A Traffic-Balanced Adaptive Wormhole Routing
Scheme for Two-Dimensional Meshes

Jatin Upadhyay, Vara Varavithya, and Prasant Mohapatra

Department of Electrical and Computer Engineering
201 Coover Hall
Iowa State University

Ames, TA 50011

Abstract

In this paper, we have analyzed several issues that are involved in developing low
latency adaptive wormhole routing schemes for two-dimensional meshes. It is observed
that along with adaptivity, balanced distribution of traffic has a significant impact on
the system performance. Motivated by this observation, we have developed a new fully
adaptive routing algorithm called positive-first-negative-first for two-dimensional meshes.
The algorithm uses only two virtual channels per physical channel creating two virtual
networks. The messages are routed positive-first in one virtual network and negative-
first in the other. Because of this combination, the algorithm distributes the system load
uniformly throughout the network and is also fully adaptive. It is shown that the proposed
algorithm results in providing better performance in terms of the average network latency
and throughput when compared with the previously proposed routing algorithms.

Index: Adaptive wormhole routing, Positive-First-Negative-First algorithm, Region of
adaptivity, Traffic distribution, Two-dimensional mesh.

”

!This paper is a revised version of “Efficient and Balanced Adaptive Routing in Two-Dimensional Meshes,
by Jatin Upadhyay, Vara Varavithya, and Prasant Mohapatra which appeared in International Symposium on
High Performance Computer Architecture, Raleigh, North Carolina, January 1995, pp. 112-121.

Index:

e Positive-First-Negative-First algorithm

e Region of adaptivity

e Traffic distribution

e Two-dimensional mesh

1 Introduction

In distributed parallel computers, tasks are executed by a set of intercommunicating nodes
or processors. The communication is usually carried out by means of passing messages from one
node to another over the interconnection network. Since direct networks utilize the locality of
the message references more efficiently, most of the existing systems use direct networks such as
k-ary n-cube or n-dimensional mesh.

The performance of the interprocessor communication scheme depends largely on the network
dimension, the switching technique, and the routing algorithm. Most of the contemporary
systems have used two or three dimensions. Store and forward, virtual cut-though and wormhole
routing are the main switching techniques used for interprocessor communication. Due to lower
latency and small buffer requirements, wormhole routing is preferred and is widely used in recent
multicomputers [1].

Message passing in multicomputer systems is implemented based on a routing algorithm
that determines the path a message follows to reach its destination. If the path between every
pair of source and destination is fixed, the algorithm is called deterministic. For better system
performance, it is preferable that the algorithm adapts itself to the traffic congestion by providing
alternate paths. Adaptive routing algorithms are classified as partially adaptive or fully adaptive.
Partially adaptive routing algorithms use only a subset of the available physical paths between
the source and the destination. Turn model [2, 3], direction restriction model [4], and planar-
adaptive routing [5] are examples of partially adaptive algorithms. Examples of fully adaptive
algorithms include the routing schemes proposed by Linder and Harden [6], Duato [7], Su and
Shin [8], Boura and Das [9], and Schwiebert and Jayasimha [10].

The adaptive algorithms presented in [7, 8, 9, 10] try to achieve more adaptivity by allowing
more number of alternate paths for message routing. In order to achieve high adaptivity, these
algorithms often favor some messages or some paths over the others, which in turn, cause an
uneven traffic distribution in the network. As a result, a part of the network is heavily loaded
whereas other regions may be sparsely utilized. This uneven network utilization often results in
an early saturation of the network and limits the system performance. The system performance,
thus depends not only on adaptivity of the algorithm, but also on how evenly the network traffic
is distributed. In fact, our simulation results clearly indicate that the traffic distribution created
by the algorithm has a significant impact on the system performance. In [11], Boppana and
Chalasani have also shown that more adaptivity does not necessarily mean better performance.
Thus, the main motivating factor behind our work is to develop a new routing algorithm that

is not only more adaptive but also creates a balanced traffic distribution.

In this paper, we propose a fully adaptive minimal routing scheme for two-dimensional (2D)
meshes. The algorithm uses only two virtual channels [12] per physical channel creating two
virtual networks. Messages are routed positive-first in one virtual network and negative-first
in the other. Because of the way the algorithm uses two distinct virtual networks, we call
it Positive-First-Negative-First (PFNF) algorithm. The proposed routing scheme is described
in two phases. First, we introduce a new concept called the region of adaptivity, the region
where messages can be routed using all the available paths. Using this concept, we show how
various algorithms cause an uneven traffic distribution in the network and their effect on the
system performance. Second, we present the details of the PFNF routing algorithm. The results
indicate that the PFNF routing algorithm outperforms the previously proposed adaptive routing
algorithms in terms of the network latency and throughput. Using the concept of region of
adaptivity and the simulation results we also show that the PFNF algorithm creates a balanced
traffic load in the network. 3P [8], mesh_route [9], and opt-y [10] algorithms are considered for
performance comparison because of their high adaptivity using the same amount of hardware
resources.

The rest of the paper is organized as follows. Section 2 summarizes the required definitions.
Section 3 discusses the motivation behind our work. The PFNF routing algorithm is described
in Section 4. Simulation results are presented in Section 5 followed by the concluding remarks

in Section 6.

2 Preliminaries

In this section, we define the terminologies associated with the adaptive routing scheme.
Some of these definitions are reiterated from previous works [7, 13, 14] for the sake of complete-
ness.

Definition 1: A physical interconnection network, PN, is a strongly connected graph, PN(PV, PC'),
where PV represents the set of processing nodes and PC' represents the set of physical channels
connecting the nodes.

Definition 2: A virtual interconnection network, VN, is a strongly connected graph, VN (PV,V (),
where PV represents the set of processing nodes and V(' represents the set of virtual channels,
that are mapped to the set of physical channels PC'.

Definition 3: A routing function R : N x N — p(C), where p(C) is the power set of VC,
supplies a set of alternative output channels to send a message from current the node = to the
destination node d. R(z,d) = (c1,¢2,...,¢p).

Definition 4: A routing function for a given interconnection network is connected iff, for any
pair of nodes x, y € N, it is possible to establish a path P(x,y) C p(C') between them using
channels supplied by R.

MNT NO1 OoP1
03 |MN2 il 13 (N2 il 23 (O 0] 33
M NM2 N ON2 o PO2 P
g w L T w T
X X
S s == 1358 o &
g9 o o
g3
ElE 24 g¢ g8 _
L JK1 K1 Virtual Network |
12 Virtual Network Il
0,2 Wi 12 | X2 o 22 |K2 I a2
| J2 J K L
K2 LK2
iEE "dw "4 3 EE
B BB g9 3%
4 =y 9 33
w o wow g o T North
EF1 EG1 GH1 +veY
EF2 FG2 GH2 @ | o
01 11 21 31
. EE1 . GE1 . HG1| o] wes et
. 2l er2l Hezl 5 veX
33 d 8 q8 EE @]
b) | e g o 1.8¢8
o 8 o o JoIRY) ga South
q < o o g o I T
AB1 BC1 CD1
00 |82 7 10 [B2 71 .0 |92 7 30
A BA2 B cB2 c pc2 D

Figure 1: A 4 x 4 two-dimensional mesh.

Figure 1 shows a 4 x 4 2D mesh with two virtual channels per physical channel. The two

virtual networks are shown as VN1 and VN2. Each node in the mesh is identified by a 2-
coordinate vector (xg,21). The figure also shows the directional notations, the quadrants, and
labels used in this paper.
Definition 5: Region of Adaptivilty is the area in which a message can route fully adaptively
using all the available virtual channels. Quantitatively, the region of adaptivity of a source node
is defined as a region constituting a set of contiguous nodes through which a message sent by
the source can be routed fully adaptively using the underlying routing algorithm (i.e., using all
of the physical paths or all of the virtual paths, if virtual channels are used). The region of
adaptivity of a routing algorithm is the region of adaptivity of a source node at the center of
the network.

Consider a 2D mesh network as shown in Figure 2(a). With node (3,1) as the source node,
under the East-First algorithm [3], all the messages directed towards any of the nodes in the
shaded region can be routed fully adaptively, while messages to any node outside this region
would be routed deterministically. We call the shaded region as the region of adaptivity of
the node (3, 1) under the East-First algorithm. Figure 2(b) represents the region of adaptivity
for the node (1,2). As a whole, the region of adaptivity of the East-First algorithm can be
represented as the shaded region shown in Figure 2(c). If virtual channels are used, the region
of adaptivity can be obtained by considering adaptive regions of all the virtual networks.

The concept of region of adaptivity helps us understand the behavior of the algorithms,
particularly on how evenly the algorithm distributes the network load. Since the East-First
algorithm has one-half of the mesh as the fully adaptive region, all the messages have more
number of alternate paths to route in this region than in the other half of the mesh. Since this

region is not symmetric in the mesh, assuming uniform traffic generation at all nodes, it causes

04 14 24 34 44 04 14 24 34 44

03 13 23 33 43 03 13 23 33 43

Source

0,2 12 22 32 42 02 12 22 32 4,2

Source

01 11 21 il 41 01 11 21 31 4,1

0,0 10 20 30 4,0 0,0 10 20 3,0 4,0

(a (b) ©

Figure 2: Region of adaptivity of (a) node (3,1) (b) node (1,2) (c) the East-First algorithm.

more traffic congestion in one part of the network and hence lead to early saturation. Saturation
in only one part of the network saturates the rest of the network and hence degrades the system
performance. Previous results have indeed shown that the symmetric Negative-First algorithm
performs better than the partially East-First algorithm under uniform traffic distribution [3].
Thus, the region of adaptivity closely relates to the performance of the algorithm.

3 Motivation

The motivating factor for development of our algorithm is driven from the observation
that most of the fully adaptive algorithms presented in the literature either have more routing
restrictions or their adaptivity is improved at the expense of uneven traffic distribution in the
network. We illustrate this point by comparing two recently proposed algorithms — 3P [8] and
mesh_route [9]. Both 3P and mesh_route algorithms divide the virtual channels into two separate
sets - waiting channels and non-waiting channels. Using 3P algorithm, a message can travel
using any of the non-waiting virtual channels. If it gets blocked, it travels through the waiting
channels using dimension order routing [14]. Similarly, in mesh route algorithm, a message can
travel using any available non-waiting channel. If the non-waiting channels at a node are not
available, then the messages are restricted to the dimension order routing in waiting channels,
except those who have to go negative in both x and y directions. These messages can use all
the waiting channels without any restriction.

The average buffer utilizations of 3P and mesh_route algorithms for uniform traffic are shown
in Figures 3 (a) and (b), respectively. While 3P algorithm distributes the traffic very evenly,
the traffic is concentrated in one quadrant of the mesh for the mesh route algorithm. This
uneven load distribution becomes a bottleneck as the high traffic areas saturate early and in
turn saturate the whole network. The 3P algorithm has more routing restrictions due to the

dimension order routing in the waiting channels. On the other hand, mesh_route has relatively

Network Load Distribution for 16x16 MESH Network Load Distribution for 16x16 MESH Network Load Distribution for 16x16 MESH

Traffic = 0.600000 Traffic = 0.600000 Traffic = 0.600000

Figure 3: Traffic distribution (a) 3P algorithm (b) mesh_route algorithm (c¢) opt-y algorithm.

less routing restrictions and it favors messages going in the negative directions and hence creates
an uneven traffic distribution in the network.

The recently proposed opt-y algorithm is proven to be optimal in terms of adaptivity and the
number of required virtual channels [10]. But the traffic distribution created by the algorithm
is not symmetric when the messages are uniformly generated, as shown in Figure 3 (c¢). Thus
the goal of our work was to design an algorithm that is more adaptive as well as produces a

balanced and symmetric network traffic load and thereby improves the system performance.

4 PFNF Routing Algorithm

The basic concept behind our algorithm is as follows. The physical interconnection network
PN islogically divided into two virtual networks, VN1 and V N2, such that two virtual channels
associated with the same physical channel are in different virtual networks. A different routing
algorithm is used in each of the two virtual networks, VN1 and VN2. At each step, a set of
virtual channels are chosen from the two virtual networks depending upon the routing tag and
the routing function for that particular virtual network. The selection function then selects the
channel through which the message is routed.

The PFNF algorithm for 2D mesh can be described as follows. A virtual channel directed
from node (zg,x1) to (do,dq1) is denoted by veyn((xo, 1), (do,d1)), where VN is the virtual
interconnection network to which the virtual channel ve belongs. The routing algorithm and

the associated procedures are defined as follows.

Routing algorithm(message_header)
/* Let the current node be (g, z1) and destination be (dg,dy). */

1. Routing_tag(message_header). /* form the routing tag. */
If all elements in routing_tag = 0, store the current message and return.
3. VC = Routing_function(routing_tag). /* determine the set of virtual channels, V' C,
for the next step routing. */
4. wc = Selection function(VC). /* select an appropriate ve from VC'. */
5. If ve # (), forward the message along virtual channel, ve.

Procedure Routing_tag(message_header)

1. Fort=0to1l do
If d; — z; > 0, routing_tag[i] = 1
If d; — z; < 0, routing_tag[i] = -1
If d; — z; = 0, routing_tag[i] = 0 /* Finish routing in dimension i */
end.
2. return routing_tag.

Procedure Selection_function(V (')

1. If the number of members in VC' = 1, then select it.
2. Otherwise, use multiplex-turn bias (explanation follows) to select a vc.

When the message header arrives at an intermediate node, the routing_tag is calculated. This
routing_tag is used to determine the routing dimension to be completed. The incoming message
is consumed if all elements in the routing_tag is equal to zero. The function, Routing_function
(described later), returns all virtual channels that are allowed by the routing algorithm. The
specific virtual channel taken by a message is chosen by Selection_function. Selection_function
will first check the availability of all virtual channels in the physical channels. If the number of
available virtual channels is more than one, a selection policy is applied. The selection policy
can be random, turn biased, or multiplex-turn biased. In random selection policy, the virtual
channel is chosen randomly from the free set. The network contention is reduced if messages
avoid making turns. The turn bias policy selects the virtual channel in the same direction if
possible. The performance degradation due to the virtual channel is attributed to the delay
in multiplexing the physical channel. The multiplex-turn bias first avoids sharing the physical
channel with other message if possible, and then avoids making a turn as a second priority. The
effect of these selection policies have been studied in [2, 15]. The simulation results show that

the turn bias and multiplex-turn bias perform better than the random selection policy [2, 15, 17].

Procedure Routing_function(routing _tag)

Ve =0
1. If all elements in routing_tag < 0
If routing_tag[0] < 0
add veyn1((2o, 1), (zo — 1, 21)) and veynyz((2o, 1), (20 — 1,21)) to V.
If routing_tag[1] < 0
add veyn1((2o, 1), (z0, 21 — 1)) and veyyz((zo, 21), (z0, 21 — 1)) to VC.
return virtual channel set VC.
2. If all elements in routing_tag > 0
If routing_tag[0] > 0
add UCnyl((xo,wl) (zo + 1,21)) and veyna((zo + 1,21), (20, 1)) to VC.
If routing_tag[1] >
add vc‘le((xo,xl) (zg,z1 + 1)) and vevna((zo, 1), (zo, 1 + 1)) to VC.
return VC.
3. If routing_tag[0] >
add veyn1((2o 1‘1) (zo+1,21)) to VC.
If routing_tag[0] <
add chNQ((xo,ycl) (zog —1,21)) to VC.
If routing_tag[1] >
add vcw\rl((wo 301
If routing_tag[1] <
add chNQ((wo,xl) (zg,z1 — 1)) to VC.
return VC.

), (zo,z1 + 1)) to VC.

In the procedure of routing function, PF routing algorithm is implemented in V N1 and NF
routing algorithm is implemented in V N2. In both PF and NF routing algorithms, a message
can route without restriction to destinations in < 4+z,+y > and < —z, —y > directions from
the source. When the destination is located in the directions < —z, +y > or < +x, —y > of the
source node, the routing restrictions of PF and NF algorithms are applied. To implement the
PF algorithm in one virtual network and NF routing algorithm in another, the routing function
is divided into three cases. The first two cases return virtual channels in both VN1 and VN2
for the message destined to < 4+z,+y > and < —z, —y > directions. The third case returns
virtual channels in the VN1 for the positive direction and the VN2 for the negative direction.
The routing restrictions for PF and NF are applied in this case.

The deadlock freedom of the algorithm can be proved by using Duato’s theorem stated as
follows [16]. The proof of the theorem uses several terminologies associated with the channel
dependency graph. These terminologies are defined earlier in [7, 14, 16].

Theorem 1: For a given interconnection network /N, a routing function R is deadlock-free
iff there exists a routing subfunction R; which is connected and has no cycles in its extended

channel dependency graph.

To prove that the PFNF algorithm is deadlock free, we first analyze the routing restrictions.
The turn models for the PF and NF routing algorithms [3] are depicted in Figure 4 (a) and (b),

respectively. The two sets of channels belonging to the virtual networks are distinguished by |

and ||, respectively. Dotted lines represent restricted turns. Glass and Ni [3] showed that without

any extra virtual channel, the routing algorithm is deadlock free if there is no cycle formed in turn

model. When we consider the virtual networks individually, the routing algorithms in both the

virtual networks (PF and NF) are deadlock-free. Since the PFNF algorithm allows a message to

change from one virtual network to another, the channel dependencies between virtual networks

also need to be considered. The turns involved between the two virtual networks are shown in

Figures 4 (c¢) and (d). Dashed lines represent the conditionally restricted turns. These turns are

restricted if a message has more than one dimension to traverse; otherwise, these conditionally

restricted turns are allowed.

e
SV BT O I R T

ot ot —te —— ot o de te
@ ©

AT AU B P
SR TR I S S

<o o t- o —+e
®) ©

o o
te e

<o <tk-
—

Figure 4: Routing restrictions in PF, NF, and PFNF algorithms.

The turn restrictions for the PFNF algorithm are summarized as follows:

Within VN1: South-East and West-North turns are restricted. (PF restrictions)
Within V N2: North-West and East-South turns are restricted. (NF restrictions)

From VN1 to VN2: South-East and West-North turns are restricted. A message can use VN1
in South(West) direction iff it has finished routing in the East(North) direction using the PF
restrictions imposed in V N1. Hence, the South-East(West-North) turns will not occur.

From VN2 to VN1: North-West and Fast-South turns are restricted. A message can use VN2
in North(East) direction iff it has finished routing in the West(South) direction using the NF
restrictions imposed in V N2. Hence, the North-West(East-South) turns will not occur.

From VN1 to VN2: While routing in the North(East) direction, messages traveling from VN1
to VN2 are conditionally restricted. From NF restrictions in V N2, a message in V N1 can route
further in the North(East) direction using V N2, only when the routing is not needed in any other
negative direction. Hence, changing form VN1 to VN2 in North(East) direction is prohibited if
a message has to route in the West(South) direction at a later time.

e From VN2 to VN1: While routing in the South(West) direction, messages traveling from V N2
to VN1 are conditionally restricted. From PF restrictions in VN1, a message in V N1 can route
further in the South(West) direction using V N2, only when the routing is not needed in any
other positive direction. Hence, changing form VN2 to VN1 in the South(West) direction is
prohibited if a message has to route in the East(North) direction at a later time.

A routing subfunction R; is defined to show that an escape path without cyclic dependency
always exists. Using R;, a message is routed in dimension-order in V N2 in the North direction,
and in VN1 in the South direction from the source node. R; is stated as follows: If the
destination node (do,d;) is equal to the current node (g, x1), the message is consumed. If
dy < x1, the message is forwarded using dimension-order routing in V N1. If d; > 2z, then the
message is forwarded using dimension-order routing in VN2. In other words, R; is conditionally

assigned to both of the virtual networks.

Lemma 1. The routing subfunction R; is connected.

Proof: Tt is known that the dimension-order routing is connected. Therefore, the routing
algorithm that assigns one virtual network to a message headed toward North direction and
another virtual network for a message headed toward South direction is also connected. O

The dependency cycles can be classified as intra-dependency cycles and inter-dependency
cycles. Virtual channels in the same virtual network are involved in the intra-dependency
cycles. The inter-dependency cycles consist of virtual channels from different virtual networks.
To prove that there is no cycle in the extended channel dependency graph, we need to show

that there are no intra-dependency or inter-dependency cycles in the graph.

Lemma 2. Using the routing subfunction R, there is no cycle formed due to the channel
dependencies in the same virtual network (intra-dependency cycle).

Proof: To form a counter-clockwise cycle within the same virtual network, virtual channels
in the directions (—z, —y, 4+, 4y) in sequence are required. Similarly, virtual channels in the
directions (4, +y, —x, —y) in sequence are required for the formation of a clockwise cycle. The
virtual channels directed to North(South) that belong to VN1(VN2) cannot be supplied by
Ry (Since R; supplies virtual channels in VN2 for the North bound messages, the +y virtual
channels in VN1 is not supplied by Ry). Thus, the +y virtual channels in V N1 are not involved
in the extended channel dependency graph and no intra-dependency cycle can be formed in
V N1. The same scenario is applicable in VN2, where —y virtual channels are not supplied by
R;. |

Lemma 3. Using the routing subfunction R;, there is no cycle created from the channel
dependencies in one virtual network combined with the channel dependencies in the other virtual

network (inter-dependency cycle).

Proof: The virtual channels that are involved in the direct and indirect dependencies are
supplied by R;. Since R; defines different virtual networks for messages headed in North and
South directions, the direct and the indirect dependencies are within the same virtual network.
However, the dependency between virtual channels of two different networks can be created from
cross dependencies. Using Ry, the virtual channels that are assigned to restricted destinations
are only in the x dimension. For example, —z virtual channels in VN2 cannot be assigned using
Ry to route a South bound message, but it can be assigned to a North bound message. The
inter-cross dependencies? from VN2 to V N1 are only from —z virtual channels of VN2 to —y or
—x virtual channels of V V1. Similarly, the inter-cross dependencies from VN1 to VN2 are only
from 4z virtual channels of VN1 to +y or 4z virtual channels of V N2. These dependencies
are shown in Figure 5. The only possible way of forming a cycle is the channel dependencies in
sequence: ([—z in VN2|, [~y in VNI1], [+ in VN1], [+y in VN2, [-z in V N2]). But, there
is no dependency from [—y in VN1] to [+z in VN1] using PF restrictions. Similarly, there is
no dependency from [+y in VN2] to [—2 in VN2] using NF restrictions. Hence, there is no
inter-dependency cycle in the extended channel dependency graph. a

O -x vcin VN2

»
%dency

() yveinvn1 ©+yvcinVN2

Crosstependency
RN

O +xvcin VN1

Figure 5: Possible cycle that can be formed between virtual networks.

Theorem 2. PFNF routing algorithm is deadlock free.

Proof: From Lemma 1 through 3, and using Theorem 1, PFNF routing algorithm is deadlock-
free. O

Next, we compare the region of adaptivity of all the four algorithms discussed earlier. As all
these algorithms use at most one additional virtual channel per physical channel, we consider
the whole network as consisting of two separate virtual networks. Region of adaptivity for each
virtual network is(are) the quadrant(s) in which full adaptivity is offered by the algorithm in
that particular network. The region of adaptivity of the actual network is then obtained by

superimposing the adaptive regions of the two virtual network. The adaptive regions for each

2The inter-cross dependencies include both direct cross dependencies and indirect cross dependencies that
connect channels in different virtual networks.

10

virtual network and the total region of adaptivity for the four algorithms are shown in Figure
6. The intensity of the shaded areas represent the adaptivity in the regions of the network as
explained in Section 2. Note that, in Figure 6(d) the combination of deterministic algorithms
in the second and fourth quadrants of the two virtual networks give full adaptivity in the actual
physical network. For example, in the second quadrant the PF virtual network allows YX
routing and the NF virtual network allows XY routing, thus providing full adaptivity. The
figure demonstrate the comparison of the adaptive regions of the algorithms. The symmetry of
the adaptive regions are also illustrated. It can be inferred from Figure 6 that since the region
of adaptivity for the PFNF algorithm is symmetric and more adaptive, it would perform better
than the other algorithms.

Virutal Network | Virtual Network I1 Physical Network Virutal Network | Virtual Network 1 Physical Network

i

Fully adaptive Deterministic Fully adaptive West First

(a) 3P algorithm (c) Opt_y agorithm
Fully adaptive Partially adaptive Positive first Negative first

(b) mesh route algorithm (d) PFNF algorithm

Figure 6: Region of adaptivity for (a) 3P (b)mesh_route (¢) Opt-y (d) PFNF algorithms.

5 Performance Evaluation

In this section, we present results for various traffic patterns and network loads. We have
compared the performance of the PFNF algorithm with that of the 3P, mesh route, and opt-
y algorithms. These algorithms are shown in the literature to have better performance or
adaptivity than other existing adaptive routing algorithms.

We have developed an event driven simulator to evaluate the performance of the aforemen-
tioned routing algorithms. The results were reproduced several times and were observed to be
consistent with a maximum deviation of only 1%. The simulations were conducted on a 16 x 16
mesh. We have assumed 20 flits per packet. Each virtual channel is assumed to have only one flit
buffer associated with it. Packet generation rate is assumed to have an exponential distribution
of inter-arrival time. We have used multiplex-turn biased selection policy for all the algorithms.

The simulation was carried out for 150,000 packets. The effect of the first 40,000 to 60,000

11

delivered packets are not included in the results in order to reduce the transient effects in the
simulations.

Uniform, hotspot, and transpose traffic patterns were considered in our study. Under the
uniform traffic pattern, a node sends messages to every other node with equal probability. Under
hotspot traffic, one particular node receives some additional traffic besides its normal traffic.
Using the parameters from [11] we have considered only one hotspot node with the hotspot
percentage of four, i.e., in a 16 x 16 mesh a message is directed to the hotspot node with a
probability of 0.0438 and to each of the other nodes with a probability of 0.0038. We have
chosen node (5,5) as the hotspot node. Under transpose traffic, a message from node (z,j) is
directed to node (j,7) if ¢ # j. If i = j node (7,%) sends messages to node (K —i, K —), where
K is the network radix.

We have studied the average communication latency, the average throughput of the network
and the network load distribution in the network. The communication latency is defined as the
average time from the message generation to the time when the tail reaches the destination. The
throughput is the average number of messages that finish routing per unit time. The network
traffic distribution is measured by finding the average flit buffer utilization at each node. All the
above parameters are studied against the network traffic. The network traffic is defined as the
ratio of the average traffic generated by a node to the average bandwidth available per node.

Figures 7(a) and 7(b) plot the average latency and average throughput of the network against
the network traffic under the uniform traffic pattern. In the low traffic region, all the four
algorithms result in almost the same average latency. However, as the traffic is increased, opt-y
and mesh _route saturate first and their latencies increase rapidly. The PFNF algorithm performs
better than all the schemes. The same trend is also observed in the throughput results. All the
algorithms give the same throughput for lower traffic rates (< 0.3), however at higher traffic,
the throughputs of the opt-y and mesh route algorithms drop abruptly. Throughput using 3P
and PFNF schemes do not drop abruptly but instead saturate close to their maximum values.

The opt-y and mesh_route algorithms have less routing restrictions than the 3P routing.
However, they create uneven traffic distribution in the network. The fact that 3P shows higher
performance compared to opt-y and mesh_route, confirms our claim that the system performance
depends significantly upon how evenly the traffic is distributed. The PFNF algorithm is highly
adaptive and it also distributes the network load symmetrically, and hence demonstrates better
performance.

To demonstrate that the PEFNF algorithm indeed distributes the network load symmetrically
we have plotted the traffic distribution for the PFNF algorithm in Figure 8. The results are in

accordance with what was expected from the region of adaptivity analysis and clearly illustrate

12

Uniform traffic Uniform traffic

- 3P routing
I

350 —o- mesh_route() scheme | : 1 - 3P routing

-. OPT_Y routing ! 16F -0 mesh_route() scheme

i ! _
300 -x PFNF routing j | 1 . OPT_Y routing
! 141 -x PFNF routing

I
N
T

N
T

System throughput

Latency (unit time)

0 ‘ ‘ ‘ : ! 0 0‘1 0‘2 0.3 0‘4 0‘5
0 0.1 0.2 0.3 0.4 05 : - N :
Network traffic Network traffic

(a) (k)

Figure 7: Performance results for the uniform traffic pattern.

Traffic = 0.600000

o o o
i o © -

Average Buffer Utilization

I
N}

=}

10

8

Y dimension X dimension

Figure 8: Traffic load distribution produced by the PFNF algorithm.

that the traffic distribution is more balanced using the PFNF algorithm than the mesh_route
(refer to Figure 3 (b)).

Figure 9 shows the latency and throughput results under the hotspot traffic pattern. The
opt-y and mesh_route algorithm perform poorly and saturate early. The PFNF algorithm out-
performs all the three schemes in both the latency and throughput results. The same trend is
observed under the transpose traffic pattern shown in Figure 10.

It should be noted that the opt-y algorithm uses a total of six virtual channels per router
compared to eight used by the other three algorithms in a 2-dimensional mesh. Providing the

same resources to opt-y will enhance the performance and it becomes almost equal to that of

the 3P algorithm [17].

13

Hotspot traffic N Hotspot traffic
400 . — - .
- i l
3P routing ; i 18k |
3501 —-0- mesh_route() | I 4 ~ 3P routing
|
-. OPT_Y routing ! | 16 -0 mesh_route() 1
i | -
300 -x PFNF routing | . 1 . OPT_Y routing <
1.4r -x PFNF routing T--o_
=]
= 2
g 51.2— i b
= 2 -
S i = 1t -
3 2
g g
2 @ 08¢]
51
3 4
0.6 4
0.4 4
1 0.2 4
0 : . .
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 04 0.5

0.3
Network traffic Network traffic

(a) (b)
Figure 9: Performance results for the hotspot traffic pattern.

Transpose traffic

Transpose traffic
2 T T T T T

400 T T T T

- 3P routing

350 -o- mesh_route() scheme 7 - 3P routing ==
~. OPT_Y routing 161 -0 mesh_route() scheme = 4
300 -x PFNF routing 4 ~ OPT_Y routing

14F -x PFNF routing 1

system throughput
P
S
T :
. .

Latency (unit time)
o =4 o
5 o ®
T T T
. . .

L

o

i
T
L

0.1 0.2 0.3 0.4 05
Network traffic

o
o

0 0.1 0.2 0.3 0.4 05
Network traffic

(a) (b)

Figure 10: Performance results for the transpose traffic pattern.

6 Conclusions

In this paper we have analyzed adaptive routing in 2D meshes in light of two new concepts
—region of adaptivity and balanced traffic distribution. Previously proposed fully adaptive algo-
rithms have aimed at improving the adaptivity of the routing schemes. We have demonstrated
through simulations that symmetric and balanced traffic distribution have a significant impact
on the system performance along with higher adaptiveness. Motivated by this observation, we
have proposed a new adaptive routing algorithm, called Positive-First—Negative-First(PFNF)
for two-dimensional meshes. The algorithm uses a combination of Positive-First and Negative-
First routing to balance the traffic distribution in the network. The simulation results show
that the proposed scheme performs better than the previous schemes in terms of the average
network latency and throughput. Our current work is focussed on designing a fault-tolerant

PENF routing algorithm and extending the algorithm for n-dimensional meshes [17].

14

References

[1] L. M. Ni and P. K. McKinley, “A survey of wormhole routing techniques in direct network,”
IEEE Computers, vol. 2, pp. 62-76, Feb. 1993.

[2] C. J. Glass and L. M. Ni, “Adaptive routing in mesh-connected networks,” Proceedings of
the 1992 Int’l Conference on Distributed Computing Systems, pp. 12-19, 1992.

[3] C. J. Glass and L. M. Ni, “ The turn model for adaptive routing,” Jou. of the ACM, pp.
874-902, Sept. 1994.

[4] Y. M. Boura and C. R. Das, “A class of partially adaptive routing algorithms for n-
dimensional meshes,” Int’l. Conference on Parallel Processing, vol. 3, pp. 175-182, Aug.
1993.

[5] A. A. Chien and J. H. Kim, “Planar adaptive routing: Low-cost adaptive networks for
multiprocessors,” Jou. of the ACM, pp. 91-123, Jan 1995.

[6] D. H. Linder and J. C. Harden, “An adaptive and fault tolerant wormhole routing strategy
for k-ary n cubes,” IEEE Trans. on Computers, vol. 40, pp. 2-12, Jan. 1991.

[7] J. Duato, “A new theory of deadlock-free adaptive routing in wormhole network,” IEEFE
Trans. on Parallel and Distributed systems, vol. 4, no. 12, pp. 1320-1331, Dec. 1993.

[8] C. Su and K. G. Shin, “Adaptive deadlock-free routing in multicomputers using only one
extra channel,” Proc. of the 22nd Int’l Conference on Parallel Processing, vol. 3, pp. 175-
182, Aug. 1993.

[9] Y. M. Boura and C. R. Das, “Efficient fully adaptive wormhole routing in n-dimensional
meshes,” Int’l. Conference on Distributed Computing Systems, 1994.

[10] L. Schwiebert and D. N. Jayasimha, “Optimally Fully Adaptive Minimal Wormhole Routing
for Meshes,” Jou. of Parallel and Distributed Computing, vol. 27, pp. 56-70, 1995.

[11] R. V. Boppana and S. Chalasani, “A comparison of adaptive wormhole routing algorithms,”
Int’l. Symposium on Computer Architecture, pp. 351-360, May 1993.

[12] W. J. Dally., “Virtual channel flow control,” IEEE Trans. on Parallel and Distributed
Systems, vol. 3, pp. 194-205, Mar. 1992.

[13] W. J. Dally, “Performance analysis of k-ary n-cube interconnection networks,” IEEE Trans.
on Computers, vol. 39, no. 6, pp. 775-785, June 1990.

[14] W. J. Dally and C. L. Sietz, “Deadlock free message routing in multiprocessor interconnec-
tion networks,” IKEFE Trans. on Computers, vol. 36, no. 5 , pp. 547-553, May 1987.

[15] W. J. Dally and H. Akoi, “Deadlock-free adaptive routing in multicomputer networks using
virtual channels,” IEEE Trans. on Parallel and Distributed Systems, vol. 4, no. 4, pp.
466-475, April 1993.

[16] J. Duato, “A necessary and sufficient condition for deadlock-free adaptive routing in worm-
hole networks,” IEEE Trans. on Parallel and Distributed Systems, vol. 6, no. 10, pp. 1055-
1067, Oct. 1995.

[17] V. Varavithya, “Wormbhole routing algorithms for mesh interconnection networks,” Master’s
Thesis, Dept. of Electrical and Computer Engineering, lowa State University, 1994.

15

