An Efficient Processor Allocation Scheme for Mesh Connected
Parallel Computers

Jatin Upadhyay and Prasant Mohapatra
Department of Electrical and Computer Engineering
lowa State University

Ames, lowa 50011

E.mail: prasant@iastate.edu

Abstract

Several processor allocation schemes are proposed
in the literature for mesh connected parallel comput-
ers. All these schemes aim at improving the system
performance by reducing internal fragmentation or by
enhancing the submesh recognition ability. In this pa-
per, we propose an approach of system partitioning
to reduce external fragmentation and thereby improve
the system performance. The target systems consid-
ered here are two-dimensional meshes where the side
lengths are powers of two. Processors are allocated
to a partitioned mesh based on their submesh size re-
quirements. The proposed scheme can be implemented
in conjunction with any of the existing schemes and
thereby can also exploit the advantages offered by those
schemes. The performance measurements are done
through simulation experiments. Completion time for
a fired number of jobs, internal and external frag-
mentation, and system utilization are obtained. It
1s observed that, in most cases, the proposed scheme
demonstrates better performance. Time complexity of
the proposed scheme is less by a factor of n compared
to the corresponding allocation scheme without parti-
tioning, where n = loga{min (width or height of the
mesh) }.

1 Introduction

Mesh connected parallel computers are becoming
increasingly popular because of their structural reg-
ularity, easy VLSI implementation, and application
in numerical algorithms such as sorting, fast Fourier
transform, and matrix operations [1, 2]. Examples of
several experimental and commercial machines using
the mesh topology include MasPar [3], Paragon [4],
DASH [5], Touchstone Delta [6], and J Machine [7

In this paper, we consider processor allocation in
two-dimensional mesh connected parallel computers.
Processor allocation is concerned with partitioning the
whole system and allocating the parts to independent
tasks so as to maximize the utilization. Incoming tasks
require a specific size submesh and the processor al-
locator finds an available submesh satisfying the size
requirement. The search for an available submesh is
done using the underlying allocation algorithm. The
allocation algorithms vary in terms of submesh recog-
nition ability and time complexity. The performance

of a system is dependent on the allocation algorithm
employed for task assignment. Optimal allocation in
a dynamic environment is known to be an NP - com-
plete problem [8]. Usually, heuristics are used to de-
vise efficient processor allocation schemes. The main
objective of these schemes is to improve system per-
formance by reducing system fragmentation.

There are three different types of fragmentation as-
sociated with the allocation policies. These are: inter-
nal fragmentation, external fragmentation, and frag-
mentation due to imperfect recognition. Internal frag-
mentation occurs when more than the required num-
ber of processors are allocated to a task. External
fragmentation occurs when the required number of
nodes are available but a submesh of the required size
is not available in the fragmented system. Fragmen-
tation due to the imperfect recognition ability arises
when there is a submesh of the required size available
but the allocation scheme is not able to identify it.

Three different schemes have been proposed in the
literature for processor allocation in two-dimensional
meshes. Li and Cheng have developed a two-
dimensional buddy (2DB) strategy [9] which is ap-
plicable to square mesh systems and can allocate
square submeshes. Furthermore, the side lengths of
the square mesh and submeshes can only be powers of
2. The apparent drawbacks of 2DB scheme are high
internal fragmentation and low submesh recognition
ability. The Frame Sliding (FS) scheme proposed in
[10] avoids internal fragmentation by allocating sub-
meshes of exactly the required size. But it creates
more external fragmentation, and the fragmentation
due to imperfect recognition is also quite high. An al-
location scheme proposed by Zhu [11] has the perfect
submesh recognition ability (we have referred to this
scheme as perfect recognition (PR) scheme) and has
no internal fragmentation. It can be observed that
while these schemes have tried to reduce the overall
fragmentation by eliminating the internal fragmenta-
tion and the fragmentation due to imperfect recogni-
tion, no efforts have been made to reduce the external
fragmentation.

In this paper, we propose an allocation scheme that
concentrates on reducing the overall fragmentation by
reducing the external fragmentation. We use a parti-
tioning scheme where the job(task) allocation is seg-

regated based upon their submesh size requirements.
A specific size job is allocated to a predetermined par-
tition(s). The motivation behind such an allocation
policy is to have similar size jobs allocated as close
as possible. This heuristic helps in reducing external
fragmentation. The novelty of the proposed allocation
lies in the fact that any of the existing allocation poli-
cies can be used for allocation within the partition,
and thereby besides reduction in external fragmenta-
tion, it can also take advantage of the simplicity or
the recognition ability of the incorporated allocation
scheme.

We have developed a simulation platform to eval-
uate and compare the performance of the proposed
scheme with the existing schemes. Following infer-
ences were derived from the simulation experiments.

e The proposed partitioning approach greatly re-
duces the external fragmentation in the system.
Though it introduces some amount of internal
fragmentation, the total fragmentation is always
less.

e The completion time of a fixed number of jobs
using this scheme is always less when compared
with the FS or the 2DB schemes without system
partitions. PR scheme with and without parti-
tions gives almost similar results.

e The proposed scheme results in higher system uti-
lization.

e The time complexity of the proposed scheme is
reduced by a factor of n for a mesh of size 2* x 27

where n = min(é, j), when compared with the
corresponding scheme used without partitioning
the system.

The rest of the paper is organized as follows. The
nomenclature and the previous allocation schemes are
discussed in Section 2. In Section 3, we discuss the
proposed allocation scheme. The performance evalua-
tion through simulation is detailed in Section 4 along
with the discussion of experimental results. The con-
cluding remarks are outlined in Section 5

2 Preliminaries

2.1 Nomenclature

A two dimensional mesh, denoted as My (w, h), con-
sists of w - h processor nodes arranged in w x h grid.
A node in column ¢ and row j is identified as < 7,5 >,
and is connected through direct communication links
to the nodes < ¢ +1,j > and < 7,j £1 >, for
1<i<wand 1l <j <h A two dimensional ‘sub-
mesh in Ma(w, h), denoted as Sa(w',h'), is a subgrid
Ma(w', h') such that 1 <w' <wand 1 <A’ < h. Fig-
ure. 1 shows a rectangular mesh M»(8,4) and a sub-
mesh S5(3,2). The submesh is shown by the shaded
region.

In parallel computers, in order to achieve higher
performance, all the processors can be space shared by
the incoming tasks. An incoming task which requires
a submesh of the size Sa(w’, h’) is denoted as T' =
(w', h').

<14 <24 <34 <44 <54 <64 <7,45| <84

<11> <21> <31> <41> <51> <61> <71>

Figure 1: A rectangular mesh M(8,4).

2.2 Previous Allocation Policies
2.2.1 Two-Dimensional Buddy Scheme

The two-dimensional buddy (2DB) scheme proposed
in [9] is a generalization of the one-dimensional buddy
approach used for storage allocation [12]. This ap-
proach is applicable only to square meshes My(w, w)
and allocates only the square submeshes Sa(w’, w')
where both w and w’ are required to be powers of
2.

Assuming w = 2", the buddy strategy maintains a
set of list of available square submeshes with all the
possible side lengths. A separate list is maintained for
each submesh of length w' = = 2" where 0 <n <n.
An incoming request of task 7' = (2%, 2*%) is allocated
the first element in the corresponding list if it is avail-
able. If the list is empty, an available submesh with
n’ > k is decomposed and the task is allocated. One
square submesh can be decomposed into four square
submeshes which form four buddies amongst them-
selves.

The deallocation policy in buddy scheme requires
searching for all available buddies of the submesh deal-
located, and then merging them to form a bigger sub-
mesh. All the lists are updated accordingly.

The time complexity of the allocation and deal-
location procedures in 2DB scheme is of O(n) and
O(2") respectively. The major advantage of 2DB
scheme is its simplicity of implementation. The major
disadvantage on the other hand is its rigid require-
ments on mesh and submesh sizes. Under the buddy
scheme a task which requires a submesh Sy(w’, h') is
actually allocated a square submesh Sy(w, w) where

w = 2Megzmax(w’h)] = Thig results in large internal
fragmentation and hence poor system utilization.

2.2.2 Frame Sliding Method

The frame sliding (FS) strategy is applicable to non-
square meshes and allocates a submesh of the exact
size to an incoming task [10]. For an incoming request
T = (w',h') a frame of the size (w', ') is considered.
The frame is identified by the lower left corner, and
status of the processors within the frame can be de-
termined immediately. The FS strategy searches for
an available frame for an incoming task by sliding the
frame through the complete mesh. When the nodes in
the currently examined frame are not all available, the
frame is slid over the plane of the mesh for searching

the next candidates. The sliding is done by taking hor-
izontal and vertical strides equivalent respectively to
the width and height of the requested submesh. The
process is continued until a frame involving only free
nodes is found or all candidate frames are exhausted.
In the latter case, the incoming task is queued till the
deallocation of a job, when the allocation procedure is
retried.

If there are n allocated tasks in the system, the
allocation time complexity of the FS scheme is O((w *
h)/(w'xh")). However, since tasks are assigned exactly
the same size submesh as per their requirements, the
FS strategy has no internal fragmentation.

2.2.3 Allocation with Perfect Recognition

The 2DB and FS schemes do not always recognize a
submesh even if one exists in the mesh. The 2DB
scheme searches for an available submesh only at pre-
determined locations which are disjoint. Thus the
overlapping regions are ignored. The imperfect recog-
nition in FS scheme is due to the fact that the frame
is slid in steps equal to its height and width of the
required submesh. 2DB and FS schemes do not have
perfect recognition ability and hence create extra frag-
mentation in the system. The inability of recogni-
tion can be defined as fragmentation due to imperfect
recognition. An allocation scheme with perfect recog-
nition (PR) was first proposed by Zhu[11].

Zhu proposed two different strategies for allocation
using perfect recognition — the First Fit(FF) strategy
and the Best Fit(BF) strategy. Both these schemes
maintain a busy array representing the allocation state
of the mesh. For each incoming task, the busy array is
searched and a coverage array is determined. Cover-
age array denotes whether the corresponding proces-
sor can be the base of the incoming task or not. Once
the coverage array is generated, the FF scheme picks
up the first available processor which can serve as the
base and allocates the job. The BF strategy on the
other hand chooses the base in such a way that it has
the maximum number of busy neighbors. If there are
two positions with the same number of busy neigh-
bors, the one with the minimum area is chosen Here
area is defined as the multiplication of the numbers
of consecutive free processors in each direction.

This scheme always recognizes a submesh if it ex-
ists. The time complexity of the BF strategy is
O(w * h) [11]. Since the BF scheme searches through
the busy array twice to generate the coverage array
while the FF scheme stops as soon as it finds the first
available base, the time complexity of the FF strategy
is less than that of the BF strategy. Results show that
in most of the cases the FF scheme gives better results
than the BF scheme due to the dynamic nature of the
system.

3 The Partitioned Allocation
3.1 Motivation

As discussed in the previous section, the 2DB
scheme has all the three types of fragmentation - inter-
nal, external and fragmentation due to the imperfect

recognition ability. At the cost of increased complex-
ity, the FS scheme eliminates the internal fragmenta-
tion. External fragmentation and the fragmentation
due to imperfect recognition however still exist in the
FS scheme. The PR scheme searches all the possible
locations for the required submesh and thereby elimi-
nates the fragmentation due to the imperfect recogni-
tion ability.

Two observations can be made regarding above
mentioned allocation policies. First, the main aim of
these schemes is to reduce the overall system fragmen-
tation by reducing the internal fragmentation and the
fragmentation due the to imperfect recognition. No
efforts are made to reduce the external fragmentation.
Second, the maximum utilization achieved through
these schemes is only around 50% [11].

The above two facts suggest that the external frag-
mentation plays a very critical role in the system
performance. In this paper, we propose an alloca-
tion scheme that reduces the external fragmentation
by statically partitioning the system. Jobs are allo-
cated to the partitions corresponding to their sizes.
Allocation within the partition can use any of above
mentioned allocation policies. Though the proposed
scheme introduces some internal fragmentation, it is
observed that the overall fragmentation is always less
and the system performance improves.

Another advantage of the proposed scheme is that
due to the partitioning of the system, the search space
and hence the allocation complexity of the algorithm
reduces by a significant factor.

3.2 Partitioning Mechanism

The heuristic we propose for the system partition-
ing is derived from the main cause of the external
fragmentation in mesh systems. External fragmen-
tation occurs due to the distribution of the smaller
jobs throughout the system which effectively blocks
the larger jobs from being allocated, even if there are
enough number of processors available. This problem
can be eliminated if we can allocate the jobs of similar
sizes together, in a predefined location in the system.

We propose to partition the system as follows. Ini-
tially assume that the mesh is square and has dimen-
sions in powers of 2. Later in Section 4.3 we have gen-
eralized this scheme for rectangular meshes. Section
4.3 also investigates other methodologies for partition-
ing the system.

Consider the square mesh of width and height w =
2™, as shown in Figure 2. The mesh is divided equally
into 4 square partitions each with its width and height
equal to half of the width and height of the original
mesh. One of these four partitions is further divided
into 4 more partitions, each with dimensions equal to
half of the original dimensions of the partition. Since
the original mesh size is assumed to be in powers of 2,
all these partitions will also have their dimensions in
powers of 2. The system is divided recursively in this
fashion until the last partition is of the size 1 x 1.

The above partitioning mechanism results in ex-
actly three partitions of identical size except the last
partitions of size 1 x 1 which are four. Jobs will be
allocated only to the partitions corresponding to their

w
Ry P |Po
Pa
Pos Poa
12
Ra ‘ P13
Wia
t w
- Wi
2 Py

w

Figure 2: Partitioning Mechanism in a Mesh M3 (w, w)

sizes.

Static partitioning of the system as described above
may result in two problems. First, it may cause large
internal fragmentation. Second, if the job size distri-
bution is not uniform, it may results in jobs unnec-
essarily waiting for their partitions while other parti-
tions in the system are idle.

The proposed partitioning scheme can handle these
problems. To reduce the internal fragmentation, in-
stead of allocating the whole partition to a job as done
in the normal partitioning approach, we propose to
use the existing allocation strategies such as 2DB, FS
or the PR scheme for allocation within the partition.
Secondly since the proposed partitioning forms four
equal, smaller size partitions from one larger parti-
tion, 4 jobs corresponding to one particular size can
always be merged to form a single job corresponding
to one higher size partition. Similarly, a single job can
be moved to all lower size partitions if all of them are
free. This dynamic movement of jobs is described in
detail in the next subsection.

3.3 Allocation algorithm

Consider a mesh My(w,w) where w = 2". The
system is partitioned as explained in the previous sec-
tion, so there would be (3log(n) + 1) partitions, 3

partitions, each of size 2* where 1 < i< n—1 and 4
partitions of size 1 x 1. Without the loss of generality,
we will assume that there are exactly three partitions
for all sizes. We shall denote all the partitions of size
2* x 2* collectively as P; and the individual partitions
amongst F; as F;; where j = 1,2,3. An example of
this notational structure is indicated in Figure 2 by
considering w = 8.

We would limit the incoming task sizes to half of
the mesh size. When a task requests a larger submesh
than this, it has to wait until almost all the jobs in the
system are deallocated. This step is independent of
the employed allocation scheme. The size restriction

of the incoming tasks can also be removed as discussed
in Section 4.3. The algorithm for processor allocation
and deallocation can be formally described as follows.

Processor Allocation

Let the incoming task be T'= (w',h'), 1 < w', b’ <
w/2 . For notational convenience, we shall denote
the allocation policy used within the partition as AP,
which can be either 2DB, FS, or PR scheme.

Step 1 Identify the corresponding system partitions
P; for an incoming task 7' = (w', h’) where 7 is
the smallest value that satisfies the inequalities
w' < 2" and A’ < 2.

Step 2 If F;; is entirely free for some j, allocate T in
partition F;;. Stop.

Step 3 For j = 1 to 3, if allocation is possible in par-
tition P;; using AP, allocate T in that partition.
Stop.

Step 4 If job queue for partitions P; > 4 and Py is
free, combine 4 jobs as one with service time as
maximum of all of them and allocate it in parti-
tion P;41. Stop.

Step 5 If job queue of partitions F; > 4 and F; is
free, for all j < ¢, move the job at the top of
the queue and allocate it to all the partitions P;,
Jj < 1. Stop.

Step 6 Attach the job in the queue of partitions F;
and wait until a job in the partition is deallocated.
Go to Step 2.

Processor Deallocation

Processor deallocation procedure will depend upon
the allocation scheme used in the partition. In case of
buddy scheme, it will involve merging the deallocated
submesh with its three buddies, if they exist, and ac-
cordingly updating the lists of each submesh size. In
case of F'S method, deallocation steps will have to re-
move the deallocated submesh from the busy list of
that partition. In PR scheme, the busy array entries
corresponding to the deallocated submesh are updated
and the submesh is removed from the list of allocated
submeshes.

There are always at least three partitions corre-
sponding the size of each incoming job. All the jobs for
the same size partitions are allocated using 2DB, FS or
PR scheme in the first come first served(FCFS) disci-
pline. The job combination and dynamic movement is
considered only when all the destination partitions are
entirely empty. Thus the proposed scheme is totally
fair to jobs of all sizes. The dynamic movement also
enhances system utilization. Since jobs are allowed to
move from one partition to the higher or lower size
partitions if they are entirely free, this scheme seldom
results in any part of the system being idle for a long
time while a job of equal or lesser size is waiting in the
queue.

Since the proposed scheme uses existing allocation
policies for job allocation within the system partitions,

it can be viewed as one level higher than the exist-
ing allocation schemes and can be implemented eas-
ily. The processor allocator can maintain the status
of each partition in the system and is responsible for
implementation of the allocation algorithm. When a
request arrives, it first decides the appropriate parti-
tion for the job. Once the partition is decided the allo-
cation within the partition can be implemented using
the chosen allocation scheme. The processor allocator
takes care of job movements, if required.

The time complexity of the allocation step in the
proposed scheme can be calculated in the following
manner. Assuming that we use PR scheme for alloca-
tion within the partitions, the complexity of allocation
within the partitions would be O(w' x w') if the parti-
tion size is (w’ x w') [11]. Let the mesh Ms(w, w), w =
2™, be partitioned as described previously. So there
would be three partitions of size P,_; = 2771 x 271,
three partitions of size P,_s = 2772 x 27~2 and so on
till partitions of size Py = 1 x 1 which would be 4.

If the probability that a job is in partition F; is
pi, the total time complexity of our scheme assuming
uniform distribution of jobs can be calculated as:

v v
272
w w
o Apo(x)
w w
= 3pn—1(2n_1 X 2n_1)+3pn—2
(2772 x 277 %) 4 - 4pg(2° x 2°)
= 3Pn—1(22(n_1)) + 3Pn—2(22(n_2))
+ 4 4po(2°)

w
T = 3p,_i)+3pn_z(zx)+

NI

~ 3.2211.p[2—2+2—4+”.+2—2n]
(neglecting the 4th partition of size 1 x 1)
2-2(1 — 2-%7)
= 3.9 ., = J
[
1
~ 327 po
3
— 2271 p
= Owxw)p
1
= w . — 1
O(w x w) " (1)

Similar derivations can be carried out for FS and
2DB schemes. In all the cases, it can be proved that
the proposed scheme reduces the search space by the
factor of n where n = log, w.

4 Performance Evaluation

Extensive simulation was carried out to evaluate
the performance of the proposed allocation scheme.
Results for all the three schemes, namely 2DB, FS
and PR schemes under the proposed strategy were
collected and are presented. Simulation was carried
out on mesh systems of various sizes. For comparison
purposes we have presented the results for (64 x 64)

and (32 x 16) meshes. Other results also follow the
same trend.

4.1 Simulation Environment

The system was simulated by using a discrete event
driven model. The mesh was logically partitioned as
described in Section 3.2. The implementation within a
partition was according to the allocation policy used.
The input to the system are the mesh width and the
mesh height, the mean inter-arrival ttme and mean
service time of the jobs and the job side length dis-
tribution. The output parameters of the model are
completion time, system utilization, and system frag-
mentation.

Initially the whole system is assumed to be free.
Total 10000 jobs are then generated and allocated un-
til all the jobs are complete. Job inter-arrival time
is assumed to follow exponential distribution with a
mean of 1 time unit. The performance was studied for
exponential distribution of the service time (execution
time) with a mean of 10 time units. The results were
averaged over many simulation runs and were found
to be consistent with maximum deviation of only 1%.

It was assumed that all the incoming jobs are of
rectangular (some of them could be square). Since
in the proposed scheme, the largest system partitions
have lengths and widths equal to half of the mesh
length and width respectively, the jobs are also lim-
ited to this size. Three distributions were chosen to
represent the side lengths of these jobs — uniform dis-
tribution, increasing distribution and decreasing dis-
tribution. Uniform distribution represents the cases
when the side is uniformly distributed between 1 and
maximum allowable value as discussed above. Increas-
ing and decreasing distributions on the other hand as-
sume probability of larger submesh being requested
as very high and less respectively. These probabili-
ties are shown in Table 1 for a 64 x 64 system. Here
P[a,b] represents the probability that the side length
is within the interval a and b. It should be noted that
both the height and the width of a job are always
considered under the same distribution. However two
different random numbers are used, one for each side,
to generate the lengths.

Once a job is generated, depending on its size it is
queued at an appropriate server. The server attempts
to allocate the job at the head of the queue using the
algorithm presented in the earlier section. If a job can
not be allocated, it is kept waiting in the queue until a
submesh is deallocated. The allocation is reattempted
at this time. Within a partition the jobs are allocated
using the chosen allocation policy.

4.2 Results and Discussions

The following performance parameters were col-
lected for various job side length and service time dis-
tributions. (1) Completion time (2) System utiliza-
tion and (3) Internal, external and total fragmenta-
tion. Completion time is defined as the time taken to
complete execution of all the jobs. System utilization
is calculated as the average of the percentage of the
the busy time of all processor. The fragmentation are
calculated as defined in [9]. Internal fragmentation
(Fint) is the percentage of overallocated processors

Table 1: Performance comparison for FS scheme.

Table 2: Performance comparison for FS scheme,
square Jobs.

@P[1,16] = 0.2, P[17,24] = 0.2, P[25,28] = 0.2,P[29,32] = 0.4
bP[1,4] = 0.4, P[5,8] = 0.2, P[9,16] = 0.2,P[17,32] = 0.2

over the allocated mesh processors. External fragmen-
tation (Fleg:) is the percentage of total available mesh
processor to the system size at each allocation failure,
averaged over all allocation attempts. The total frag-
mentation, Fior, is equal to (1 — Fegy) X Fing + Fegr.

Table 1 shows comparison between the normal FS
scheme and the proposed scheme with FS used within
the partitions for a 64 x 64 mesh. All the three distri-
butions for the job side lengths are considered. The
results show clear performance improvement in all the
three types of job side length distributions. The par-
titioning scheme results in less completion time and
higher utilization in all the three cases. As evident
from the table this is mainly due to the significant re-
duction in the external fragmentation. Note that the
proposed scheme introduces some amount of internal
fragmentation due to the job movement in which the
whole partition is occupied by a single job. However,
the combined effect of internal and external fragmen-
tation is always less.

It can be observed that the performance improve-
ment is least significant for the decreasing distribu-
tion. The reason for this behavior is the fact that,
under this distribution, most of the requests are for
smaller submeshes. The system although fragmented
can accommodate incoming jobs of smaller sizes with-
out many allocation failures. On the other hand, in
the proposed scheme, since the system is partitioned
and no jobs are allowed to be allocated across the par-
tition boundaries, there is always a minimum “built-
in” fragmentation in the scheme irrespective of the size
of the incoming jobs. This puts an upper limit on the
performance improvement using this scheme.

During the simulation runs it was observed that un-
der uniform distribution, the probability that a sub-
mesh of the size say, 32 x 1 is requested is equal to the
probability of any other size submesh being requested.
This assumption of equal probability would be highly
unlikely in the actual systems. So we also collected the
same system performance measures assuming all the

Performance Submesh size distribution
Unif. | Incr. ¢ | Decr. ? Performance Submesh size distribution
Completion]| FS || 1758 | 3021 T004 Unif. [Incr. @ [Decr. ?
Time FS/P || 1595 | 2354 993 Completion FS 2186 | 3137 1166
System FS 37.3 44.3 22.3 Time FS/P || 1564 2314 1014
Utilization || FS/P || 41.4 56.6 23.0 System FS 39.8 48 35.5
External FS 29.3 25.5 14.3 Utilization || FS/P || 56.5 65.2 40.3
Fragment. || FS/P || 13.6 6.1 10.9 External FS 27.8 23.1 28.5
Internal FS 0 0 0 Fragment. || FS/P || 11.5 6.2 13.3
Fragment. || FS/P 9.9 14.4 0 Internal FS 0 0 0
Total FS 29.3 25.5 14.3 Fragment. || FS/P 3.2 4.6 0.2
Fragment. |[FS/P || 22.1 19.6 10.9 Total FS 27.8 23.1 13.3
Fragment. |[FS/P || 14.4 10.51 13.1

ap[1,16] = 0.2, P[17,24] = 0.2, P[25,28] = 0.2,P[29,32] = 0.4
bP[1,4] = 0.4, P[5,8] = 0.2, P[9,16] = 0.2,P[17,32] = 0.2

jobs to be square, i.e by generating only one dimension
and assuming the other dimension to be same. These
results are presented in Table 2. The results clearly
show that FS scheme with partitions gives superior
performance over the normal FS strategy.

The same simulation runs were carried out for all
the three — 2DB, FS and the PR allocation schemes.
Figure 3(a) compares the completion time of all the
three schemes with the proposed scheme. Figure 3(b)
shows the same results for square jobs. The results
presented here are for the uniform job side length dis-
tribution. Increasing and decreasing distributions also
follow the same trend. The plots show that the pro-
posed scheme results in improved system performance
in almost all the cases. This improvement is minimum
in case of 2DB scheme because of its large internal
fragmentation. FS scheme with partitions results in
significant reduction in the completion time of the jobs
while PR scheme with and without partitions gives al-
most the same value for the completion time. It should
be noted that the time complexity of PR scheme with
partitioning is significantly less than that of the PR
scheme without partitioning. Figure 3(b) shows the
same results for square jobs. The 2DB scheme is very
well suited for the square jobs and hence shows better
performance as compared to the FS strategy. It is in-
teresting to note that all the three schemes 2DB, FS
and PR with partitioning gives almost same comple-
tion time. Since jobs are square in nature, and the way
system is partitioned, there can not be more than one
job in a partition. Thus no matter what scheme we
use within the partition, the allocation remains same.

Figures 4(a) and 4(b) plot fragmentation caused by
each scheme and compares them with the fragmenta-
tion of the proposed scheme. The results shown are for
the uniform job side length distribution. It is apparent
that using the 2DB, FS or PR scheme, the partitioning
approach results in significantly less fragmentation. In
the case of the buddy scheme, the internal fragmenta-

Figure 3: Completion Time of allocation Schemes (a)
Rectangle jobs (b) Square jobs.

tion remains almost the same while the external frag-
mentation is reduced. For the FS and PR schemes,
the partitioning approach introduces some amount of
internal fragmentation but the reduction in external
fragmentation overweighs this small increase and the
total fragmentation is always less. Note that the com-
pletion time as shown in Figure 3(b) are almost same
in case of square jobs for all the three schemes when
used with partitioning. The fragmentation values for
2DB however is too large. This is due to the fact that
2DB needs subcubes with side lengths in powers of
two. While this introduces internal fragmentation, the
completion time is not affected because in any case,
one partition can have only one job.

The total fragmentation of a scheme is defined as
Fiot = Fint + Fept — Fint Fert. For clarity, however, we
have plotted the actual values of internal and exter-
nal fragmentation and hence the column height does
not necessarily represent the total fragmentation. It
can be observed from the graphs that since the sum of
internal and external fragmentation is always less for
the proposed scheme than the corresponding alloca-
tion schemes without partitioning, the total fragmen-
tation would be even less. The internal fragmentation
in buddy scheme is due to dilation of jobs to powers
of 2. Internal fragmentation in partitioned FS and PR
schemes is only due to the job movements.

Figure 4: Fragmentation Vs. allocation Schemes for
uniform Job side length distribution (a)Rectangle jobs
(b) Square jobs

4.3 Extensions of the Partitioning Ap-
proach

The allocation algorithm presented here is
suited not only for square meshes but also for the
rectangle meshes. The partitioning of the rectangle
meshes can be done in a similar way as for the square
meshes. Partitions in these cases would not be square
and would have their widths and heights in proportion
respectively to the mesh width and mesh height. Since
within a partition our policy allows use of any of the
2DB, FS or the PR schemes, rectangular partitions
would be equally acceptable.

For example, for a mesh M»(32,16), which is used
in Touchstone Delta system, the partitions can be
made of size 16 X 8, 8 x4, 4 x 2 and 2 x 1. The incom-
ing jobs can be allocated to any of these partitions
depending upon their sizes. Here we have assumed
that the side lengths of the rectangular meshes are in
powers of 2. This assumption is based on the sizes of
the practical rectangle systems like Touchstone Delta
and Intel Paragon.

We simulated our scheme for the mesh M»(32, 16)
and collected the results. Table 3 shows these results
for normal FS and FS with partitions. The inter-
arrival time and the service time of the tasks are again
assumed to be exponential with a mean of 1 and 10

Table 3: Performance comparison for FS scheme on

M>(32,16)

Performance Submesh size distribution
Unif. | Incr. ¢ | Decr. ?
Completion FS 1704 2742 998
Time FS/P || 1563 2352 996
System FS 42.8 52.2 26.1
Utilization || FS/P || 46.7 60.9 26
External FS 26.2 21.7 8.8
Fragment. FS/P 16.2 9.3 10.2
Internal FS 0 0 0
Fragment. || FS/P 7.2 10.9 0
Total FS 26.2 21.7 8.8
Fragment. FS/P || 22.2 19.18 10.2

@width: P[1,16] = P[17,24] = P[25,28] = 0.2, P[29,32] = 0.4
height: P[1,4] = P[5,12] = P[13,14] = 0.2, P[15,16] = 0.4

bwidth: P[1,4] = 0.4, P[5,8] = P[9,16] = P[17,32] = 0.2
height: P[1,2] = 0.4, P[3,4] = P[5,8] = P[9,16] = 0.2

time units respectively. Probabilities for the increas-
ing and decreasing job side length distributions are
mentioned below the table.

The performance measure follows the same trend
as was observed for the square meshes. The proposed
scheme performs better than the FS scheme for the
uniform and increasing distributions while the results
are almost the same for the decreasing distribution.

The time complexity of the proposed scheme for
rectangle systems is also less by a factor of n than
the corresponding normal allocation scheme without
partitioning. Here, n = log,{min(w, h)} for the mesh
Mg(w, h)

The proposed scheme is based on one way of par-
titioning the system. There could be other ways also.
For example, the whole mesh can be divided in two
equal but nonsquare parts by partitioning the system
horizontally or vertically. One of these parts can again
be divided into two parts, this time dividing horizon-
tally if the division in the first case was vertical or
vice-versa. This process can be repeated till we get
the smallest desirable partition size. This partition-
ing scheme can allow jobs larger than the jobs allowed
in our scheme but the combination and movement of
jobs in this case would be complicated.

5 Conclusions

An efficient processor allocation strategy using a
partitioning scheme for two dimensional mesh con-
nected computers is reported in this paper. The pre-
vious allocation algorithms aimed at reducing inter-
nal fragmentation and improving the submesh recog-
nition ability. This paper presents an effort in reduc-
ing external fragmentation by partitioning the system
and allocating similar size jobs together. The existing
schemes such as 2DB, FS or PR can be used within
the system partitions. The results indicate that the
performance is considerably improved in almost all

the cases by using the partitioning allocation scheme
proposed here. The time complexity using the pro-
posed scheme is also reduced by a factor of n with re-
spect to the incorporated allocation algorithm, where
n = logy{min(w, h)} for the mesh Ms(w,h). Since
the proposed scheme is implemented on top the exist-
ing allocation schemes - 2DB, FS or PR, it can also
exploit the inherent advantages of these schemes.

The work reported in this paper will instigate re-
searchers for devising more efficient allocation policies
which can reduce or eliminate all the three types of
fragmentation.

References

[1] D. Nassimi and S. Sahni, “Bitonic Sort on
a Mesh-Connected Parallel Computer,” IEEFE
Trans. Comput., pp. 2-7, Jan. 1979.

[2] R. Miller, V. P. Kumar, D. Reisis, Q. Stout, “Par-
allel Computations on Reconfigurable Meshes,”
IEEE Trans. Comput., pp. 678-692, June 1993.

[3] T. Blank, “The MasPar MP-1 Architecture,”
Proceedings of the IEEE Compcon, Feb. 1990.

[4] Intel Corporation, Paragon XP/S Product

Overview, 1991.

[5] D. Lenoski, J. Laudon, et. al., “The Stanford
DASH Multiprocessor,” IEEE Trans. Comput.,
pp- 63-79, March 1992.

[6] Intel Corporation, A Touchstone DELTA System
Description, 1990.

[7] M. Noakes, D. A. Wallach and W. J. Dally,
“The J-Machine Multicomputer: An Architec-
tural Evaluation,” Int. Symp. on Computer Ar-

chitecture, pp. 224-235, 1993.

[8] D. E. Knuth, The Art of Computer Programming,
Vol .1 Fundamental Algorithms, Addison-Wesley
Publishing Co., 1973.

[9] K. Liand K. H. Cheng, “Job Scheduling in a Par-
titionable Mesh Using a Two Dimensional Buddy
System Partitioning Scheme,” IEEE Trans. on
Parallel and Distributed Systems, pp. 413-422,
Oct. 1991.

[10] P. J. Chuang and N. F. Tzeng, “An Efficient
Submesh Allocation Strategy for Mesh Computer

Systems,” Int. Conf. on Distributed Computing
Systems, pp.256-263, May 1991.

[11] Y. Zhu, “Efficient Processor Allocation Strategies
for Mesh-Connected Parallel Computers,” Jour-
nal of Parallel and Dist. Computing, 16, pp. 328-
337, 1992.

[12] K. C. Knowlton, “A Fast Storage Allocator,”
Commun. ACM, Vol.8 pp.623-625, Oct.1965.

