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Abstract—Scalable video coding (H.264 SVC) is an attractive
option for video service providers due to its ability to adapt a
video’s bitstream at the server to suit different network conditions
and device characteristics. Lowering a video’s bitrate can be
achieved through reductions in frame rate, spatial resolution,
and/or by increasing the quantization levels applied to the
video sequence. In this paper, we first evaluate the effects of
such scalability using some full-reference and no-reference video
quality metrics, namely PSNR, SSIM, blocking, and blurring.
No-reference metrics have the ability to capture the degradation
in video quality caused by employing scalability in one or
more dimensions. We study if conclusions drawn in previous
works, which are based on well-known test video content, hold
true for real-world broadcast content. We then discuss how,
using these results for a particular content type, the use of no-
reference metrics can be enabled in place of, or to supplement,
existing widely used full-reference quality assessment metrics.
We conduct an experimental analysis by transmitting video
encoded at different scalability points over a lossy network to
ascertain the effect of loss when scalability is employed in one
or more dimensions. We analyze these results using a reduced
reference metric called delta-blocking, which can detect visual
damage of frames that causes a decrease in a user’s quality of
experience when perceived by the user. If the levels of packet
loss are excessively high, this can lead the decoder to drop some
video frames. To combat this type of frame loss, we propose a
simple windowing algorithm that can automatically re-align the
corresponding values for reduced-reference comparison, allowing
for video quality monitoring to continue.

Index Terms—SVC, digital multimedia broadcasting, quality
of service, no-reference metrics, reduced-reference metrics.

I. Introduction

DUE TO THE increases in bandwidth efficiency provided
by H.264 Advanced Video Coding (AVC), it has quickly

become popular in networked video service applications.
H.264 allows network and service operators to increase capac-
ity on their networks while still maintaining the same standard
of video quality. H.264/AVC provides gains in compression
efficiency of up to 50% over a wide range of bit rates and
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video resolutions compared to previous standards such as
MPEG-2 [1].

Networked video services, such as video-on-demand (VoD)
are constantly increasing in popularity and are set to become a
major feature in the Future Internet. As these services increase
both the range and quality of the content they will provide,
customers will expect high visual quality, where content is
delivered with minimal latency and fewer interruptions due
to loss. All of these constraints require that the networks
providing these services are able to meet minimal delay
constraints, while providing adequate bandwidth to deliver
high quality content.

However, due to the variability of network conditions (par-
ticularly in the wireless domain), it may not always be possible
to meet the constraints required by some networked services.
This may be due to lack of available bandwidth in the delivery
network or errors as a result of a low signal-to-noise ratio
between the source and receiving node (in wireless domain).
In this case, the Quality of Experience (QoE) of the customer
will decrease unless remedial action is taken.

One possible solution to these problems is the use of
scalable video coding. This can be used to decrease the
bandwidth required for the video stream (at some expense of
quality). Scalability can be achieved in 3 dimensions, firstly
by increasing the levels quantization applied to the sequence,
secondly by reducing the spatial resolution and finally, by
decreasing the temporal resolution (framerate).

Before proceeding we first clarify the different categories
of objective metrics which can be used for video quality
assessment, namely; Full-reference, reduced reference and no-
reference. Full-reference metrics require the original source
sequence in order to assess the quality of the encoded or
received video. Reduced-reference metrics do not require the
original sequence but do require some information regarding
the original sequence to assess quality. No-reference metrics
do not require any information regarding the source video and
use information from the encoded/received video only or other
parameters (network measurements) when assessing quality.

A. Key Contributions

The key contributions of this paper are as follows:
1) Previous work in the area [2]–[7], which investigated

the impact of scalability in one or more dimensions
typically used video sequences from similar test sets
(foreman, park joy, blue sky, etc.). In this work, we inves-
tigate if their conclusions remain true for more complex
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(multi-angle, longer duration) broadcast content. This
is carried out using full-reference metrics, namely Peak
Signal-to-Noise Ratio (PSNR) and Structural Similarity
(SSIM) [8]. We have shown, even when using complex
broadcast content, how video service providers can
maximize quality for a given target bitrate by taking
the nature of the content into account when choosing
the parameters for the scalable layers. The outcome of
this work provides a much more deployable and flexible
solution than previous works.

2) We motivate the use of no-reference [9] metrics which
are specifically designed to assess the impact of com-
pression used by modern video codecs. We combine
these no-reference metrics with some conclusions (both
our own and those from previous works) drawn about
impact of scalability on a particular content type to
highlight their use when used independently from full-
reference metrics.

3) The effect of network losses is perceived most easily
in terms of blocking errors / artifacts. We investigate
the impact of the loss perceived in terms of increased
levels of blocking for different scalability dimensions
with bandwidth variations. We show how no-reference
metrics can be used at both the source and destination
node and then compared in a reduced reference fashion
to detect errors in the visual output due to packet loss.
We name this reduced-reference metric “delta-blocking”.
We observe that, in both the quantization and spatial
dimensions, the impact of loss is larger in higher layers
than at lower layers.

4) Finally, when using this “delta-blocking”, the direct
comparison between original and received frame values
is only possible when the metric is aware (and can take
account) of any frames that could not be decoded so that
offsets between the source and destination values can
be computed. In order to do this, we propose a simple
windowing algorithm which can detect lost frames and
compute the required increase in offset.

Section II below discusses some related work in the area of
scalable video coding and video quality assessment. Section
III discusses our content selection, encoding setup and lossy
transmission test. Section IV discusses the results, in terms of
quality, for the evaluation of the encoding phase and the moti-
vation of the use of no-reference metrics. Section V discusses
the use of no-reference metrics in a reduced-reference fashion,
as well as the results of the lossy transmission scenario.
Section VI provides some conclusions which can be drawn
and directions for future work.

II. Related Work

A. H.264 Scalable Video Coding

An extension to the existing H.264 AVC standard, known as
H.264 Scalable Video Coding (SVC) allows for the encoding
of a video sequence into multiple representations (or layers)
at varying degrees of quality, with incremental increases in
quality being achieved as layers are combined in a hierarchical

fashion. The coding efficiency of scalable coding is superior
to that of “simulcasting” the supported spatio–temporal reso-
lutions and bitrates in separate bit streams [10].

A H.264 SVC bitstream is composed of a collection of
layers with the lowest quality representation of the video being
referred to as the “base” layer along with incremental increases
in quality being achieved through the addition of subsequent
“enhancement” layers. The combination of the base layer
and all the enhancement layers provides the highest quality
representation of the video.

This scalability of the video stream can be achieved through
the degradation of video quality in 3 different dimensions:
spatial, temporal and quantization. A single degradation step
between one layer and the previous lower layer can involve
the reduction in quality in one or more of these dimensions.
Spatial degradation refers to the reduction of the resolution of
the source video, in our case we use dyadic downsampling.
Using this mode, the resulting downsampled version (at the
lower resolution) must now be re-sized or scaled to fit the
screen area previously occupied by original, higher resolution
sequence.

Temporal scalability is the reduction of the frame rate to
a lower frame rate, thus saving bandwidth at the expense of
poor representation of any motion present in the video. The
effects on quality due to temporal scalability may vary widely
depending on the level of motion present within a particular
scene. For the case of quantization, as we transition from
the highest enhancement toward the base layer, the frames
of each layer are subject to higher levels of compression or
quantization, this is primarily controlled by the quantization
parameter (QP). For a fixed resolution and frame rate, the
relationship between lowering QP and output video quality
can be approximated as an exponential growth function [11].

B. Network Transmission of H.264 SVC

Content transmission problems such as loss or, high
amounts of jitter or delay will result in service degradation
due to the required video data not being available for decoding
and rendering. This will lead to playback stoppage or visible
errors with decoded frames. The IPTV service provider may
be able to adapt their video service (in terms of modifying the
video content or how the content is transported) when network
conditions are poor in order to minimise the impact on their
service [12] [13]. However, in order to do this information
must first be fed-back to the service provider to make them
aware of service delivery issues. The authors of [4] provide
a full-reference metric which can be used to provide this
information when scalable video encoding is employed.

In [14] the authors propose an architecture when Intra-coded
frames are prioritized in order to improve stream robustness
in the case of loss. This will ensure that any errors that occur
as a result of loss will be constrained to within a single
GOP. Their architecture makes use of 2 priority classes for
wireless (802.11) transmission, which is not sufficient for the
SVC case, where multiple layers may be employed and the
decision as to which layers to prioritize requires a more fine-
grained approach. Similarly, [15] performs traffic and quality
characterization of SVC video but uses a single layer. [16]
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proposes a SVC evaluation on IP networks, but use only full-
reference PSNR metric.

As mentioned above, existing works don’t compare the ef-
fect of different scalability options on degradation of perceived
visual quality. [17] considers the use of a rate control mech-
anism with SVC for video multicast over wireless networks.
However, they consider six temporal resolutions/ layers. The
reasoning behind this choice is not justified. Similarly, Fallah
et al. [18] use SVC in conjunction with link adaptation without
any emphasis on which dimension to degrade.

C. Video Quality Estimation

Assessing the quality of encoded or transmitted video,
requires the assessment of network parameters regarding the
transmission process (e.g. RTP header inspection) or from
the decoded video itself. This data (from either or both of
the sources) can then be used to infer the impact of the
transmission process on the received video.

The goal of any proposed objective metric is to provide
a rating which would be closely correlated with subjective
ratings from a collection of viewers. PSNR and SSIM are
two widely used objective full-reference metrics. These require
that both the decoded and the originally transmitted video
be available to enable computation of a quality score. We
chose these metrics for a number of reasons. These metrics
are widely used in the literature, therefore the use of these
metrics will allow for easier comparison with existing works.
While it may be argued that PSNR does not correlate closely
with perceptual quality, it is however widely used in industry
to assess encoding quality/codec comparison; for example in
the x264 encoder,1 Xiph.org,2 which is what this work aims
to achieve. SSIM closely relates to perceptual video quality
[19] and has been widely used in research community.

The EvalVid framework [20] allows evaluation of H.264
videos using subjective metrics (such as MOS) and objective
metrics (such as PSNR). As such, any derivations of EvalVid,
such as EvalSVC [21] also restrict video quality evaluation to
PSNR based metrics, which has the disadvantages of being
a full-reference metric and thus, not practical in consumer
delivery scenario. Although the use of full-reference metrics
such as PSNR and SSIM is beneficial for experimental anal-
ysis, it is not feasible for deployment purposes. In [22] the
authors undertake a subjective evaluation of SVC however, the
effect of the transmission process (and the subsequent require-
ment for no-reference evaluation) is not taken into account.
Seeling et al. [23] present an encoding quality comparison
between H.264 and VP8, another recently developed codec.
[24] propose SVC evaluation using a neural-network based
mapping from objective network measurements to subjective
user ratings, but it requires extensive off-line user-trials. A
performance analysis of SVC is undertaken in prior work,
however, they user PSNR (full-reference) as the only metric
[25].

The visual features based models employ measurements of
blurring and blocking in video [8]. Such no- or reduced- ref-

1http://x264.nl
2http://xiph.org

Fig. 1. Block Diagram outlining Experimental Analysis.

erence metrics can be used for quality-adaptation in practical
scenarios by having an application level feedback mechanism.
We use these metrics to evaluate SVC video in our experi-
ments.

III. Experimental Outline

The main objective behind this work is to quantify the
effect of scalability options and network transmissions on the
end-user experience of watching a video. The scalable codec
provides three dimensions of scalability namely; temporal,
spatial and quality scalability. Therefore, any video can be
scaled in any of these dimensions to counter the fluctuations
in network bandwidth or degradation in user quality. A specific
trajectory (i.e. a specific choice such as first scaling in quality
and then in spatial resolution) is referred to as ‘degradation
path’ in our experiments. Our objective is to investigate the
quality degradation along these degradation paths, which can
instead be used to choose suitable scalability options to satisfy
bandwidth or quality constraints.

A. Video Quality Analysis and Bandwidth Savings

The block diagram of Figure 1 provides an outline of our
experimental analysis. The raw YUV sequence is encoded
using H.264 SVC encoder into three different streams each
stream scaling down in one dimension only – temporal, spatial
or quantization. It is at this point where we measure quality
using both full and no-reference metrics by producing YUV
stream from the encoded video.

Upon completion of the encoding step and extraction of the
required streams for analysis, these streams are then converted
into raw YUV sequences where they are used for comparison
against the original sequence to assess the impact on video
quality due to the degradation in the spatial, temporal or
quantization dimensions. For the case of spatial degradation,
the lower resolution sequences are first upscaled to the original
sequence resolution in order to allow comparison to take place.
An equivalent procedure takes place for temporally degraded
sequences, in order to construct a video for comparison. This
is achieved by repeating the frames found in the temporally
degraded sequence the requisite number of times to produce
the same frame-rate as original sequence. The video quality
analysis using the original and degraded sequences is carried
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out using the MSU Video Quality Measurement Tool [26],
which provides implementations of the metrics stated above.

When discussing bitrate savings as content is compressed,
typically rate-distortion curves are used, however, if we wish
to apply our results to a more general case i.e. categories of
videos (videos of a similar content type), explicit references
to bitrate only apply to one video sequence. In our work we
express bandwidth savings as a percentage of bandwidth saved
to provide a more general result.

In order to calculate the bandwidth savings achieved for a
particular sequence w.r.t the bandwidth required by the original
full quality sequence, we use a tool provided with JSVM to
calculate the average bitrate required for the layer that we wish
to analyze and express this as a percentage of the bandwidth
required by the full quality video.

Section 4 below presents the results of our analysis, where
we investigate the impact on quality for all 3 scalable dimen-
sions for the 3 different content types.

In the next step, we introduce a reduced-reference metric
named “delta-blocking”. This metric uses decoder behavior
(when faced with loss) as a trigger for detecting visible
errors present in playback. This metric also presents a sim-
ple windowing algorithm which can be used to detect and
correct frame loss which would lead to a mis-alignment of
reduced-reference data, causing spurious errors in the results.
This metric is validated by transmitting video content over
a wireless network with a range of loss rates. This shows,
firstly how errors in playback can be detected (delta-blocking)
and secondly, demonstrating how the windowing algorithm
operates and can be used to re-align reduced reference data if
full-frame loss occurs.

Finally, we present an analysis of the impact of loss for a
series of points in each scalable dimension. The video streams
are transmitted over a wired network with finite bandwidth
and with some loss introduced. We then decode the video to
obtain an extracted YUV stream and then evaluate the impact
of this loss using no-reference metrics (used in a reduced-
reference fashion). In case of network losses, full-reference
video evaluation tools are not usable because the original video
and received videos are not aligned together (have different
number of frames because of frame drops). These results are
presented in Section 5.

B. Video Database

For the purpose of our experimental analysis, the decision
was made to use clips from broadcast television content and
not the standard video quality assessment sequences, (such as
blue sky, foreman and park joy) which are typically used for
experiments of this type. The reason for this is that, these clips
are generally quite short in length and only contain a single
angle / camera shot, with varying degrees of motion. Real-
world broadcast content is typically composed of a number
of different angles, each with varying degrees of motion
and complexity. The nature of this broadcast content is also
further characterized by the switching between these different
angles/shots. However, the standard assessment sequences
typically do not contain any switching between shots and thus
lack the complexity of composed broadcast content.

TABLE I

YUV Sequence Parameters

Title Soccer News Trailer
No. Of Frames 791 1504 1402

Frames Per Second 30 25 24
Seq. Length (sec) 26.4 60.2 58.4

Motion High Motion Low Motion Medium Motion
Scene Cuts Frequent Infrequent Frequent

Texture Similarity High Medium Low

As a result, any conclusions or recommendations about
degradation when using the standard sequences would only
hold true for that particular video (or video of a very similar
nature). Supposing we were to follow this principle, if for
example, we were to compose a broadcast video made up
from a collection of these different standard sequences (since
we assume people do not watch the same ten seconds of video
repeatedly), we would only be able to achieve an optimal
degradation path for one of the sub-clips, thus making the
choice of an optimal degradation path for the other clips redun-
dant. Therefore, the use of the prepared sequences for selecting
the optimal degradation path is only accurate when all of the
content in the video sequence is of a very similar form.

In our approach, we use broadcast content which among
the 3 videos have varying levels of motion, scene cuts and
coding complexity. The reason for doing this is to investigate
if we can infer some knowledge regarding the degradation at a
sequence level, which is what would be utilized in a real-world
broadcast service, as opposed to the per shot/angle level which
the standard test sequences can only provide us with. Thus,
since our approach uses the concept of whole sequences and
the knowledge about degradations for that type of sequence,
this provides us with more flexible and deployable concepts
than those previously presented in the area.

C. Content Parameters and Descriptions

As detailed above, 3 different videos were used; Soccer,
News and Trailer. Prior to encoding, all the videos were raw
YUV sequences in the 4:2:0 Chroma subsampling format. At
full resolution, the videos were all 1024 pixels wide and 576
pixels in height. The video specific parameters such as frame
rate, sequence length, etc. are summarized in Table I.

In order to distinguish between the different levels of
motion, angle changes and sequence complexity a brief de-
scription of each sequence is provided below:

1) Soccer: This sequence contains a number of different
shots from a variety of angles, all but one containing a
large amount of movement. with players moving around
throughout the frame. All of these shots are zoomed,
close–up shots. A single, wide angle, low motion se-
quence is present at the end. Angle changes are frequent
and this sequence is a representative of typical sports
videos.

2) News: Two different shots are present in this sequence.
Both are of a newscaster in the center of the frame
with a large static background to the side and above.
Both contain very low amounts of motion with the
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Fig. 2. Screenshots for (a) Soccer, (b) News & (c) Trailer.

movement being predominantly concentrated in the face
and sometimes the body of the newscaster. There is very
infrequent (15 seconds or greater) between the switching
of these shots. This video is typical representative of
news content in broadcast television.

3) Trailer: This sequence contains a large number of dif-
ferent shots due to its nature. The content contained
within the individual shots is typically, of low to medium
levels of motion, with the exception of a small number
of high motion shots, as is typical with movie trailers/
advertisements.

These sequences were obtained from online sources such as
YouTube in the MP4 container format before being converted
to raw YUV format. Screenshots from each of the 3 sequences
are presented in Figure 2.

D. Encoding using JSVM

The 3 different videos in YUV format were encoded using
the JSVM H.264 SVC encoder [27] at a variety of different
resolutions, frame-rates and quantization levels. For the spatial
dimension, the resolutions used for encoding were 1024x576
at full quality, 512x288 and 256x144 at the base layer. The
choice was taken not to resize or crop the video content to

match standard broadcast content so that no video content was
altered or lost, which could affect the results.

For investigating the effect of increased quantization for
each of the content types, the following quantization parame-
ters (QPs) used were: 20, 26, 32, 38, and 44 (note that the
higher the quantization parameter, the greater compression
achieved, at the expense of video quality).

Due to the differences in source frame-rates, the values
for temporal degradations were different for each sequence.
However, it can be summarized as, from the top layer, the
next highest layer is achieved by halving the previous layer’s
frame rate. This step is repeated a further 2 times until a frame
rate for the base layer is obtained.

Note, in all of the above videos a fixed Group of Pictures
(GoP) size of 16 was used; 1 Intra (I-) frame followed by 15
Predicted (P-) frames, Bi-Predicted (B-) frames were disabled
for these experiments to simulate the worst-case scenario for
encoding complexity, providing an upper bound on bandwidth
requirements. For example, we may have a sequence of the
same content type, that is slightly more complex to encode.
For sequences with framerates between 24 and 30fps an I-
frame (which can be used for resynchronization in the case of
loss) is transmitted approximately every 0.5 – 0.7 seconds. In
the case of data loss, subsequent inter-coded frames will be
decoded with errors. The minimum time required to halt the
error propagation (through successful decoding of an I-frame)
will be 0.5 – 0.7s, however if a subsequent I-frame is dropped,
or if two I-frames from 2 different GoPs are dropped, the
error propagation will have a duration greater than one GoP.
A shorter GoP may be employed to improve the robustness
of the stream in the face of loss, however, this will increase
the bitrate of the stream. The video service provider will have
to consider the tradeoff between loss robustness and stream
bitrate. JSVM’s de-blocking filter was enabled for these exper-
iments for all blocks. Motion estimation was carried out using
pictures of the highest enhancement layers and using the fast
search algorithm with a range of 32. Signal-to-Noise ratio en-
hancements were encoded using Medium Grained Scalability.
The base layer was encoded as an AVC compatible bitstream.

The output of each encoded sequence is a raw H.264
scalable bitstream containing all the layers specified prior
to the encoding step. This H.264 bitstream can then be
used to extract a “sub-bitstream” containing the layers that
are required for analysis. In the case of the analysis of the
effect of temporal scalability, in order to produce the lower
frame-rate versions the QP 20 version of the sequence was
used, since this allows for direct comparison between these
two dimensions. JSVM provides a tool DownConvertStatic in
order to produce a temporally-downsampled bitstream which
is then converted to YUV for comparison using the metrics.
In our evaluation we specify the full video, containing all the
layers as having the “original bitrate”, against which all other
sub-bitstreams are compared against with regards to video
quality and bandwidth savings.

E. Characterizing the Effects of Network Losses

The purpose of this experiment is twofold: to investigate
the degradation in one particular scalable dimension in the
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Fig. 3. PSNR for Increased Quantization.

Fig. 4. PSNR for Spatial Degradation.

presence of network loss, and secondly, for a particular content
type, determine the scalable dimension which provides better
perceptual performance than others in the presence of loss.
The introduction of errors in the decoded video due to network
losses requires that a no-reference metric be used, because full
reference metrics such as PSNR, SSIM cannot be measured
in any accurate manner. The misalignment of frames due to
frame losses makes these metrics unsuitable for such scenario.
Furthermore, it is not possible to have the original video
at the receiver side in a practical deployment/ live service
environment. Such tests can only be used for static evaluation
of video quality but not for dynamic modification of the
service when loss is experienced.

In order to do this, we use the no-reference blocking metrics,
which give a perceptual experience and can be practically de-
ployed in a wireless/ cellular network. The MSU Blocking and
Blurring [28] metrics are examples of no-reference metrics.

The MSU Blocking metric is used to measure the degree of
blocking/ macro-blocking present in a source sequence. In a
codec such as H.264, where visual data is encoded as a series
of macroblocks, the primary effect of loss will be visible in
terms of lost or damaged macroblocks, thus we argue this
metric is well suited for assessing the impact of loss in this
scenario. In our results we calculate a “delta” blocking value,
that is a difference in the maximum or average blocking value
between the original and received (with loss) sequence.

In the case of quantization and spatial degradation, we
use the difference between the maximum blocking value for
the original and received sequence as it indicates how the
blockiness is increased due to losses in the received sequence
compared to the highest level of blocking in the original
sequence. Thus, we are comparing the worst-case in both

Fig. 5. PSNR for Temporal Degradation.

Fig. 6. SSIM for Increased Quantization.

sequences to show how loss and scalability in that particular
dimension are related. In the case of temporal degradation,
while the maximum value is important, the increase in the
difference between two sequences average blocking values
provides a better indication of the level of video quality degra-
dation. This is due to the fact that once a frame is damaged
due to losses, it must be repeated the requisite number of times
to achieve the original framerate thus increasing the average
blocking value for the entire sequence.

IV. Results

A. Full Reference Metrics: PSNR, SSIM.

Figures 3 – 8 present the results of the impact on video qual-
ity for each of the 3 degradation dimensions with respect to
the full-reference metrics Peak Signal-to-Noise Ratio (PSNR)
and Structural Similarity (SSIM). We should observe that due
the different nature of each of video content types, there will
be some variance around the PSNR value for the full quality
video, despite the same encoding parameters being used.

As can be seen in Figure 3, we can observe the effect on
PSNR for increased levels of quantization. We can see that
for all 3 content types, the relationship between increased
quantization and PSNR is approximately logarithmic. When
compared with the case for spatial degradation in Figure 4
and temporal degradation in Figure 5, we can see that for an
equivalent saving in bandwidth, quantization outperforms both
in terms of maintaining perceptual quality for all 3 videos.
In Figure 4 we can see that the relationship between spatial
degradation and PSNR can be approximated in all 3 cases as
a linear relationship.
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Fig. 7. SSIM for Spatial Degradation.

Using spatial degradation, we can observe that each of
the video content types offer an approximately equivalent
bandwidth saving for a similar degradation in PSNR from
each of their respective full-quality versions. However, we
can also observe that the effect of spatial degradation is more
pronounced in the case of news. This can be partially attributed
to the reduction in quality of static items such as; logos
and titles, which are present throughout the sequence, thus
lowering the per-frame value throughout the sequence.

Figure 5 presents the results for the loss of video quality,
in terms of PSNR under temporal degradation. Here we can
observe that the low motion of content of news performs best
at maintaining quality as the frame rates decrease. However,
we can see that while news is able to maintain a better quality
that the other 2 sequences, it does not perform as well in terms
of bandwidth reduction. This indicates that when the reduction
in the number of frames per second is the same for each video
(halving each time), in the case of news, although having the
greater quality, due to the relatively low amount of motion data
in the full frame rate sequence, as the frame rate decreases,
this does not lead to a large reduction in bandwidth.

However, we can observe that for soccer and trailer, which
both contain more motion data, the reduction in frame rate
leads to the discarding of greater amounts of motion data (at
the cost of quality) leading to greater bandwidth savings.

Presented in Figures 6, 7 and 8 are the results for impact
of visual quality, in terms of SSIM for each of the three
degradation dimensions. Again we can see that quantization
outperforms both spatial and temporal degradations for each
content type in terms of the trade-off between video quality
and bandwidth savings.

In Figure 6 we can see that once again the relationship be-
tween increased quantization and SSIM can be approximated
as a logarithmic relationship. We can also see that the soccer
sequence suffers a greater decrease in SSIM than the other
sequences. However, this would still be classed as “fair” under
the quality of experience mapping presented in [3].

Under the use of spatial degradation as presented in Figure
7, we can observe a similar behavior for the case of soccer, this
would indicate that the higher motion content of this sequence
is particularly sensitive in terms of structural similarity to any
degradation in visual quality, either due to increased quantiza-
tion or due to spatial degradation. In this case however, for the
lowest spatial resolution, the resulting SSIM value would be

Fig. 8. SSIM for Temporal Degradation.

classed as “poor” under the scale presented in [3]. We can also
observe that for the news sequence, under spatial degradation,
the effect on SSIM is much more pronounced than the case
for increased quantization for an equivalent bandwidth. Again,
this can be attributed to the greater impact on the quality for
static items such as, logos and titles under spatial degradation.

For the case of temporal degradations, as shown in Figure
8, we can observe that, again, while news is able to maintain
the best quality in terms of SSIM, it does not provide the same
bandwidth reduction as the other two sequences.

Since we are measuring the structural similarity, for the case
of low motion sequences, the structural difference between two
(or more) sequential frames will be lower than the difference
between frames of a sequence with higher levels of motion.
For example, in the case of the higher motion soccer sequence,
we can see for the level of reduction in frame rate the decrease
in SSIM is much greater and would be classed as “poor” while
at its lowest frame rate news would be classed as “good”. For
all 3 content types, the relationship between decreased frame
rate and SSIM can be approximated as a linear.

B. Comparing Scalable Dimensions by Video

Figure 9 (a) – (f) presents the results of the impact of each
scalable dimension, in terms of PSNR and SSIM, for each
video. These are the same results as in Figures 3 – 8 but have
been grouped by video to allow for the comparison between
the effects of each scalable dimension for each video.

Again we can see that, for both PSNR and SSIM, scalability
in the quantization dimension provides the best video quality
for a given bandwidth saving for all 3 videos. Furthermore,
we can observe that both quantization and spatial scalability
provide a roughly equal saving in bandwidth at the lowest
level of scalability (highest quantization/lowest resolution).

Temporal scalability, in all 3 videos performs the worst in
terms of bandwidth efficiency versus video quality. In the case
of the soccer and trailer sequences at its lowest frame rate,
temporal scalability achieves a bitrate which is approximately
40%–45% of the original, however in the case of news, the
bandwidth required is approximately 62% of the original.
As stated before, this is due to the fact that news contains
low levels of motion, relative to the other two sequences,
therefore there are lower amounts of encoded motion vector
data to remove at each temporal layer, thus the achieved
bandwidth savings for the news sequence are not as great as
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Fig. 9. Comparing impact on PSNR and SSIM for each scalable dimension.

Fig. 10. MSU Blocking - Increased Quantization.

for the trailer or soccer sequences. It can be noted that our
results and conclusions, which are made about full complex
sequences, found in broadcast content correspond closely to
the results presented in [3], [29], [30], which use the standard
test sequences.

C. Content Based Degradation Path

As can be seen in Figures 3 – 8, the overall trend, in terms
of degradation of (PSNR or SSIM) for a given dimension is

approximately the same across all 3 content types. There are
small degrees of variation, e.g. the lower bandwidth savings
provided by news under temporal degradation. This variation
would be expected due to the heterogeneity of sequences
which could be assigned to the same content “category”.
However, none of this influences the fact that a selected
degradation path would have a similar impact on quality across
all 3 content types in terms of PSNR or SSIM.

D. No Reference Metrics - MSU Blocking and Blurring

Figures 10, 11, 12 and 13 present the results of increased
levels of quantization and decreased resolution for each of the
3 videos with respect to MSU Blocking and Blurring.

In Figure 10 we can see that in the case of soccer and
trailer that, as larger amounts of quantization is applied to the
source video, the levels of appearance of blocking in the output
video is increased. This is due to the fact that as we increase
quantization, less and less (spatial) detail is preserved and
smoothness of transition between two consecutive parts of the
image is reduced, leading to sharp transitions between the two
and causing increased levels of blocking. As a consequence
of this, as can be seen in Figure 11, this leads to lower
levels of blurring at macroblock boundaries as the smoothness
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Fig. 11. MSU Blurring - Increased Quantization.

Fig. 12. MSU Blocking - Decreasing Spatial Resolution.

of the image is replaced by sharper transitions. Conversely,
within each macroblock, the compression process results in
increased blurring, as there is a reduction in contrast between
neighboring pixels.

In Figure 10, for the case of news we can observe a large
increase in the level of blocking when a quantization parameter
of 32 is used. Upon further investigation it was found that the
blocking metric is particularly sensitive to long stretches of
horizontal (or vertical lines) which are present throughout the
news sequence. It considers these, mistakenly to be artifacts of
the compression during the encoding step and therefore gives
them a higher value. An example of this is the horizontal
border between the subtitles/headlines (at the bottom of the
frame) and the camera shot of the news presenter, as these are
present throughout the sequence our average is increasing at
each frame, giving us our inconsistent value.

We believe that the presence of this horizontal border
and its particular interaction with the compression algorithm
generates this anomalous results with quantization parameter
32. However, the metric that we introduce later in this paper,
calculates the change in this blocking value caused by network
impairments. As a result, this metric is not sensitive to such
anomalous results.

Figure 12 presents the results for MSU Blocking for de-
creasing spatial resolution. Here, we can observe that as the
spatial resolution is reduced, the overall trend is that the
levels of blocking are decreased by varying amounts. This
would indicate that as the spatial resolution is decreased the
overall blockiness of the sequence decreases as the spatial
downsampling process is combining multiple pixels leading

Fig. 13. MSU Blurring - Decreasing Spatial Resolution.

to smoother transitions between two consecutive parts of
the image. Furthermore, when the spatially reduced frame
is displayed at its original size, the spatially reduced frame
appears blurred, this phenomenon is confirmed in Figure 13.

This trend is most pronounced in the case of the news se-
quence. This is most likely due to the fact that the background
of the news sequence, for the most part, contains content which
is shot out of focus (and appears smooth at the full resolution),
which, when spatially down-sampled, leads to an even greater
smoothening of the transitions between these areas in the
image, leading to the greater observed decrease in blocking
between the medium and low resolutions.

While the no-reference metrics do not provide as much
information as full-reference metrics, they do capture the in-
creased levels of artifacts introduced as part of the compression
process, which affects customer Quality of Experience The
behavior across all 3 videos is varied due to the differences
in content type but is what would be expected as greater
levels of compression are applied, eliminating the need for
full-reference assessment. Therefore, these no-reference can be
used to assess quality degradations in terms of compression ar-
tifacts, and when combined with the conclusions drawn about
the impact of scalability for a particular type of video content
(motion levels, complexity), supplementing or replacing full-
reference metrics. Since we are making our measurements at
a sequence level, there is no panacea which will satisfy all
sequences of a certain type. However, for a deployed system
some tradeoffs must be made and performance might have to
be compromised at times to enable a realistic solution. We
argue that our work shows how a deployed system, which is
able to make judgements about scalability at a sequence level,
might be employed.

V. Reduced-Reference Assessment and Automated

Re-Alignment of Sequence Data in the Presence

of Frame Loss

In this section we demonstrate how no-reference measure-
ments made at the video server and at the customer’s terminal
device can be used to detect if any visual damage or frame
loss has occurred to the video content due to packet loss.
This information may then be used to trigger a request to
degrade the video quality by shedding SVC video layers until
such a point where the bandwidth of the downscaled video
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can be supported. We also present an algorithm which can
be used to realign the no-reference values for comparison in
the presence of total video frame loss. This is performed as a
separate experiment from the assessment of loss on different
scalable dimensions as to allow to a clearer explanation of the
algorithm.

We argue that video service quality from the perspective of
a paying subscriber is essentially a binary decision; it is either
acceptable or unacceptable with regards to their expectations
of the service (video quality is subject to a more finer grained
scale, typically MOS) . After the content has been encoded,
from the location from which its transmitted to the point where
it is viewed, the only factor influencing quality is loss [3].
Furthermore, with the multitude of sources being currently
used to generate video content, ranging from professional
high-definition camcorders to cellphones with varying degrees
of capture quality, the notion of video service quality being
associated purely with clarity or fidelity of representation no
longer holds true.

With the emergence of residential broadband services such
as Digital Subscriber Line (DSL) and Hybrid Fiber Coax
(HFC) it is not unusual for these network operators to provide
customers with network equipment such as residential gate-
ways and set-top boxes to access their broadband connection
and networked services. A set-top box performs two major
functions, firstly as stated above, it provides a connection to the
operators IPTV network and secondly, it provides the decoding
functionality so that streamed video may be displayed to the
viewer. Since the network operator will generally configure
the set-top box with the necessary parameters required to
connect to their network, there is an opportunity for the
network operator to install additional software to manage the
connection. This software may take the form of firewalls,
authentication handling and in our case, monitoring software
in the form of the blocking metric.

1) Our Approach: As stated previously, for macroblock
based codecs such as H.264, the most obvious manifestation
of these errors due to packet loss are likely to take the form of
visibly damaged regions corresponding to missing macroblock
data. We propose a reduced-reference measure to quantify the
end-user perception of video quality (in terms of blockiness)
and report to the network service provider with a feedback of
the perceptual loss introduced by the wireless network, without
the need to unnecessarily drill down to a more complex
assessment strategy. For a deployed service such as IPTV
[31], [32], a more complex no-reference metric may require
for example, information regarding the content within the
video to perform its evaluation. However, for any large-scale
IPTV deployment and in particular for broadcast television,
this method will prove difficult to implement. Again, for any
carrier grade service, customers expect video content to be
delivered free of errors and any disruption to the viewing
experience, due to visible artifacts will lead to an unacceptable
level of satisfaction with their video service. However, in some
cases the levels of loss can lead to a situation where a frame
cannot be reconstructed at all, leading to the frame being
dropped. In the case of a reduced reference metric, such as the
one presented below, where the decoder compares the blocking

value between the original source frame and the one computed
for the frame received, the loss of a frame can lead to a mis-
alignment between the correct values used for comparison,
leading to spurious results. In this case, it is necessary for the
monitoring system, when faced with the next “good” frame to
be able to quickly re-align itself with the correct value so that
the ability to monitor quality in the presence of frame drops
can be maintained.

Let BS(i) denote the blocking measure at source for frame i
and BD(i) measures the blocking observed by the end user
while viewing frame i. Many metrics have been proposed
in research literature for measuring blocking values in a no-
reference manner [33], and [34]. This work differs in so
far that ADB is 1) performed for a video sequence and 2)
used to detect the occurrence of macro block errors and not
the result of the compression process. In this work, we use
the MSU Blocking metric for computation of these values.
Intuitively, we take a difference of the source and destination
blocking measurements to get a reduced-reference measure
of blocking, referring to it as ADB (Absolute Difference of
Blocking measures). Since BS(i) is computed at the video
source after the encoding process, for the same frame, the
value of BD(i), should be the exact same at the receiver, unless
something has affected the visual content of the frame. This
difference in blocking values between the source and receiver
values, or “delta-blocking” enables the decoder to detect frame
damage and to quantify the level of damage caused.

ADB(i) = |BS(i) − BD(i)| (1)

To test the accuracy of this simple solution, we conducted
an evaluation using an IEEE 802.11 network testbed delivering
video content; using a H.264 encoded video stream, and
MSU Blocking metrics values to get ADB. We next correlate
ADB with packet loss events. The packet loss event was
forced by specifying a packet loss rate (PLR) on the wireless
device (in this case running the Madwifi driver) the video was
then decoded (with losses) the resultant blocking values were
calculated. However, the ADB values show many spurious
measurements which are due to misalignment of frames due
to frame loss event. The result is not accurate because some
packet loss events cause frame losses which are unnoticed by
the decoder. Hence, the ith frame at decoder may correspond
to the (i+1)th frame in source video after first frame loss event.
A simple absolute difference (ADB) will not account for these
events, leading to erroneous values.

However, there is an interesting observation: ADB(i) does
capture the effect of packet losses in blocking introduced in the
viewed video. The effect of different packet losses is different
depending on motion/ content of exact frame in video and
type/ importance of lost packet. A packet loss can lead to
two errors: loss of information required to reconstruct next
frame or incorrect reconstruction of next frame because of
lost partial information regarding the frame. The former leads
to a temporal loss in video quality, while the latter leads to
blocking artifacts (unexpected visible errors). Lack of time-
stamping information in received video makes it difficult to
match the frame to each other. There exists a lot of relevant
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Algorithm 1 : ADB MF(i)=MatchFrameAlgorithm(BS(i), BD(i), W)

// W is size of window used.
NumWindow = Length(BD(i) / W)
NumLost = 0 //Initialize to 0
for j=0 : (NumWindow - 1)
for i=1 : Window
ADB (i + j * W) = abs(BS(i+j+NumLost) - BD(i+j*W))
endfor
for last M frames compute the ADB values with and without
1 frame loss and find minimum (min)
if (min) == ADBwithloss

NumLost = NumLost + 1

Fig. 14. The smoothing of ADB values obtained with different window sizes
(indicated in parenthesis). Packet loss rate is 0.10%.

work w.r.t. sequence matching in other domains that we
believe might be relevant to the our problem here of frame
matching. In particular, the application of some well-known
algorithms in bioinformatics that deal with sequence alignment
with gaps [35] and statistical significance estimation of such
alignments [36]–[38]. However, these sophisticated algorithms
have high computational complexity, thereby we next propose
a simple algorithm.

We use a windowing approach to remove the errors intro-
duced in spatial (blocking) measurements due to frame losses.
The main idea of the windowing algorithm is to compute
ADB(i) values over a small window. Before moving to next
window, it estimates whether a packet loss event occurred in
the past window or not this is done by measuring the ADB(i)
values of last M (say M=10) frames with the ADB(i) values
computed with source window shifted by 1 element. If the
minimum of these two values is the ADB value with shifted
element, we increase a counter NumLost which is used as
an offset in computation of ADB(i) for future windows. This
process is repeated for each window. These values are called
ADB MF(i). Algorithm 1 explains this process.

Figure 14 shows the smoothing obtained for an experiment
conducted with a prepared source video with different window
sizes (decreasing window size from top to bottom) . The red
(bottom) plot shows ADB(i) values. It can be seen that different
windows show different regions of smoothening with the best
performance obtained by W=100. We can use this value, or
alternatively, we can take the minimum value obtained by
different window sizes.

Figure 15 gives more results illustrating the improvements
gained by MF algorithm over direct ADB computations.

Fig. 15. The smoothing of ADB values obtained with different packet loss
rates (0.02%, 0.05%, 0.25% and 0.5% respectively) using the Match Frame
(MF) algorithm.

ADB MF(i) values retain the blocking errors introduced by
the wireless network yet reduces most of the spurious noise
introduced by the wireless network at very low computational
complexity. The results are reported over packet loss rates of
0.02%, 0.05%, 0.25% and 0.5%.

It can be observed that the ADB MF(i) algorithm doesn’t
discard the reported blocking of frames caused by packet
losses, rather it only removes the noise introduced in obser-
vation due to frame losses. For each different loss case we
can observe periods where errors are mistakenly reported by
the ADB algorithm, when in fact the ADB value would be
zero had the case for missing frames been taken into account.
It can be seen that in the face of packet loss, using this
windowing algorithm spurious frame error reports (computed
using ADB) can be minimized. In the 0.02% loss case there
were 298 damaged frames, ADB reported 862 lost frames,
while ADB MF(i) reported that there were 298 damaged
frames, matching the manually calculated version.

For higher loss rates, further investigation is required to
fine-tune the optimal window size, however we have included
results for higher loss rates to demonstrate the smoothing
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Fig. 16. Average and Max. Delta Blocking for each Video/Scalable Dimension Combination.

obtained when using a window size of 100. However, these
loss rates are much higher than target loss rates for a de-
ployed IPTV service and thus, detection of periodic events
may not be of concern since the video content may be
completely unwatchable at these loss rates. Without the use
of ADB MF(i) and simply using ADB, when a full frame is
lost, quality monitoring may not continue in any meaningful
manner. Hence, the applicability of ADB would be limited.

A. Characterizing the Effects of Loss using Reduced/No Ref-
erence Metrics

Figure 16 (a)-(i) presents the results of the impact of a fixed
amount of loss on each video/scalable dimension combination.
Due to the lack of a network based streaming server for
H.264/SVC suitable for our purposes, these experiments were
carried out using AVC encoded versions of the sequences.
Previous works in the area have presented the use of an
SVC streaming server [39], [40] however, these works were
for simulation-based experiments only or were unable to be
adopted for our work. In this work in order to enable a
deployable solution, which takes actual decoder behavior in
the face of loss into account, we require an experimental based
approach. To expand on this point, we cannot guarantee that a
simulation-based approach will capture the necessary behavior
when faced with lost macroblock data, which is something that
our solution requires.

While there may be small variations in the observed values
between AVC and SVC, due to the fact that SVC is an
extension of AVC and inherits its encoding techniques, we

argue that the observations made here will hold true in the
case of SVC. As stated above, there will be some variation
in blocking values between the original sequence and the
transmitted sequence (prior to macroblocking errors) due to
the different encoders used. We can also observe that in some
cases that the maximum blocking value in the received file
is lower than that of the original video, again this can be
partially attributed to the variations due to encoding, but the
more likely case is that the original sequence frame with the
highest blocking value was lost during transmission.

For the purpose of our experiment, as stated before we
used the x264 software library to encode our content ac-
cording to the same parameters used in the previous scalable
video quality analysis. The outputted MPEG-4 file was the
encapsulated into an MPEG Transport Stream file, in order to
provide as close a representation to a deployed IPTV system.
We then served the video using RTSP and RTP over the
localhost interface with a specified loss rate of 0.5%. The
server software used was the popular Live555MediaServer
[41] and the client software used to request and capture the
video was OpenRTSP [42]. The received video was then
decoded to construct a raw YUV sequence which represented
the “observed” video with errors in some frames due to loss
macro-block data.

Across all cases, there were differing levels of damage to
frame or, in some cases, total frame loss. This is where the
entire frame (or multiple frames) could not be decoded and
thus the frame length of the received sequence was lower than
the original, requiring re-alignment of values.
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As can be seen in Figures 16 (a)-(c), as we increase the lev-
els of quantization of a particular sequence, the overall trend is
that the difference between the frame with the highest blocking
value in the original sequence and the highest blocking value
(the frame with the highest levels of macroblocking) in the
lossy sequence is decreasing.

We also observe that in some cases that the maximum delta
blocking is less than zero. As detailed above, this can be
explained by the loss of the frame with the highest blocking
value during transmission. However, we can still observe that
the overall trend indicates that the effect of blocking due
to errors is lower as we decrease quality due to increased
quantization.

A similar trend can be observed in Figures 16 (d)-(f),
here we can see that, as we decrease the resolution of the
sequence the difference between the frame with the highest
levels of blocking due to errors and that of the original
sequence, the observed impact of loss is lower. In our exper-
iments, we scaled between 3 different resolutions; 1024x576,
512x288, 256x144, corresponding to "high", "medium" and
"low" resolution respectively. We can observe that the impact
of loss due to macroblocking is almost non-existent at the
"medium" resolution compared to the "high" resolution and
further degradation to the "low" resolution provides a much
lower benefit in terms of robustness to loss. However, we
may still degrade to the low "resolution" in order to increase
bandwidth efficiency.

In the case of temporal scalability, we chose to use the
difference between the average blocking value for the entire
sequence. The reason for doing this is to demonstrate how the
overall sequence is affected when a frame becomes damaged
due to loss and using the difference between the averages is
the most effective method. As stated above under temporal
scalability, the frames that remain at the lower temporal
layer must be repeated in order to match the same framer-
ate found at the full temporal quality. However, as shown
above this can cause a degradation of quality in terms of
SSIM / PSNR.

Furthermore, as we have shown in Figures 16 (g)-(i) this
also leads to damaged frames being repeated in the case of
loss, this has the effect of increasing the overall blocking
value and thus the perceived experience is lowered. We can
observe in (g) and (h) that as we lower the framerate, the
number of times a damaged frame is repeated increases and
thus the average blocking value is raised. There is only a
small degree of variance in the news sequence for the first
temporal degradation step, however this is more pronounced
as the framerate decreases further. In the case of (i) we can
see that in 2 of the 3 degradation steps the average increases
but in one case it is lowered. This could possibly be attributed
to lower levels of losses in this case or perhaps damage to
macroblocks which do not produce a large impact on the
blocking value.

The effects of temporal scalability are likely to be mini-
mized for low motion sequences. However, low motion se-
quences will not have a large number of motion vectors and
therefore the actual bandwidth savings for temporal sequences
with minimal quality degradation is not as great as other

sequences with higher motion, which may suffer greater
degradations in quality.

B. Use of the Solution in a Quality Monitoring System

The use of scalable video coding and the “delta-blocking”
mechanism could be used in a number of target application
scenarios. For example, an IPTV service provider could be
delivering high quality video content to customers, satisfying
their quality of experience (QoE) expectations of the service.
However, should some factor limit the network’s ability to
allocate sufficient bandwidth for the full-quality video, packets
belonging to the video stream may be lost. This loss will
manifest itself in terms of visible blocking errors at the
customers’ playback devices.

If the IPTV service provider has already computed and
transmitted the required B(S) information to the STBs (or
perhaps a selection of customers in different regional areas),
the delta blocking metric could be used to detect these visible
blocking errors. This can then be provided as feedback to the
service operator who may choose to switch to a lower scalable
layer. The construction of the different SVC layers will depend
on the particular type of content, allowing the operator to
maintain the maximum quality for a given bandwidth. Upon
resolution of the issue the delta-blocking metric can then be
used to verify that the issue has been resolved.

VI. Conclusion and Future Work

In this paper we investigated the effects of scalability in
all 3 dimensions for H.264 SVC using complex, broadcast
content. We carried out this investigation using 2 full-reference
metrics and 2 no/reduced–reference metrics in order to ascer-
tain the observed video quality relative to a particular saving
of bandwidth. The results give insight into degradation of
video quality based on scalable dimension, which is important
for setting the right parameters for encoding scalable video.
We characterized the effect of different content types on
performance with scalable video.

We also motivated the use of two no-reference metrics,
namely Blocking and Blurring, to ascertain the effect on
these as we progress through the degradation path for each
scalable dimension. Furthermore, we investigated the effect
on video quality for each scalable dimension in the presence
of loss. Our findings indicate that as quantization increases or
spatial resolution decreases the overall impact on video quality
through loss is decreased. However, in the case of temporal
degradation, due to its nature, the impact of loss leads to a
greater impact on quality.

Finally, we presented the use of a no-reference metric in a
reduced reference fashion, which can be used to detect visual
damage and frame loss due to packet loss. This data can then
be used to trigger a modification of the video stream using
H.264 SVC. We also presented an algorithm which can be
used to re-align the reduced reference data when frame loss
does occur.

This works also highlights the use of no-reference metrics
to assess the impact of loss on video quality, where full-
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reference metrics (due to their dependency on a frame-by-
frame matching) cannot be employed.

It is hoped that this work could be used as a part of
a framework to select the appropriate dimension(s) to scale
(and by how much) when constructing the layers for a SVC
sequence to maximize video quality, while saving the largest
amount of bandwidth.

Acknowledgment

This work has received support from Science Foundation
Ireland via the "Federated, Autonomic Management of End-
to-End Communications Services" (grant no. 08/SRC/11403).
This work is also partially supported by the National Science
Foundation under Grant #1019343 to the Computing Research
Association for the CIFellows Project.

References

[1] J. Ostermann, J. Bormans, P. List, D. Marpe, M. Narroschke, F. Pereira,
T. Stockhammer, and T. Wedi, “Video coding with H. 264/AVC: Tools,
performance, and complexity,” IEEE Circuits Syst. Mag., vol. 4, no. 1,
pp. 7–28, Jan.–Mar. 2004.

[2] N. Cranley, L. Murphy, and P. Perry, “User-perceived qauality-aware
adaptive delivery of MPEG-4 content,” in Proc. 13th Int. Workshop Netw.
Operating Syst. Support Digital Audio Video, 2003, pp. 42–49.

[3] T. Zinner, O. Hohlfeld, O. Abboud, and T. Hoßfeld, “Impact of frame
rate and resolution on objective QoE metrics,” in Proc. 2nd IEEE Int.
Workshop Quality Multimedia Experience, 2010, pp. 29–34.

[4] H. Sohn, H. Yoo, W. De Neve, C. Kim, and Y. Ro, “Full-reference video
quality metric for fully scalable and mobile SVC content,” IEEE Trans.
Broadcast., vol. 56, no. 3, pp. 269–280, Sep. 2010.

[5] A. Khan, L. Sun, and E. Ifeachor, “Impact of video content on video
quality for video over wireless networks,” in Proc. 5th IEEE Int. Conf.
Autonomic Autonomous Syst., 2009, pp. 277–282.

[6] F. De Vito and J. De Martin, “Psnr control for gop-level constant quality
in H.264 video coding,” in Proc. 5th IEEE Int. Symp. Signal Process.
Inform. Technol., 2005, pp. 612–617.

[7] P. McDonagh, C. Vallati, A. Pande, P. Mohapatra, P. Perry, and E. Min-
gozzi, “Investigation of scalable video delivery using H.264 SVC on an
LTE network,” in Proc. 14th Int. Symp. WPMC, 2011, pp. 1–5.

[8] S. Chikkerur, V. Sundaram, M. Reisslein, and L. Karam, “Objective
video quality assessment methods: A classification, review, and perfor-
mance comparison,” IEEE Trans. Broadcast., vol. 57, no. 2, pp. 165–182,
Jun. 2011.

[9] S. Hemami and A. Reibman, “No-reference image and video quality
estimation: Applications and human-motivated design,” Signal Process.
Image Commun., vol. 25, no. 7, pp. 469–481, 2010.

[10] H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the scalable video
coding extension of the H.264/AVC standard,” IEEE Trans. Circuits Syst.
Video Technol., vol. 17, no. 9, pp. 1103–1120, Sep. 2007.

[11] Y. Zhou, Y. Sun, X. Yin, and S. Sun, “Effective frame level rate control
for H.264/AVC video coding,” in Proc. IEEE GLOBECOM, 2008, pp.
1–5.

[12] G. Muntean, P. Perry, and L. Murphy, “A new adaptive multimedia
streaming system for all-IP multi-service networks,” IEEE Trans. Broad-
cast., vol. 50, no. 1, pp. 1–10, Mar. 2004.

[13] G.-M. Muntean, P. Perry, and L. Murphy, “Objective and subjective
evaluation of QOAS video streaming over broadband networks,” IEEE
Trasn. Network Service Manage., vol. 2, no. 1, pp. 19–28, Nov. 2005.

[14] A. Ksentini, M. Naimi, and A. Guéroui, “Toward an improvement of
H.264 video transmission over IEEE 802.11e through a cross-layer
architecture,” IEEE Commun. Mag., vol. 44, no. 1, pp. 107–114, Jan.
2006.

[15] G. Van der Auwera, P. David, and M. Reisslein, “Traffic and qual-
ity characterization of single-layer video streams encoded with the
H.264/MPEG-4 advanced video coding standard and scalable video
coding extension,” IEEE Trans. Broadcast., vol. 54, no. 3, pp. 698–718,
Sep. 2008.

[16] J. Monteiro, C. Calafate, and M. Nunes, “Evaluation of the H.264 scal-
able video coding in error prone IP networks,” IEEE Trans. Broadcast.,
vol. 54, no. 3, pp. 652–659, Sep. 2008.

[17] X. Zhu, T. Schierl, T. Wiegand, and B. Girod, “Video multicast
over wireless mesh networks with scalable video coding (SVC),”
in Proc. Visual Commun. Image Process., 2008, pp. 682 205–682
205.

[18] Y. Fallah, H. Mansour, S. Khan, P. Nasiopoulos, and H. Alnuweiri, “A
link adaptation scheme for efficient transmission of H.264 scalable video
over multirate WLANs,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 18, no. 7, pp. 875–887, Jul. 2008.

[19] Z. Wang, L. Lu, and A. Bovik, “Video quality assessment based on
structural distortion measurement,” Signal Process. Image Commun.,
vol. 19, no. 2, pp. 121–132, 2004.

[20] J. Klaue, B. Rathke, and A. Wolisz, “Evalvid: A framework for video
transmission and quality evaluation,” in Proc. Comput. Performance
Eval. Modelling Tech. Tools, 2003, pp. 255–272.

[21] T. Le, H. Nguyen, and H. Zhang, “EvalSVC: An evaluation platform
for scalable video coding transmission,” in Proc. 14th IEEE ISCE, 2010,
pp. 1–6.

[22] J. Lee, F. De Simone, N. Ramzan, Z. Zhao, E. Kurutepe, T. Sikora,
J. Ostermann, E. Izquierdo, and T. Ebrahimi, “Subjective evaluation
of scalable video coding for content distribution,” in Proc. Int. Conf.
Multimedia, 2010, pp. 65–72.

[23] P. Seeling, F. Fitzek, G. Ertli, A. Pulipaka, and M. Reisslein, “Video
network traffic and quality comparison of VP8 and H.264 SVC,” in
Proc. 3rd Workshop Mobile Video Delivery, 2010, pp. 33–38.

[24] K. Singh, A. Ksentini, and B. Marienval, “Quality of experience mea-
surement tool for SVC video coding,” in Proc. IEEE ICC, Jun. 2011,
pp. 1–5.

[25] X. Li, P. Amon, A. Hutter, and A. Kaup, “Performance analysis of
inter-layer prediction in scalable video coding extension of H.264/AVC,”
IEEE Trans. Broadcast., vol. 57, no. 1, pp. 66–74, Mar. 2011.

[26] MSU. (2011). MSU Video Quality Measurement Tool [Online]. Avail-
able: http://compression.ru/index\ en.htm

[27] J. Reichel, H. Schwarz, and M. Wien, Joint Scalable Video Model 11
(JSVM 11), Joint Video Team, document JVT-X202, 2007.

[28] D. Vatolin, S. Grishin, A. Moskvin, and A. Parshin, “Objective mea-
surements of artifacts produced by modern video coding standards,” in
Proc. Spring Conf. Comput. Graph., 2006.

[29] M. Wien, R. Cazoulat, A. Graffunder, A. Hutter, and P. Amon,
“Real-time system for adaptive video streaming based on SVC,”
IEEE Trans. Circuits Syst. Video Technol., vol. 17, no. 9,
pp. 1227–1237, Sep. 2007.

[30] H. Huang, W. Peng, T. Chiang, and H. Hang, “Advances in the scalable
amendment of H.264/AVC,” IEEE Commun. Mag., vol. 45, no. 1, pp.
68–76, Jan. 2007.

[31] J. Maisonneuve, M. Deschanel, J. Heiles, W. Li, H. Liu, R. Sharpe, and
Y. Wu, “An overview of IPTV standards development,” IEEE Trans.
Broadcast., vol. 55, no. 2, pp. 315–328, Jun. 2009.

[32] Y. Xiao, X. Du, J. Zhang, F. Hu, and S. Guizani, “Internet proto-
col television (IPTV): The Killer application for the next-generation
Internet,” IEEE Commun. Mag., vol. 45, no. 11, pp. 126–134, Nov.
2007.

[33] A. Leontaris and A. Reibman, “Comparison of blocking and blurring
metrics for video compression,” in Proc. IEEE Int. Conf. Acoust. Speech
Signal Process., vol. 2. 2005, pp. 585–588.

[34] Z. Wang, A. Bovik, and B. Evan, “Blind measurement of blocking
artifacts in images,” in Proc. IEEE Int. Conf. Image Process., vol. 3.
2000, pp. 981–984.

[35] X. Huang and K.-M. Chao, “A generalized global alignment algorithm,”
Bioinformatics, vol. 19, no. 2, pp. 228–233, 2003.

[36] A. Agrawal, V. P. Brendel, and X. Huang, “Pairwise statistical signifi-
cance and empirical determination of effective gap opening penalties for
protein local sequence alignment,” Int. J. Comput. Biol. Drug Design,
vol. 1, no. 4, pp. 347–367, 2008.

[37] A. Agrawal and X. Huang, “Pairwise statistical significance of local
sequence alignment using multiple parameter sets and empirical justifi-
cation of parameter set change penalty,” BMC Bioinformatics, vol. 10,
no. 3, p. S1, 2009.

[38] A. Agrawal and X. Huang, “Pairwise statistical significance of local
sequence alignment using sequence-specific and position-specific sub-
stitution matrices,” IEEE/ACM Trans. Comput. Biol. Bioinformatics, vol.
8, no. 1, pp. 194–205, Jan.–Feb. 2011.

[39] M. Ghareeb, A. Ksentini, and C. Viho, “Scalable video coding (SVC)
for multipath video streaming over video distribution networks (VDN),”
in Proc. IEEE Int. Conf. Inform. Networking, 2011, pp. 206–211.



MCDONAGH et al.: TOWARD DEPLOYABLE METHODS FOR ASSESSMENT OF QUALITY FOR SCALABLE IPTV SERVICES 237

[40] L. Zhang, C. Yuan, and Y. Zhong, “Reliable and efficient adap-
tive streaming mechanism for multi-user SVC VoD system over
GPRS/EDGE network,” in Proc. IEEE Int. Conf. Comput. Sci. Softw.
Eng., vol. 3. 2008, pp. 232–235.

[41] Live555. (2011). Live555mediaserver [Online]. Available: http://www.
live555.com/mediaServer

[42] openRTSP. (2011). openrtsp [Online]. Available: http://www.live555.
com/openRTSP

Patrick McDonagh received the B.Sc. degree
in computer science from the University College
Dublin, Dublin, Ireland, in 2009. He joined the Per-
formance Engineering Laboratory (http://pel.ucd.ie)
as a Ph.D. student in 2009. He was a Visiting
Researcher at the University of California, Davis,
CA, USA, in 2011. He also conducts research into
video quality analysis with a focus on objective and
no-reference methods. His current research inter-
ests include methods of monitoring and managing
carrier-grade services in wired and wireless access

networks.

Amit Pande (M’10) received the Ph.D. degree from
Iowa State University, Ames, IA, USA, in 2010.
He is currently a Project Scientist at the Depart-
ment of Computer Science, University of California,
Davis (UC Davis), CA, USA. He was awarded with
Excellence in Post-Doctoral Research in 2012 by
UC Davis, NSF CI Fellowship 2010–2012 by CRA,
Zaffarano Award, hon. mention, in 2010 by ISU,
Research Excellence Award in 2010 by ISU, Best
Paper Award by WPMC in 2012, Design Contest
Winner (VLSID 2012, 2010), Institute Silver Medal

in 2007 by IIT Roorkee, Agilent Engineering and Technology Awards in 2007,
India, and other distinctions. His current research interests include multimedia
systems, wireless networks, embedded systems, security, and trust.

Liam Murphy (M’85) received the B.E. degree in
electrical engineering from the University College
Dublin, Dublin, Ireland, in 1985, and the M.Sc. and
Ph.D. degrees in electrical engineering and computer
sciences from the University of California, Berkeley,
CA, USA, in 1988 and 1992, respectively. He is
currently a Professor of computer science and in-
formatics at the University College Dublin, where
he is the Director of the Performance Engineering
Laboratory. He has published almost 150 refereed
journal and conference papers on various topics,

including multimedia transmissions, dynamic and adaptive resource allocation
algorithms in computer/communication networks, and software development.
His current research interests include computer network convergence and
software performance engineering. Prof. Murphy is a member of the IEEE
(Communications, Broadcasting, and Computer societies) and a fellow of the
Irish Computer Society.

Prasant Mohapatra (F’10) received the Doctoral
degree from Pennsylvania State University, Uni-
versity Park, PA, USA, in 1993. He is currently
the Tim Bucher Family Endowed Chair Professor
and the Chairman of the Department of Computer
Science, University of California, Davis, CA, USA.
Previously, he was on the faculty at Iowa State
University, Ames, IA, USA, and Michigan State
University, East Lansing, MI, USA. He has also been
a Visiting Scientist at Intel Corporation, Panasonic
Technologies, Institute of Infocomm Research (I2R),

Singapore, and National ICT Australia (NICTA), Sydney, Australia. He has
been a Visiting Professor at the University of Padova, Padova, Italy, and
Yonsei University, Seoul, Korea. His current research interests include wireless
networks, sensor networks, Internet protocols, and QoS. Dr. Mohapatra was
a recipient of the Outstanding Engineering Alumni Award in 2008. He was
a recipient of the Outstanding Research Faculty Award from the College of
Engineering, University of California, Davis, CA, USA.


