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Abstract

Multiprocesssor systems have emerged as an impor-
tant computing means for real-time applications and
have received increasing attention than before. How-
ever, until now, little research has been done on the
problem of on-line scheduling of parallel tasks with
deadlines in partitionable multiprocessor systems. In
this paper, we propose a new on-line scheduling algo-
rithm, called Deferred Earliest Deadline First (DEDF')
for such systems. The main idea of the DEDF algo-
rithm is to defer the scheduling as late as possible, so
that a set of jobs is scheduled at a time instead of one
at a time. For processor allocation using DEDF, we
have introduced a new concept - Available Time Win-
dow (ATW). By using ATW, the system utilization
can be improved and thereby enabling the system to
meet the deadline of more number of tasks. Simula-
tion results for a hypercube indicate that the DEDF
algorithm performs significantly better than the ear-
lier proposed Buddy/RT and Stacking algorithms for
a wide range of workloads.

1 Introduction

A real-time system is a system in which correctness
of the computation depends not only on the logical
correctness of the execution, but also on the timeliness
of producing results. To function correctly, it must
produce a correct result within a specified time, called
deadline. The system is considered failed if the time
constraints are not met.

Scheduling of aperiodic tasks on real-time systems
is one of the most difficult problems in the design of
real-time systems. Aperiodic tasks have random ar-
rival time. Due to their unpredictable nature in terms
of arrival time and service demand, it is very difficult
to design real-time systems that have a high guaran-
teed rate of servicing aperiodic tasks successfully. It is
often desirable to schedule tasks in a prioritized man-
ner in order to meet the deadline of the most impor-
tant tasks. The characteristics of the aperiodic tasks
are not known a priori and the scheduling decisions
are made upon their arrival. Thus arises the need for
on-line scheduling of tasks. The functionality of the
on-line scheduler can be described as follows. When
a new job arrives, its service demand (execution time
and subcube size) and deadline are made known to the

on-line scheduler. The scheduler then decides whether
the new job along with all the old jobs can finish their
execution before their respective deadlines. If it is
not possible then the scheduler tries to accommodate
as many jobs as possible based on the specified allo-
cation algorithms and task priorities. The jobs that
cannot be serviced before its deadline are not accepted
by the system. The scheduler must make decision dy-
namically and quickly so as to have a high ratio of job
acceptance and low scheduling overhead.

Multiprocessor system are emerging as potential
candidates for use in real-time applications [9]. Hyper-
cubes and mesh-connected multiprocessors are well-
suited for use as real-time control units due to their
high scalability, reliability and throughput. An ad-
ditional advantage of these system is their ability to
be partitioned into subsystems each of which can be
allocated to a different job. An efficient scheduling
algorithm is required for allocating multiple jobs on
a partitionable real-time multiprocessors. Dynamic
scheduling of real-time tasks on partitionable multi-
processor systems is an ongoing and active research
area. Determination of an optimal scheduling or al-
location scheme is known to be an NP-hard problem
[7,9]. In this paper, we propose a new on-line schedul-
ing scheme for hypercube-based real-time multiproces-
sor system.

The on-line scheduling scheme proposed in this pa-
per is called Deferred Earliest Deadline First (DEDF)
algorithm. The main idea of DEDF is deferring the
scheduling as late as possible so that the scheduler
schedules a set of jobs instead of one at a time.
Scheduling a set of jobs reduces fragmentation and
preemption of tasks as compared to scheduling one
job after another. However, it must be ensured that
the tasks meet their deadline. The DEDF scheme
works as follows. Whenever tasks arrive at the sys-
tem, they are enqueued in a job arrival queue. A few
triggering conditions are predetermined that initiate
the scheduling. If the scheduling is successful then the
set of newly arrived jobs are allocated to the system
and are guaranteed for completion, otherwise option-
ally the scheduler does preemptive scheduling for all
the jobs in the system. The process is repeated when-
ever the triggering conditions are met. We have also
introduced a new concept of Available Time Window
(ATW) for processor allocation using the DEDF algo-



rithm. ATW of a processor is defined as the available
time interval for which that processor is available for
use. The system utilization is improved by using the
ATW for processor allocation. Both of the new ideas,
deferred scheduling and ATW | helps in improving the
performance of real-time scheduling in partitionable
multiprocessors.

Due to the nature of heuristic algorithms and the
complexity of multiprocessor scheduling process, it is
difficult to develop a reasonably accurate analytical
model for performance evaluation. We have evaluated
the performance of the proposed algorithm by means
of simulation. Job miss ratio and work miss ratio are
two parameters that are used as performance measures
for the real-time scheduling algorithms. The results
indicate that the proposed DEDF algorithm has a sig-
nificantly lower job/work miss ratio when compared
with the previously proposed Buddy/RT and Stack-
ing algorithms [1].

The remainder of this paper is organized as follows.
In Section 2, we describe the related works about on-
line scheduling algorithms for real-time tasks on par-
tionable multiprocessors. The proposed DEDF algo-
rithm is discussed in Section 3. The simulation plat-
form and the results are presented in Section 4, fol-
lowed by the concluding remarks in Section 5.

2 Preliminaries

Two major aspects of processor management in
multiprocessor systems are processor allocation and
job scheduling. In a real time system, the processor
allocation is concerned with the selection of processors
on which the tasks will execute and the time when the
allocated jobs start their execution. The job sched-
uler decides the order in which jobs are considered for
processor allocation. Several schemes for processor
allocation for non-real-time parallel tasks have been
proposed including buddy, single and multiple gray
code, free list, MSS, tree collapsing PC-graph [6]. The
scheduling schemes proposed for non-real time systems
include scan [5], lazy [6], and reservation schemes [10].
However, the work reported on on-line scheduling of
real-time tasks on partitionable multiprocessors have
been limited. Hong and Leung have proposed an on-
line scheduling algorithm for real-time tasks with one
common deadline [3].

2.1 On-Line Task Scheduling

A job J; is characterized by its time of arrival A;;
its execution time E;; its deadline D;; and Dim;, the
dimension of the subcube required by the job. We
assume that all these parameters are made known to
the scheduler when the job arrives. A job set K con-
sists of k independent jobs to be scheduled. Job set
K is feasible on an n-dimensional hypercube if there
is a preemptive schedule for the jobs in K such that
each job J; is executed in its execution interval [A;,
D;]. Such a schedule is called a feasible schedule. Job
scheduling algorithms based on simple heuristics such
as Earliest Deadline First (EDF) and Minimum Lax-
ity First (MLF) are often used in uniprocessor systems

[7]. Under EDF, jobs are scheduled in ascending order
according to their deadlines. The job with the earliest
deadline gets the highest priority. A scheduler based
on MLF, on the other hand, schedules the jobs in as-
cending order according to their laxities, where laxity
of a job is the time difference between the current
time and the Latest Start Time (LST) of the job. The
LST of a job is the latest time by which the job must
be started in order to be finished before its deadline.
It has been shown that EDF and MLF are optimal
for uniprocessor systems with independent preempt-
able tasks [7]. While these heuristics are suitable for
uniprocessor systems, they are not feasible for multi-
processor systems due to the large search space of the
feasible schedules.

2.2 Related Scheduling Algorithms for
Real-Time Partitionable Multipro-
cessors

In this subsection, we describe the two on-line
scheduling algorithms proposed so far for real-time
partitionable multiprocessors.

The Buddy/RT processor allocation algorithm for
real-time systems proposed by Babbar and Krueger [1]
is an extension of the buddy scheme proposed earlier
for memory systems and processor allocations [2]. The
basic idea is to include an additional restriction - time,
while doing allocation. The Earliest Available Time
(EAT) of a processor is defined as the earliest time at
which that processor will become available for alloca-
tion. A processor’s EAT is equal to the finish time
of the latest job scheduled on that processor or the
current time, whichever is higher. Instead of an array
of bits (as used in the conventional buddy system),
an array of EATs is used in the Buddy/RT scheme.
An entry in the array of EATs indicates the time at
which the corresponding processor will be available.
The Buddy/RT algorithm has two phases where the
second phase is optional. All the jobs are tried for
scheduling on their arrival based on the FCFS dis-
cipline. For a job J;, requesting a subcube of di-
mension k within a hypercube of dimension n, the
Buddy/RT algorithm tries to find the smallest integer
4, 0 < j <27 % _1 such that all the processors in
the subcube {j2%, (j + 1)2¥ — 1} have EATs earlier
than the LST of job J;, and allocates these processors
to job J;. If no such j exists, no subcube can complete
job J; before its deadline. In this case, the scheduler
fails in the first phase.

The decision to go to the second phase is based on
the amount of time available before the LST of all the
jobs. If the available time is more than the worst-
case execution time of the second phase, the second
phase is initiated, otherwise the job is rejected. In the
second phase, the scheduler tries to reschedule all the
jobs - both the currently allocated ones and the newly
arrived one.

Coalesces and splits while using Buddy/RT algo-
rithm increases the fragmentation and thereby lim-
its the performance. Coalesces lead to holes in the
schedule and splits hurt the ability to schedule future
jobs which need larger subcubes. The objective of the



Stacking algorithm is to avoid this weakness of the
Buddy/RT algorithm. The Stacking algorithm tries
to minimize fragmentation by avoiding unnecessary
coalesces and splits of subcubes [1]. The approach
used by the Stacking algorithm is to stack equal-sized
jobs. Instead of choosing the first available subcube
that allows for the job deadline to be met, the Stack-
ing algorithm chooses the earliest available subcube
that allows the deadline to be met from among those
that require the least number of splits or coalesces.
The Stacking algorithm also has two phases as that of
the Buddy/RT algorithm. The scheduler also needs to
determine whether it can get into the second phase.
In [1], the authors have shown that stacking performs
better than that of the Buddy/RT algorithm.

3 Deferred Earliest Deadline
(DEDF) Scheduling

First

Although Buddy/RT and Stacking algorithms have
good subcube allocation ability, they have several
shortcomings. First, since they schedule the job as
soon as it arrives, the scheduling overhead is high.
This is even worse when they get into the second
phase. Second, in the allocation scheme, whenever
they find a free subcube or a subcube which has the
EAT earlier than the LST of the newly arrived job,
they scheduled the new job on that subcube. This kind
of greedy scheme could create holes and splits that af-
fect the later allocations. Third, the use of EAT may
leave a subcube idling while jobs of the correspond-
ing size are being rejected. The idling time may be
enough for the completion of the rejected jobs. This
problem is discussed in the form of an example in the
following subsection. The proposed DEDF algorithm
avoids all these weaknesses.

3.1 DEDF Algorithm

The main idea of the DEDF algorithm is the defer-
ment of the scheduling as late as possible, so that the
scheduler schedules a set of jobs as opposed to a single
job as is done while using the Buddy/RT and Stacking
algorithms. By providing more number of jobs to be
scheduled, we can have an optimal allocation for a spe-
cific set within the available system constraints. This
idea has been motivated by the fact that, for the feasi-
ble job sets, the static (or off-line) real-time scheduling
can be optimal, in which the characteristics of all the
tasks are known a priori. Thus, the static real-time
scheduling can be performed on a given set of jobs to
improve the performance of on-line scheduling.

In DEDF, the scheduler will not start the schedul-
ing until some triggering conditions are met. Deter-
mination of the triggering conditions is very impor-
tant and must be selected carefully. There are two
important factors that are taken into consideration
while deciding the triggering conditions. These are
Latest Start Time(LST) of jobs to be scheduled and
the length of the queue for the arriving jobs. We as-
sume that the system has a queue called Arrival Queue
(AQ) for all arriving real-time jobs. The scheduler de-
fers the scheduling as long as every job in the AQ has

enough slack time to its LST. It may not be wise to
wait exactly until the minimum LST of all jobs to trig-
ger the scheduling process as there may not be any free
subcube available at that time. If the minimum LST of
all jobs is L; (=min{LST}), and the average subcube
hold time (service time) of the jobs is S;, then the trig-
gering time ¢;44,¢ is equal to the maximum of {current
time, L; — S;}. The heuristic behind this selection of
time is that if there are no available subcubes, then a
subcube is most likely to be available after the average
hold time. Simulations are conducted to validate the
heuristics and have shown good results for a variety of
workload conditions.

The scheduling is also triggered when the AQ is full.
In a practical implementation, the AQ can accommo-
date finite number of jobs. So we need to schedule as
many jobs as we can (if not all) as soon as the AQ is
full. If one of these two conditions (i.e., LST or length
of AQ ) is met, the scheduler starts to schedule the
jobs waiting in the AQ.

For processor allocation with DEDF scheduling al-
gorithm, we have introduced a new concept of the
Available Time Window (ATW). ATW of a subcube
is defined as the available time interval at which that
subcube is available for use. An available time inter-
val is represented by the bottom of the ATW and the
top of the ATW. The bottom of a ATW is the time
at which the subcube starts to idle, and the top of
a ATW is the time at which the subcube starts to
run the next reserved job. If there is(are) no reserved
job(s) for that subcube, the top of the ATW is said
to be open. A subcube could have multiple intervals
when it is available for use resulting in multiple ATWs.
In such cases, the multiple ATWs are maintained as
a linked list and all of them are checked for possible
allocations. The DEDF scheduler allocates processors
for ajob based on the ATW. We have shown in Section
4 that the ability of available subcube recognition of
our algorithm is much better than that of Buddy/RT
and Stacking that use EAT for processor allocation.
Furthermore, the use of ATW guarantees that a sub-
cube will not idle when jobs of the same size are being
rejected and could have been completed during the
idling time.

As in the case of Buddy/RT and Stacking, DEDF
also consists of two phases in which the second phase
is optional. By increasing the number of successful
schedules in the first phase, the number of preemptions
can be reduced. The scheduling process in the first
phase of the DEDF algorithm is discussed as follows.

The scheduling of new jobs are deferred until one
of the triggering conditions is met. In the first phase,
the scheduler tries to schedule all new jobs in the AQ
in the order of their deadline, i.e., Earliest Deadline
First (EDF). Once a new job is ready to be scheduled,
the scheduler performs processor allocation for that
job based on the ATW. If it finds an appropriate sub-
cube, it is either allocated or reserved for the job. It
should be noted that several jobs can reserve the same
busy subcube as long as their deadlines can be met.
This scenario is different from the non-real-time par-
allel task allocation. If the scheduler does not find the
required subcube, it is said to have failed in the first



Table 1: A Sample Job Set.

[ Job [ AT | Size ]| ET ]| Deadline [ LST ]|

Ji 1 2 ! t+14 1
Ja t 3 7 1+ 7 t
Jz || t+1 3 2 t+38 t+6
Jy | t4+2 2 2 t44 t+2

AT: Arrival Time; ET: Execution Time

phase. If enough time for the second phase is left, it
enters the second phase. This time is decided based on
the amount to time left before the LST of all the jobs
(L:). Since the second phase involves preemption, the
overhead due to preemption is also taken into account
while deciding whether or not to initiate the second
phase. The allocation procedure of the second phase
is almost the same as that of the first phase except
that the job set to be scheduled includes all jobs in
the system, i.e., all currently running jobs, all jobs
that have reserved a subcube, and jobs in the AQ. If
a feasible schedule is possible then all the jobs cur-
rently executing are preempted and the new schedule
is adopted. The second phases of all the three al-
gorithms (Buddy/RT, Stacking, and DEDF) involve
preemption. Preemption of jobs has higher overhead
and should be avoided as and when possible.

The effectiveness of the DEDF algorithm can be il-
lustrated by considering an example of a sample job
set as shown in Table 1. The system size is assumed
to be 4-cube. Jobs J; and J, arrive at time t. Job
J3 arrives at time ¢t + 1 and J4 at £ 4+ 2. Their sub-
cube requirement, execution time, and deadlines are
indicated in Table 1. We will first analyze the schedul-
ing performance using Buddy/RT and Stacking. Both
Buddy/RT and Stacking use EAT to find an available
subcube for allocation. The order of allocation is done
through EDF. At time ¢, the AQ will have the jobs J;
and Jy, in order. Using Buddy/RT or Stacking, the
jobs J1 and Js are first allocated. The EATs of the
subcubes {1-4}, {5-8}, and {9-16} are updated to t+4,
t, and t+7, respectively. Js arrives at time ¢4 1 with a
deadline of t4+8. To schedule J3 that requires a 3-cube,
we need to check the EATs of the 3-subcubes existing
in the system. The EAT of subcube {1-8} and {9-16}
are t +4 and t 4+ 7, respectively. Thus J3 reserves the
subcube {1-8}. The EAT of all the processors in the
subcube {1-8} are updated to t 4+ 6. The allocations
and reservations at time ¢ 4+ 1 are as shown in Figure
1. At time t 4+ 2, J4 arrives requesting a 2-cube with
a deadline of t +4. As the EATs of all the 2-subcubes
are either ¢t + 6 or t + 7, J4 cannot be allocated in
phase 1. The jobs J; and J; need to be preempted to
enter phase 2 in order to accommodate Jy4, if possible.
In this specific case, incidentally, the second phase of
Buddy/RT and Stacking will not be initiated and J4
will be rejected. Because there is no laxity for Jy4, the
preemption overhead will prohibit the initiation of the
second phase.

When we schedule the jobs by using the DEDF al-

t+7
t+6
t+5 B
t+4
t+3 J2

t+2 J
t+1

17 27 37 47T 51 61 71 87 910 M1 2 13 114 15 116

Numbers of processors

Figure 1: Scheduling using Buddy/RT or Stacking.

gorithm, the concept of ATW is used instead of EAT
for processor allocation or reservation. We will ana-
lyze the same example with a few variations to reflect
different scenarios. Consider the four jobs with their
characteristics as depicted in Table 1. At time ¢, the
DEDF scheduler is triggered as the LST of J; is¢. The
AQ has jobs J; and Jy. Jy is scheduled on subcube {1-
4}, Jp in subcube {9-16}. J3 arrives at timet+1. The
LST of J3 ist+5, so the scheduler is not triggered. Jy4
arrives at time ¢t +2 with a LST of ¢4+ 2. So the sched-
uler is triggered at ¢+ 2. When the scheduler starts to
schedule, 1t has two jobs in the AQ (J3 and J4). Since
the DEDF scheduling algorithm schedule the job with
earlier deadline first, it will schedule J4 before J3, even
though Js arrived earlier. In this case, the scheduler
can schedule both J3 and J4 successfully to meet their
deadlines as shown in Figure 2. We expect this kind of
situation to be more prevalent when the workload has
jobs with large laxities. Using Buddy/RT or Stacking,
J4 may be scheduled if we use the optional preemp-
tive scheduling and there is enough laxity. However,
by deferring scheduling, DEDF scheduling algorithm
can avoid the unnecessary preemptive scheduling over-

head.

t+7
t+6
t+5 B
t+4
t+3 un 2
t+2 Ji
t+1

17 21 31 47 57 6 71 87 9110 111 12 13 114 115 116

Numbers of processors

Figure 2: Scheduling using DEDF.

To illustrate the effectiveness of the ATW concept,
let us assume that the scheduler is triggered at ¢ + 1



after the arrival of job Js because of the AQ becom-
ing full. Note that the length of AQ is usually long
enough to hold more than one job but just to illus-
trate the utility of the ATW concept we assume here
that the AQ becomes full at ¢+ 1, and the scheduler is
triggered. As J3 requires a 3-cube, the ATW of all the
3-subcubes are checked. They are [t + 4 — open] for
subcube {1-8}, and [t +7 — open] for the subcube {9-
16}. Thus J3 reserves the subcube {1-8}. The ATW
of all the subcubes are then updated. When J4 arrives
at time ¢ + 2, the scheduler is again triggered as the
LST of J4 is t + 2. J4 requires a 2-cube. The ATW
of all the 2-subcubes in the system are [t + 6 — open
for subcube {1-4},[t+2 — t+4] and [t + 6 — open
for subcube {5-8}, [t + 7 — open] for subcube {9-12},
and [t + 7 — open] for subcube {13-16}. Thus, J,
is allocated to the subcube {5-8}. With the concept
of EAT, the subcube {5-8} is not used for the inter-
val (t + 2, t 4+ 4) and J4 would have been rejected.
But using the concept of ATW, we can use the sub-
cube {5-8} and can execute .J4 successfully before its
deadline. The difference between the concept of main-
taining EAT and ATW has a significant effect on the
system utilization. These situations occur frequently
if the workload has jobs with relatively small laxities.

We have therefore illustrated how the two new con-
cepts, deferred scheduling and ATW, reduces the re-
jection ratio of on-line real-time scheduling in parti-
tionable multiprocessors. We have also specified how
the DEDF algorithm is suitable for workload condi-
tions of large as well as small laxities.

4 Performance Measurements

We evaluate the performance of the DEDF
scheduling algorithm through simulations. For real-
time systems, two useful metrics for performance eval-
uation are the Job Miss Ratio (JMR), which is the ra-
tio of jobs refused to the total number of jobs that ar-
rive at the system, and the Work Miss Ratio (WMR),
which is the ratio of refused work to the offered work-
load. For WMR, the work requested by a job is com-
puted as its subcube hold time multiplied by the num-
ber of processors constituting the subcube.

4.1 Workload Characterization

In our study, a Poisson job arrival process is as-
sumed. The Poisson process has been found to model
natural physical and organic processes realistically,
and is commonly used to model random, independent
arrivals of jobs to computer systems form an exter-
nal population [4]. We assume that the subcube hold
times and laxities are normally distributed. Subcube
hold time is independent of subcube size. Three differ-
ent distributions for the subcube dimensions are con-
sidered. They are: modified geometric distribution,
the discrete uniform distribution, and a reverse geo-
metric distribution, which is simply a mirror image
of the geometric distribution. All these distribution
are truncated at 0 and n-1, where n is the dimen-
sion of the hypercube. The probability mass function
for the truncated modified geometric distribution is

_ _ p(-p)* _ 1 ‘o
p(k) = STy where p = . For the dis

crete uniform distribution, p(k) = %, and for reverse

p(1—p)"~'7* :

Z:;ol TR While
all subcube sizes are equally likely in the uniform dis-
tribution, the geometric distribution has a high pro-
portion of small jobs and the reverse geometric dis-
tribution has a high proportion of large jobs. All the
above mentioned assumptions and workload charac-
teristics are also considered in previous studies [1] [8].

geometric distribution, p(k) =

4.2 Simulation Environment

We have simulated three different scheduling algo-
rithms: Buddy/RT, Stacking, and DEDF with vari-
ous workload conditions. The input parameters are
the scheduling algorithm to be used, dimension of hy-
percube, observation interval, offered system load, job
arrival rate, subcube size distribution, mean subcube
size, standard deviation of subcube size, mean laxity,
standard deviation of laxity, mean subcube holding
time, and the standard deviation of holding time. The
simulation outputs are the JMR and WMR, which are
plotted with respect to the offered system load or the
mean laxity. If A is the job arrival rate, X is the mean
subcube hold time, P is the mean number of proces-
sors in a subcube request, and N is the number of
processors in the hypercube, then the offered system

load is %. The mean laxity is evaluated as a per-

centage of the mean subcube hold time.

Begin DEDF

NO

Check triggering condition:

‘ sort al new jobsin AQ using EDF ‘

‘ Fetch the first job from AQ ‘

Go to the respective level of the binary tre
that corresponds to the st

Allocate or reserve the subcube,
update ATW and last job dimension

of that node, including ancestors and
decendents in the tree

NO
Reject the job

Do presmptive
scheduling

‘ To Binary tree update module ‘

Figure 3: Flowchart of the DEDF scheduling scheme.

In our simulation, the hypercube system is repre-
sented as a binary tree. Each node in the binary tree



represents a possible subcube in the hypercube and
maintains its status. The complete structure of the
DEDF scheduling simulator is shown as a flowchart
in Figure 3. The binary tree update module is shown
in Figure 4. A predetermined preemption overhead of
2 time units is included to capture the time taken in
making the rescheduling in the second phase, if neces-
sary. A temporary binary tree is used for the schedul-
ing of all the jobs in the system including the jobs
currently running, the jobs that have reserved sub-
cubes, and all jobs in the AQ. All jobs are sorted by
EDF. If the scheduler cannot find an available sub-
cube for a job in the second phase, the job is rejected
by the system. In addition, once the scheduler starts
preemptive scheduling, it does not schedule new jobs
arriving after it has begun arranging the jobs based

on EDF.
Binary tree update module
start from the root node
urrently running jobs.

NO
Timeto finish?

Do binary tree update
onitsright sibling. YES

Remove the job from current node
and all its subtree nodes, update

job queue
YES

—————

children let the job run on this node
node exist 2 and on all its decendents
YES
Do bi It date for left pdate reservation cueue of this|
c':;ldlgl):ver:ew etor node and of all its decendents
Do hinary tree update for right|
child subtree
End of binary tree update
module,go to Begin DEDF

Figure 4: Flow chart of the binary tree update module.

any reserved jobs2

4.3 Results and Inferences

We have computed both JMR and WMR for the
system and workloads presented in this section. The
trends of both these plots are observed to be the same.
For the sake of brevity, we have reported only the plots
of the JMR. The JMR is expressed in % and is plotted
against the offered system load or the mean laxity.

Figure 5 shows the plot of job miss ratio in % with
respect to the offered system load for a hypercube of
dimension 8 (256 nodes). The job size distribution
is considered geometric with a mean laxity of 150% of
the mean service demand. It can be observed from the
plot that the JMR of the DEDF is considerably less
than that of Buddy/RT or stacking algorithms. We
have also plotted a curve that represents the DEDF
algorithm that does not uses the concept of ATW.

It just defers the allocation and uses EAT for allo-
cation. The curves shows that performance is also
gained by only deferring the scheduling. It can be
also inferred that both deferment of scheduling, and
allocation using ATW have impact on reducing the
miss ratio. Similar trends are also observed when the
job size distribution is uniform or reverse geometric.

Job Miss Ratio vs. Offered System Load

43 X : Buddy/RT

o Stacking

=

*: DEDF

+: DEDF with Deferring Only

Job Miss Ratio in %
w

~

0.4 0‘5 0‘5 0‘7 O‘E 0.9

Offered System Load

Figure 5: Job miss ratio versus offered system load.
(mean subcube size = 9.36, geometric job size

distribution)

The job miss ratio in % with respect to the mean
laxity in % (of the subcube hold time) for an 8-
dimensional hypercube is plotted in Figures 6, 7, and
8. The offered system load is assumed 0.4. The job
size distribution in Figures 6, 7, and 8 are geomet-
ric, uniform, and reverse geometric, respectively. It
is observed that the JMR using the DEDF schedul-
ing in considerably lower than that of Buddy/RT and
Stacking for all the distributions. For low laxities,
there is not much difference between the Buddy/RT
and Stacking algorithms. But the DEDF algorithm
demonstrate a substantial improvement in perfor-
mance from low to intermediate mean laxities. At
high mean laxities, all the three algorithms have less
JMR as almost all the jobs have a very high probabil-
ity of being accepted due to the large laxities. It is also
observed that the JMR for any given laxity is lower
in case of geometric distribution as compared to the
other two distributions. This is because of the more
number of small-sized jobs in geometric distribution.

The performance improvement using the DEDF
scheduling is between 25% to 150% compared to
Buddy/RT, and in between 10% to 75% compared to
the Stacking algorithm for the workload studied in this
paper.

The performance of various scheduling schemes
with the increase in the hypercube size is plotted in
Figure 9. The curves for the job miss ratio (in %) is
plotted against the hypercube dimension for uniform
job size distribution. The offered system load and the
mean laxity are assumed 0.4 and 150%, respectively.
It is observed that the JMR of the DEDF scheduling
is always lower than that of Buddy/RT and Stacking.
Furthermore, the increase in JMR with the increase
in the system size is slower in case of DEDF as com-
pared to the other algorithms. Similar trends are also
observed when the job size distribution is geometric
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Figure 6: Job miss ratio versus mean laxity.
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distribution)
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Figure 7: Job miss ratio versus mean laxity.
(mean subcube size = 32, uniform job size
distribution)

or reverse geometric.

Finally, we compare the miss ratios of the jobs of
different sizes for the three scheduling algorithms -
Buddy/RT, Stacking, and DEDF. Figures 10, 11, and
12 reflect the relative job miss ratios of different size
subcubes in an 8-cube system for the three scheduling
algorithms. The job size distributions in the figures
are geometric, uniform, and reverse geometric, respec-
tively. The plots can be also read as the probability of
rejection of a particular size job for each of the algo-
rithms. For all the three distributions, it is observed
that the miss ratio of the large size jobs are high, as
expected. While comparing the three algorithms, it
is seen that the miss ratio of the DEDF algorithm is
lower than the other two algorithms for all job sizes.
This observation is true for all the three job size dis-
tributions.

It can be argued that by deferring the scheduling,
one may delay informing the rejection of a job to the
user. The delay may not be acceptable for certain
applications. The DEDF algorithm is thus not suit-
able for such applications. However, in any case, the
concept of ATW can be still employed to enhance the
performance of real-time scheduling. Furthermore, the
concept of deferred scheduling can be employed in con-

Job Miss Ratio vs. Mean Laxity — Reverse Geom. Size Dist.
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Figure 8: Job miss ratio versus mean laxity.
(mean subcube size = 66.67, reverse geometric job
size distribution)
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Figure 9: Job miss ratio versus the system size.
(uniform job size distribution, offered load = 0.4,

mean laxity = 150%)

junction with Buddy/RT or Stacking algorithms to
extract enhanced performance for application that are
insensitive to the dealy in acceptance/rejection deci-
sions.

5 Conclusion

A new on-line scheduling algorithm called DEDF is
proposed in this paper for real-time partitionable mul-
tiprocessor. The DEDF scheduling scheme is based
on heuristics and two new ideas are introduced in the
algorithm. First, the scheduling of the jobs are not
necessarily done as soon as they arrive, but are post-
poned. The scheduling starts when certain triggering
conditions are met. Delayed scheduling allows us to
schedule a set of tasks instead of a single one. A set
of tasks is usually scheduled more efficiently compared
to one-at-a-time. Second, the concept of ATW is used
instead of EAT which was used in the earlier proposed
scheduling algorithms. By using ATW, the utilization
of the system is improved as it enables the allocation
of more number of jobs. The improvement in utiliza-
tion, in turn, improves the performance of the DEDF
scheduling algorithm. The complexity of the DEDF
algorithm is less than that of Buddy/RT and is equal
to that of the Stacking algorithm. Although we have
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(uniform job size distribution, offered load = 0.4,
mean laxity = 150%)

discussed the applicability of the DEDF algorithm for
hypercube computers, it is equally well-suited for any
partitionable multiprocessor.

The performance of the DEDF algorithm is eval-
uated through simulation. The results indicate that
the job and work miss ratios of the DEDF algorithm
is considerably less as compared to that of the ear-
lier proposed Buddy/RT and Stacking scheduling al-
gorithms. The JMR using DEDF scheduling increases
relatively slower with the increase in the hypercube
size. Furthermore, the JMR of different size jobs are
lower using the DEDF scheduling when compared to
that of the Buddy/RT or Stacking. Future work in-
cludes the consideration of additional resource and
precedence dependencies while scheduling the real-
time jobs. We also plan to study the effect of other al-
location algorithms proposed for hypercube and mesh
in conjunction with the DEDF scheduling algorithm.
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