scenes, higher TVM represents the better smoothness

of the video. If the network condition is poor, packet loss can cause jerkiness, which

is captured by TVM and leads to lowering of TVM values. However, if the loss is

so severe that the whole frame(s) is/are lost, video will have freezing scenes. Freezing

scenes cause higher TVM value which definitely does not indicate the good smoothness

in this case. To make TVM always reflect the smoothness of a video, we propose to

modify TVM to incorporate video freezing artifact, as follows:

T̂ V M = TVMp − ε×
Ffl

F
(2)

where (Ffl) is the number of full frame loss leading to video freezing. F is total number

of frames in video and ε is a constant which weights the negative impact caused by

video freezing. It changes for videos with different content and length. In our video
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chat clips, we find that setting ε to 20 can effectively reflect the video freezing artifact

in different scenarios.

It is arguable that lower TVM does not necessary mean the poor smoothness as

lower TVM can be due to the fast moving scenes or scene changes. While we agree

that fast moving scenes and scene changes can lead to smaller TVM value, in our video

telephony scenarios, the network capacity does not change much during a particular

session (which is also the case in our experiments). The fast-moving scenes and scenes

changes that usually lead to higher sending rate will typically increase the chance

of packet loss which in turn impact the smoothness in a negative way. Therefore, in

a particular network scenario, i.e. within a session of the experiments, our modified

TVM effectively indicates the smoothness of a video. We refer this modified TVM as

Temporal Smoothness (TS) or simply Smoothness.

The prediction models in Section 5 (mapping objective metrics to subjective evalua-

tions) and Section 6 (Skype and Vtok QoE prediction models) are developed in WEKA

[30]. Using WEKA toolbox, we divide the data for the model into n = 10 folds, where,

n - 1 folds are for supervised learning and one fold is used to test the model for er-

rors. The errors obtained in a fold is added to the weights of nodes of next fold in the

training set. This 10-fold cross validation is used to build a robust model.

3 Experimental Results

With the mobile video telephony, end-users have the option to hold the device and

move around during video conversation. This highly likely (Mobile) scenario of video

telephony with end-user movement is compared to Stationary scenario, where end-

users are only free to do any body movements with device being static. Our goal is to

investigate all such networking conditions arising due to “mobile” video telephony and

examine if they contribute to decrease/increase in end-user QoE.

Video telephony application, being delay intolerant, primarily uses UDP protocol

for data transmission. It is therefore, not possible to deduce actual loss or delay in-

curred by the video telephony packets from packet traces. However, each of these video

telephony quality metrics performance is more-or-less intertwined with network-layer

parameters. We carefully design controlled experiments (Section 2) to study the impact

of each factor at a time while keeping others constant. We vary these network param-

eters at the network emulator, and take multiple traces in controlled experiments to

study the impact on video quality. The Delay, Packet Loss and Available Bandwidth

mentioned in the figures hereon, are the settings of network emulator. All the figures,

henceforth, plot mean values of the y-axis metrics with 90% confidence interval with

x-axis representing network QoS.

3.1 Spatial Impairments

We repeat the experiments many times for a particular network setting and take arith-

metic mean of blocking and blurring values over captured video frames as average

blocking and blurring experienced by the end-user for that network setting. We, thus,
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(c) Blocking vs Available Bandwidth

Fig. 3 Blocking & Network Impairments

characterize the spatial quality of a video captured for a fixed network setting as -

Y
block
avg =

∑N
i=1

∑
k∈f Y block

i (k)

|f |

N
, (3)

Y
blur
avg =

∑N
i=1

∑
k∈f Y blur

i (k)

(|f |)

N
(4)

where Y block
i (k) and Y blur

i (k), are the blocking and blurring experienced by the kth

frame of the ith video conversation trace respectively. N is the number of video con-

versation traces taken for a network setting. f indicates the set of such frame numbers

of a video captured in each experiment. Y block
avg and Y blur

avg , the average blocking and

average blurring respectively, are referred simply as Blocking and Blurring in the sub-

sequent sections. Intuitively, since the packet loss in the network is bursty, the spatial

impairments do not occur uniformly across all video frames. Moreover, videos captured

have variable number of video frames. Hence, we consider 1000 frames of each recorded

video having worst blocking and blurring artifacts to evaluate Y block
avg and Y blur

avg .

Packet Loss : We vary the packet loss at the emulator, from 4% to 12%. We observe

from our experiments that with higher packet loss rates (≥ 12%), Skype refuses to

establish end-to-end video conversation session. The two-way delay in the network em-

ulator is fixed to 20ms. The link bandwidth of the emulator is 80Mbps, way above
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(c) Blurring vs Available Bandwidth

Fig. 4 Blurring & Network Impairments

than the required bandwidth for the smooth functioning of mobile telephony applica-

tion. The effect of network losses on spatial video quality are shown in Figure 3(a) and

Figure 4(a).

Skype - The average blocking in Skype video remains unaffected in Stationary

scenario where as for Mobile scenario, the average blocking artifacts increase at the

loss rate of 8% and then remains constant. Unlike average blocking, average blurring

increases at loss rate of 8% for both mobile and stationary scenarios. Thus, spatial

impairments increase when the loss-rate is 8% or more. The blocking and blurring

experienced by the Mobile cases is 18%− 25% more than the Stationary cases.

Vtok - Unlike Skype, blocking for Mobile Vtok is better than Stationary Vtok.

The decrease in blocking artifacts at a high-loss rate > 12% for both cases may be due

to the video frame loss. Increased frame loss implies the video has stalled and therefore

no loss of full block information. Blurring in Mobile Vtok is more than Stationary

cases. Mobile Vtok traces has unexpectedly lower blocking and we discuss the reasons

later in Section 4.

Network Delay : Video telephony packets need to adhere to strict delay constraints of

less than 150ms [10]. Increasing the bandwidth usage can be a straightforward solution

for the applications that require low network delay jitter for their video data. But this

can be very costly and inefficient in terms of network resource-provisioning and usage.

In addition, if the delay is more than the required limitation, the video telephony

application fails to initiate video conversation or the video chat application freezes.
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The two-way propagation delay at the emulator is varied from 20ms to 100ms.

The impact of network delay on spatial metrics is depicted in Figure 3(b) & 4(b). The

network emulator link bandwidth is unconstrained and the packet loss rate is set to

1%.

Skype - Blocking increases with the delay of 60ms and higher whereas blurring is

negligibly effected by the increase in delay at the network emulator. It is worth noting

that the Mobile and Stationary scenarios greatly differ in perceptual video quality.

Blocking and blurring artifacts are 23% and 33% higher respectively, in the Mobile

scenario compared to the Stationary scenario for the same network delay.

Vtok - As seen with increasing loss-rates, Mobile Vtok in comparison to Stationary

Vtok performs better with respect to blocking artifacts but performs poorly in terms of

blurring experienced. We examine Vtok’s sending rate in the next section to understand

these differences in spatial metrics. Similar to Skype, Vtok blurring do not change

significantly with increased network delay.

Network Bandwidth Constraints : We change the two-way link bandwidth at the net-

work emulator to 150kbps, 250kbps, 500kbps and 750kbps. The packet loss rate is 1%

and delay is 0ms at the network emulator. For link bandwidths lower than 150kbps,

Skype and Vtok fails to establish connection. Intuitively, this is because packet loss

will occur due to link constraints.

Skype - As the available bandwidth is increased at the emulator, blocking artifacts

for Stationary scenario reduces by ≈ 17% although there is only a marginal decrease in

blurring impairments (Figure 3(c) & 4(c)). For Mobile scenario, the decrease in block-

ing and blurring are very less with increasing available bandwidth. The Stationary

scenario has better perceptual video quality both in terms of blocking and blurring as

the bandwidth constraints are relieved. For a network bandwidth of 750kbps, Mobile

Skype spatial metrics perform ≈ 38% poorly compared to Stationary Skype.

Vtok - Mobile and Stationary Vtok show similar characteristics in terms of block-

ing and blurring artifacts as seen in previous two cases of increasing network loss-rate

and delay. Mobile Vtok experiences ≈ 43% decrease in blocking artifacts in-comparison

to Stationary Vtok at link rate of 750kbps (Figure 3(c)). Stationary and Mobile Vtok

have similar blurring performances for bandwidth constraint till 500kbps. But, the

Stationary case experiences 33% decrease in blurring artifacts than Mobile Vtok at

750kbps link capacity. (Figure 4(c)).

3.2 Temporal Smoothness

Video stalling or freezing creates very bad experience for end-users. In our model such

impairments are captured using the modified TVM metric, Smoothness. The Smooth-

ness values, as mentioned in Section 2.2, decreases when the temporal smoothness of

a video deteriorates. In other words, Smoothness is negatively correlated to temporal

impairments. Although all the network QoS metrics have impacts on the video smooth-

ness, a Smoothness value of larger than 40 is generally regarded as a good smoothness.

We observe from Figure 5, that Smoothness for Skype and Vtok consistently gives

larger values in Stationary scenarios than for Mobile scenarios. The Smoothness values

for Skype decrease substantially by ≈ 45% (Figure 5(c)) and Vtok decreases by 33%

(Figure 5(d)) for Mobile scenarios when the network delay is as large as 100ms. Skype

& Vtok receiver may have dropped a lot of late packets in such a large network delay



11

4 6 8 10
0

5

10

15

20

25

30

35

40

45

50
S

m
oo

th
ne

ss

Packet Loss Rate (%)

Stationary
Mobile

(a) Skype - Smoothness vs Loss

4 6 8 10
0

5

10

15

20

25

30

35

40

45

50

S
m

oo
th

ne
ss

Packet Loss Rate (%)

Stationary
Mobile

(b) Vtok - Smoothness vs Loss
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(c) Skype - Smoothness vs Delay
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Fig. 5 Impact on Temporal Variation Metric due to network impairments/constraints - Loss,
Delay and Bandwidth

scenario. This causes whole frames loss, resulting in large variation of Smoothness

values. Hence, network delay under end-user mobility leads to considerable reduction

in temporal video quality for both Skype and Vtok.

With the threshold Smoothness being 40, the temporal quality deterioration on

Mobile Skype and Vtok is 0% and 25% respectively, for loss rate as high as 10%

(Figures 5(a) & 5(b)). Whereas, for least available bandwidth of 150kbps Mobile Vtok’s

and Mobile Skype’s temporal smoothness is reduced by ≈ 20% and 5% respectively

(Figures 5(f) & 5(e)). We therefore conclude, temporal smoothness in Skype videos is

better than Vtok videos.
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Table 1 Correlation Coefficient Quality Metrics and Movement.

Corm p-values 95% confidence interval
Skype Blurring 0.7624 0.0000 [0.6976 0.8148]
Vtok Blurring 0.7521 0.0000 [0.6650 0.8190]
Skype Blocking 0.3633 0.0000 [0.2322 0.4814]
Vtok Blocking -0.3494 0.0001 [-0.4952 -0.1845]

Skype Smoothness - 0.3184 0.0000 [-0.4361 -0.1899]
Vtok Smoothness -0.7534 0.0000 [-0.8200 -0.6666]
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Fig. 6 A representative sending rate of Apps at different loss rates

4 Analysis

Network QoS impacts perceived video quality as observed in experimental results. In

addition, the perceived video quality differs consistently with end user being Mobile or

Stationary. Table 1 gives significant correlation coefficients (Corm) of different video

quality metrics with end-user movements. We consider, Movement = 1, for Mobile

scenarios and Movement = 0 otherwise. i.e. the “Movement” is either ON or OFF,

there is no middle case. From Table 1, we find that p-values are zero. The small p-values

show that their correlation with the end-user brisk movements which we observed from

the experiments is very reliable. The observations from Table 1 support our experiment

results in Section 3. The perceived video blurring and temporal smoothness across both

applications degrades consistently in video telephony due to end-user movements. Vtok

blocking shows opposite trend in comparison to Skype blocking. We explain in details,

the reasons for these observations later in this section.

The applications being closed source, we examine the available application-level

information to understand their behaviors. A video telephony application session has

variable bit rates, and adapts to the actual video content and network conditions.

Video telephony applications employs rate control algorithms ([9], [16], [31], [23] etc.)

depending on the congestion in the network. Figure 6 shows sending rate of applications

at different loss rates for arbitrary traces validating the use of rate control algorithm

by these applications. To the best of our knowledge, none of the work studies these

applications sending rate under Mobile scenario.

4.1 Skype Sending Rate

We observe from Figure 7(a), that Stationary Skype changes its sending rate as the

loss rate in the network increases. When the loss rate is 12%, Stationary Skype’s
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Fig. 7 Skype Sending Rate with network impairments/constraints - Loss, Delay and Band-
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Fig. 8 Application MAC Layer sending rates

sending rate is more or less constant around 120kbps, the minimal data-rate which is

required to carry out a smartphone video telephony conversation. Intuitively, we con-

clude, Stationary Skype adapts its sending rate not only depending upon the network

losses but also depending on the end-device requirements. We observe from Figure

7(b), Stationary Skype does not adapt its sending rate with increasing network de-

lay whereas, it increases its sending rate with increased network bandwidth (Figure
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7(c)). The inconsistent result at 80ms delay, can be due to Skype or other confounding

factors.

We find the rate-control behavior of Skype under Mobile conditions have similar

trends as in Stationary conditions (Figure 7), i.e., Skype’s sending rate decreases

with increased network losses and with decreased network bandwidth, but the average

sending rate in Stationary cases is always 50 kbps more than the Mobile cases for

same networking conditions.

OBSERVATION (1) : Stationary Skype performs better than Mobile Skype for all

cases

Skype incurs more losses in Mobile scenario than Stationary scenario. The data losses

can be due to the congestion losses, random losses and video coding losses. Congestion

losses are due to the packets lost in end-to-end transit over the Internet and will impact

all the scenarios. Random losses are caused by the wireless access-link. We did repeated

measurements of the access-link losses with an end-user doing brisk movements in an

area and an end-user being static. In both the cases, we found that the access-link

packet losses in both scenarios differ negligibly. Moreover, all the experiments were

carried out in a dedicated, unsaturated indoor wireless environment. The reason for

such negligible difference in packet losses at access-link can be due to Medium Access

Control (MAC) level re-transmissions.

Investigating MAC frames - Skype uses lower bit-rates for Mobile scenarios where

it sends more MAC frames of smaller length (Figures 8(a) & 8(b)) compared to larger

frame sizes in Stationary cases. The smaller MAC frames are likely because of small

sized application packets. A smaller Maximum Transmission Unit (MTU) reduces la-

tency by reducing MAC-level re-transmissions but adversely effects data transmission

rate due to the increased header overhead in the application packets.

Moreover, Mobile video data is changing faster. When user walks, there is a rela-

tive motion between camera and background and some jerky motion between camera

and user. This leads to high temporal content being created and may require reduced

latency in end-to-end transmission. Skype, though, reduces the MTU per packet, but

it does not increase its sending rate to encounter the increased overhead for Mobile

scenarios, therefore, impacting the performance.

Video coding losses can also lead to such large disparity in performance for both

cases. The Mobile video data are highly correlated in consecutive video frames [15] in

comparison to Stationary cases. Loss of such correlated data would lead to poor video

decoding at the receiver’s end. This can also lead to probable increase in video artifacts

in case of Mobile scenarios.

4.2 Vtok Sending Rate

Vtok’s sending rate with increasing loss-rate for both mobile and stationary cases

(Figure 7(a)) are similar till loss-rate of 8%. But sending rate of Mobile Vtok drops

35% for loss rate ≥ 10%. As a result we see increase in blocking in Figure 3(a) with loss

rate 8% - 10%. The spatial impairments are unable to capture the video quality at loss

rate of 12% because of frequent video freeze. The video freeze is also observed in Figure

5(b) where Smoothness values of Mobile Vtok is 25% less than required Smoothness

threshold.
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With the network delay setting of 40ms, Vtok increases its sending rate by 50kbps

(Figure 7(b)) for mobile scenarios to cater the motion component in the videos. But

for network delay > 40ms, Vtok reduces its sending rate to avoid increase in network

congestion. At 80 ms and 100 ms network delays, the sending rate of both Mobile

and Stationary scenario cases are almost same. The bandwidth constraints have lit-

tle impact on Vtok’s sending rate. This, explains similarity in blocking and blurring

characteristics exhibited in both scenarios (Figures 3(c) & 4(c)).

OBSERVATION (2) : Mobile Vtok blocking is negatively correlated and blurring is

positively correlated to end-user movement

Blocking and blurring artifacts in videos are highly correlated when caused due to

packet losses. However, in Vtok we observe that blocking and blurring artifacts show

different behavior with end-user movement (Table 1). This is possible by changes in

rate-distortion algorithm of codec. Moreover, we observe that sending rate of Vtok

unusually increases in Mobile cases (Figure 7). This implies that Vtok codec has an

aggressive rate-distortion algorithm, which leads to unusual response with changing

networking conditions.

Another reason can be due to the video frame loss caused by increasing loss-rates.

Though frame loss does not lead to increased block information but results in video

freezing.

4.3 Skype vs. Vtok

OBSERVATION (3) : Blurring artifacts are lower in Vtok than Skype in general

In comparison to Skype, blurring artifacts in Vtok are less. Vtok’s video-coding is more

robust in terms of avoiding loss of high frequency components.

OBSERVATION (4) : Skype exhibits better Temporal Smoothness than Vtok

In a video, frame loss leads to video freezing. The better temporal smoothness in Skype

can be a result of its rate-control algorithm and video coding techniques. Skype avoids

video freezing inMobile cases by reducing the sending rate. But in doing so, experiences

spatial impairments. Whereas, Vtok increases its rate in Mobile cases to increase its

spatial quality, and in doing so, results in video frame losses.

Hence, there is a trade-off between spatial and temporal impairments experienced

and application sending rate and video coding. We next examine the subjective assess-

ments of mobile telephony videos.

5 MOS Prediction Model

As discussed in Section 2.2, subjective video assessment is required to capture video

quality perceived by HVS. In this section, we derive an MOS prediction model based

on evaluated objective quality measurements of experimental data.

Complex objective measurements, such as PEVQ [20], SSIM [29], NTIA VQM [21]

etc. have been proposed to approximate MOS. But all these metrics require original

transmitted videos. i.e. they are full-reference (FR) metrics. The work in [2] proposed

TVI to estimate MOS of videos. However, it still requires the sender to provide certain

information of the original video, such as TVM. i.e. it is a reduced-reference (RR)
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Fig. 9 Average MOS scores for selected video clips.

Table 2 Correlation Coefficient Quality Metrics and average MOS.

Cormos p-values 95% confidence interval
Blocking 0.1444 0.4464 [-0.2277 0.4797]
Blurring -0.7184 0.0000 [-0.8569 -0.4831]

Smoothness 0.5231 0.0030 [0.2007 0.7433]

metric. Neither FR nor RR metric is suited for proprietary commercial video chat

applications, such as Skype and Vtok, as the end-user to end-user nature does not

allow us to control the sender to provide the information of the original video. We,

therefore, need a metric that does not rely on the original video at all, i.e. a non-

reference (NF) metric. In this section, we carry out subjective evaluation of videos of

these apps to develop a NF QoE prediction model.

We conducted subjective evaluation on 30 selected test video clips from the pool of

312 recorded video conversations which include both static and mobile scenarios. The

selected videos had different average blocking, blurring and Smoothness values so as

to capture wide range of objective values for subjective evaluations. Each video has a

duration of ≈ 30 seconds. Each video was presented one at a time and rated individually

by 24 viewers conforming to the minimum number of viewers specified in [11]. The

participants ages range from 22 to 40. During the test, an 11-inch LCD Monitor (Intel

HD Graphics 4000) of resolution 1366x768 and 32-bit color pixel-depth was used. The

video shown on the monitor were in the size which showing in the smartphone screen.

i.e. Samsung Exhibit II’s 400x800 3.7-inch screen. The videos are rated independently

on 1-5 discrete point quality scale following ITU-T Recommendations [11]. The ratings

of each video was averaged over all viewers to obtain a mean opinion score (MOS) [12].

Figure 9 shows average MOS for each video clip. It shows that we selected a set

of videos with a variety in quality. MOS of the videos ranges from 1.5 to 4. The small

95% confidence intervals (the line segments above the bars in Figure 9) show that the

individual subjects scores are in good agreement.

Next, we develop a model to map objective metrics to subjective evaluations to

arrive at the video quality prediction models. The standard procedure to transform

objective measures obtained from image quality metrics to predicted MOS scores is

done via a nonlinear regression (for eg. [6]). We henceforth, use Support Vector Re-

gression (SVR) to solve the problem of regression prediction. SVR has been used in

wide range of applications - from prediction of air temperature to target localization in



17

wireless sensor networks. Unlike ANN (Artificial Neural Network), SVR is much less

susceptible to over-fitting as it is based on the principle of structural risk minimization.

Also, SVR always converges to a solution which is globally unique and optimal as it is

framed as convex optimization problem. The basic idea of SVR is based on computa-

tion of a linear regression where input data are first mapped into an high-dimensional

feature space using a fixed non-linear function and then a linear model is constructed

in this feature space. The theory of SVR is given in Appendix A and the detailed in-

formation can be found in [3] & [24]. The function SMOReg in WEKA [30] implements

SVR. We use the default settings of function SMOReg.

Thus, the predicted MOS, M̂OS, is an objective metric derived as

M̂OS = −0.686 ∗ Yblur + 0.0941 ∗ Ytvm + 3.7705 (5)

where Yblur and Ytvm are the Blurring and Video Smoothness values of the test video

clips.

The model has a Pearson correlation of 0.728 with low mean absolute error (MAE)

0.3803 and root mean square error (RMSE) 0.5233 values. We use this model (Equation

5) to obtain a single video quality metric, M̂OS, for each video telephony session.

The model (Equation 5) for MOS prediction shows no dependency on blocking met-

ric. On evaluating the Pearson Correlation, Cormos of Blocking, Blurring and Smooth-

ness values with respect to average MOS scores of the test videos ( Table 2), we find

that blocking artifacts are unable to capture the subjective video quality (i.e. MOS)

with high correlation. On the contrary, the blurring artifacts correlates negatively to

MOS scores significantly with zero p-value. As higher Temporal Smoothness indicates

better temporal video quality, the positive correlation with average MOS values with

very low p-values can nonetheless be related to the subjective quality.

6 VTQoE: QoE for Video Telephony

As seen in Section 4, application’s performance is currently impacted by video coding

losses employed to cater the end-user motion in a video telephony session. Application

sending rate is thus, dependent on Network QoS and end-user movements. Discarding

the dependent variables, we obtain for each application, the relationship of M̂OS with

Network QoS. Such models give insight to network operators and application providers

to maintain end-user QoE. We use SVR to derive these models.

The MOS prediction for Skype with correlation coefficient of 0.7691, MAE = 0.2305

and RMSE = 0.29 is given as

ŜMOSn =− 0.3643 ∗M

− 0.1447 ∗ D̃

− 0.132 ∗ L̃

+ 0.0843 ∗ B̃

+ 0.6493 (6)
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Fig. 10 VTQoE of Skype and Vtok

where as, MOS prediction for Vtok with correlation coefficient of 0.8784, MAE = 0.3772

and RMSE = 0.608 is given as

V̂ MOSn =− 0.3606 ∗M

− 0.1085 ∗ D̃

− 0.011 ∗ L̃

+ 0.0142 ∗ B̃

+ 0.9321 (7)

The normalized predicted MOS for Skype is represented as ŜMOSn and the normalized

predicted MOS for Vtok is denoted as V̂ MOSn. M indicates end-user movement with

M ∈ {1, 0}. D̃, L̃ and B̃ indicate normalized values of network delay, loss rate and

bandwidth, respectively. We observe, from Equations 6 and 7, that MOS prediction

model for mobile telephony applications depend on the end-user movement and network

QoS. The end-users movement have significant impact on the perceptual video quality

and should be considered in prediction models for accuracy. The video coding losses

due to change in video content in Mobile cases in comparison to Stationary cases

needs to be examined by application providers to maintain end-users QoE.

Figure 10 depicts the performance of both Skype and Vtok with increasing net-

work loss rate and delay. The bandwidth for Figure 10(a) and Figure 10(b), are fixed

to 150kbps and 350kbps respectively as the application providers as the current appli-

cations are required to operate within approximately, 128kbps - 350kbps. Stationary

Vtok’s performance is close to predicted M̂OS of 4 whereas, Mobile Skype performs

poorly in comparison to all other cases. This confirms our observations in previous

sections.

7 Related Work

Smartphone apps have become very popular with billions of downloads from various

app stores. There have been quite a few interesting works ([9], [22] and [7]) on character-

ization of smartphone apps. To the best of our knowledge, smartphone video telephony,
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the new data hog in mobile apps, has not been addressed so far in terms of it’s video

quality in the literature.

There have been many attempts on estimating an application’s video quality using

deep inspection of video packets, without actually considering the perceived quality

of received video. Moreover, this is not feasible for video telephony apps as the video

packets are encrypted specific to application provider. Real-time video quality in IP

networks studied in [26] introduces a new video quality metric, which is evaluated

using only network statistics and basic codec configuration parameters obtained offline.

The work mainly relies on underlying full-reference assessment, PSNR. However, it is

impossible to have the original video for assessment at the receiver’s side for smartphone

video telephony apps.

There has been some work reported on studying Skype. In [4], authors evaluate the

QoS level provided by Skype voice calls. Authors in [25] investigate QoS parameters and

measure the QoE in terms of subjective assessment, but it also considers only the voice-

part of the Skype application. Another work [16] investigates Skype video in order to

study the rate control of Skype to match the unpredictable Internet bandwidth. The

performance of four popular Instant Messenger (IM) clients - Skype, Windows Live

Messenger, Eyebeam and X-Lite, focusing mainly on video-telephony part is analyzed

in [19]. The authors in [23], compare perceptual voice quality of Skype and Google

Talk.

The authors in [31] used ITU-T Recommendation G.1070 standardized opinion

model for stationary Skype to study its video quality. The work uses a synthetic video

with only head to shoulder newsreader movements for profiling Skype’s behavior. The

head-to-shoulder movements of end-users may not be the case with smartphones where

the end-devices and end-users both may be in motion causing frequent background

(video content) changes.

However, to the best of our knowledge, none of these works, study perceptual video

quality of mobile video telephony apps and determine the impacting factors.

8 Conclusions

This work provides network characterization and perceptual evaluation of “mobile”

video telephony applications. Our extensive experiments give us insight on applica-

tions performance and transmission mechanisms, and also helps us to draw meaningful

conclusions. We point out the impact of sending rate on video quality. For an applica-

tion provider, before tuning the sending rate of video telephony, the trade-off between

spatial and temporal impairments are required to be thoroughly investigated. With a

Pearson correlation of 0.728, we obtain MOS prediction model (M̂OS) for video tele-

phony based on video blurring and temporal smoothness. We presented SVR-based

models to estimate perceptual video quality from network parameters with maximum

MAE = 0.3772 for objective M̂OS ranging from 1 to 5.

As a future work, it is possible to track the exact motion information of end users

using smartphone accelerometer sensor. By including this important piece of informa-

tion, QoE prediction models based on Network QoS can be more accurate. This may

enable network operators to get accurate feedback of end-user perceived video quality.

Moreover, it will also be interesting to study other quality issues in video telephony

such as audio quality assessment and audio-video synchronization.
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A APPENDIX : Support Vector Regression

Support Vector Regression (SVR), is a machine learning tool proposed in [3]. We discuss the
linear case followed by non-linear SVR algorithm.

Suppose the training data set is as following

S = {(xi, yi)|i = 1, 2, 3, ....,m} (8)

where real-valued inputs xi ∈ ℜn, and target y ∈ ℜ. The objective function is to find function
f that returns the best fit i.e. f : ℜn −→ ℜ The linear regression function f is given as

f(x) =< ω,x > +b (9)

where b ∈ ℜ and ω ∈ ℜn. To avoid over-fitting, a regularization term is introduced to have
small ω and can be formulated as the convex optimization problem minimizing the euclidean
norm i.e.

minimize
1

2
‖ ω ‖2

subject to yi− < ω,x > −b ≤ ε

− yi+ < ω,x > +b ≤ ε

The convex optimization problem may not be feasible if the errors are more than ε. Thus,
any point outside the ε region contributes to the cost of the function.

SVR introduces slack variables, ξi and ξ∗i to cope up with not feasible constraints. The
convex optimization can be defined as

minimize
1

2
‖ ω ‖2 +C

m
∑

i=1

(ξi + ξ∗i ) (10)

subject to ξi, ξ
∗
i ≥ 0 (11)

yi− < ω,x > −b ≤ ε (12)

− yi+ < ω,x > +b ≤ ε (13)
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where C is a constant known as penalty factor. It consists the trade-off between smaller ω

values and ε-insensitive loss function given as

|ξ|ε =

{

0 : if |ξ| ≤ ε

|ξ| − ε : otherwise

The Equation 13 is the Primal form and handles inequality constraints directly. The dual
form obtained by constructing a Lagrange function and taking partial derivative w.r.t. primal
variables is given as-

maximize
1

2

n
∑

i,j=1

(αi − α∗
i )(αj − α∗

j ) < xi,xj > (14)

− ε

n
∑

i=1

(αi + α∗
i ) +

n
∑

i=1

yi(αi − α∗
i ) (15)

subject to
n
∑

i=1

(αi − α∗
i ) = 0 (16)

αi, α
∗
i ∈ [0, C] (17)

where αi, α
∗
i are Lagrange multipliers. The steps for partial derivative can be looked upon in

[1]. Interestingly, the partial derivative also gives following equation :

ω =
n
∑

i=1

(αi − α∗
i )xi. (18)

Hence, the SVR linear regression reduces to

f(x) =
n
∑

i=1

(αi − α∗
i ) < xi,x > +b (19)

The Equations 9-19 discussed so far are simple cases when SVR algorithm is used for a
linear function. SV algorithm can be made non-linear by simply substituting every instance of
x with Φ(x). The approach becomes infeasible when x is mapped to higher-dimensions. Using
kernel method, explicit substitution of x with Φ(x) is avoided. The kernel function is given as
-

< Φ(xi), Φ(x) >= K(xi,x) (20)

The commonly used kernel functions are polynomial kernels: K(x, y) = (xT y+ 1)d and radial

basis function (RBF) kernels: K(x, y) = exp(
−||x−y||2

2σ2
) . Hence, from Equations 19 and 20,

the solution function can be written as

f(x) =
n
∑

i=1

(αi − α∗
i )K(xi,x) + b (21)


