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Vital Sign and Sleep Monitoring Using Millimeter Wave
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Continuous monitoring of human’s breathing and heart rates is useful in maintaining better health and
early detection of many health issues. Designing a technique that can enable contactless and ubiquitous
vital sign monitoring is a challenging research problem. This article presents mmVital, a system that uses
60GHz millimeter wave (mmWave) signals for vital sign monitoring. We show that the mmWave signals can
be directed to human’s body and the Received Signal Strength (RSS) of the reflections can be analyzed for
accurate estimation of breathing and heart rates. We show how the directional beams of mmWave can be
used to monitor multiple humans in an indoor space concurrently. mmVital also provides sleep monitoring
with sleeping posture identification and detection of central apnea and hypopnea events. It relies on a novel
human finding procedure where a human can be located within a room by reflection loss-based object/human
classification. We evaluate mmVital using a 60GHz testbed in home and office environment and show that
it provides the mean estimation error of 0.43 breaths per minute (Bpm; breathing rate) and 2.15 beats per
minute (bpm; heart rate). Also, it can locate the human subject with 98.4% accuracy within 100ms of dwell
time on reflection. We also demonstrate that mmVital is effective in monitoring multiple people in parallel
and even behind a wall.
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1. INTRODUCTION

Monitoring vital signs such as breathing rate and heart rate can provide crucial insights
in a human’s well-being and can detect a wide range of medical problems. Continuous
and ubiquitous monitoring of a person’s vital signs is a challenging problem and the cur-
rent solutions require the person to wear dedicated devices. Wearable devices such as
wrist-worn heart rate monitors, chest straps for breathing rate detection are required
to be connected to the human’s body at all times (even during sleep), making them
a less convenient alternative. This has motivated the design of contactless solutions
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for vital sign monitoring where a person’s smartphone or other nearby communication
infrastructure (e.g., WiFi) can be leveraged for the purpose.

In the RF-based vital sign monitoring solutions proposed in Liu et al. [2015], Patwari
et al. [2014], Abdelnasser et al. [2015], and Ravichandran et al. [2015], a WiFi signal
reflected from the human body is used to estimate the breathing and heart rates.
Although these papers have solved important challenges in designing contactless vital
sign monitoring, they have many practical limitations. Due to the omni-directional
propagation commonly used in 2.4/5GHz WiFi, a signal can be reflected from multiple
humans in an indoor space. This makes it difficult to distill the vital signs of multiple
humans from the reflected signal. Due to this reason, the majority of the WiFi-based
vital sign monitoring research assumes there is only a single human subject in the
range of WiFi endpoints, or if there are multiple humans in the range, their vital
signs are sufficiently different from each other. However, in most practical scenarios,
there is more than one human in indoor spaces like homes, offices, and hospitals, and
the vital signs of individuals can vary substantially in a short time. The WiFi signal
can also reflect from many indoor objects, and complex signal processing is necessary
to extract the human reflected signal in multi-path rich indoor environments. This
makes it difficult to determine the tiny motion of heartbeats from the reflected signal
and, hence, the approaches in Patwari et al. [2014], Abdelnasser et al. [2015], and
Ravichandran et al. [2015] are primarily limited to measuring only the breathing rate.

This article investigates the use of 60GHz millimeter-wave (mmWave) signal for ubiq-
uitous and non-invasive vital sign monitoring. The 60GHz mmWave frequency band
provides over 7GHz (57–64GHz) of unlicensed spectrum. With the development of IEEE
802.11ad [IEEE 2012], the mmWave band is shown to enable high-speed (up to 7Gbps)
indoor wireless local/personal area networks. Its suitability for applications, such as
point-to-point video streaming, has resulted in rapid commercialization with the de-
velopment of WiFi+60 GHz wireless access points [Intel 2014], smartphone chipsets,
and the like. With this momentum, the 60GHz mmWave is likely to be an omnipresent
technology of indoor WLANs/WPANs in homes and offices in the coming years. We
demonstrate that the 60GHz mmWave signal can provide highly accurate and reliable
vital sign monitoring. Due to the high attenuation loss of 60GHz signal, directional
beamforming is employed using a phased array or horn antenna to concentrate the
signal in one direction. We show that mmWave signals reflected off a human body
can accurately represent minute chest motion necessary to estimate his/her breathing
and heart rate. Due to the directional nature, the signal is not affected by any other
motion outside the transmitter (Tx) and receiver (Rx) beams. Even more importantly,
the directional beams reduce the signal footprint of monitoring each human, which in
turn allows higher spatial reuse where multiple human subjects can be monitored in
parallel within a room.

In this article, we present mmVital, a comprehensive vital sign and sleep monitoring
system using mmWave. mmVital can measure a human’s breathing rate and heart rate
in different positions (standing, sitting, sleeping, etc.) without requiring any proac-
tive actions from the human. It is robust to different distances and incident angles
of the impinging signal, as humans can change their locations anywhere in the room.
In addition to vital signs, mmVital can also monitor a person’s quality of sleep with
identifying sleeping postures, because frequent changes in posture is found to be cor-
related with the quality of sleep [Oksenberg and Silverberg 1998]. Another important
factor to impact the sleep quality is the breathing disorder. For this purpose, mmVital
can accurately detect apnea events for patients suffering from sleep disorders such as
central apnea and hypopnea.

mmVital solves multiple challenges toward building a practical monitoring system.
With mmWave, it is necessary to perform Tx and Rx beamforming toward the human
in order to reflect the signal off his/her body. To address this challenge, mmVital utilizes
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a human finding process where the indoor surrounding is profiled and monitored in
terms of mmWave reflections. The human finding procedure results in accurate beam-
forming angles to point and reflect the signal from human(s). We identify the separa-
tion conditions that dictate how multiple humans can be monitored using mmWave
and how mmVital can provide very high concurrency of monitoring compared to the
omni-directional WiFi-based solutions. This feature can facilitate parallel monitoring
of multiple patients on nearby beds in a hospital room or different family members in a
home. This can be easily implemented on the future commercial 60GHz devices, which
are supposed to be multiple nodes in a typical living environment due to high-power loss
at 60GHz. These devices can form reflective paths bounced from/to a human body to en-
able our proposed work. The contributions of this article can be summarized as follows:

(1) We empirically demonstrate the feasibility of the monitoring of breathing and
heart rates using 60GHz mmWave signals. We develop a state-of-the-art testbed
and design mmVital, a vital sign monitoring system that utilizes Received Signal
Strength (RSS) of the mmWave signal reflected from a human to provide accurate
vital sign monitoring while being robust to different incident angles and distances.

(2) We develop a contactless sleep monitoring system that does not require the user
to wear any devices on his/her body during sleep. mmVital can monitor a person’s
sleep by identifying sleeping postures and detecting the posture changes. It also
observes human’s breathing patterns during sleep for detecting sleep apnea events
(specifically, central apnea and hypopnea). We note that research presented in
this article is an extension of our previously published work [Yang et al. 2016a].
Compared to the work of Yang et al. [2016a], the novel contribution of this work is
the development and evaluation of sleep monitoring techniques, including posture
classification and apnea detection.

(3) A novel human finding technique is developed that can be used by mmVital to locate
a user based on the reflection loss of a human body. We develop a reflection loss-
based classification that can accurately and efficiently distinguish reflection from
a human body or other objects (e.g., walls and chairs).

(4) We systematically study and empirically derive the (angular and distance) sepa-
ration necessary between humans for concurrently monitoring their vital signs.
Additionally, we establish the relationships between the necessary separation and
the antenna beamwidth, and outline possible cases such as blockage, multiple re-
flections, and the like.

(5) We do an extensive evaluation of mmVital using our 60GHz testbed with seven
participants in office and home environments. The mean estimation error across
all participants is observed to be 0.43 breaths per minute (Bpm) and 2.15 beats per
minute (bpm). The human finding procedure achieves object-human classification
accuracy of 98.4% with 100ms of dwell time on reflection changes. mmVital is also
accurate in behind-the-wall breathing rate estimation with the mean estimation
error of 0.58Bpm.

The rest of the article is organized as follows. Section 2 discusses the related work.
Section 3 provides the overview of mmVital, and Section 4 discusses the breathing rate
and heart rate estimation modules. Section 5 represents the posture event detection
and classification, and apnea detection modules. Section 6 details the human finding
procedure, and Section 7 discusses the monitoring of multiple people. Section 8 provides
the numerical results, and we conclude in Section 9.

2. RELATED WORK

RF signal-based contact-free solutions for vital sign and sleep monitoring have received
increasing attention in recent years. Our work is related to the prior works in the
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following three areas, 2.4/5GHz band and mmWave band for sensing as well as the
sleep apnea monitoring systems.

2.4/5GHz-based vital sign monitoring: The authors in Abdelnasser et al. [2015]
proposed to use WiFi RSS for respiratory monitoring. However, it requires the person
to hold a device or stand in the line-of-signt path between Tx and Rx nodes for accurate
monitoring. Liu et al. [2015] leveraged fine-grained Channel State Information (CSI)
of WiFi to track vital signs. The primary focus of the work is to measure the vital signs
when a person is sleeping and the approach is applicable to monitoring a single person
in a controlled environment. Also, the proposed solution can only monitor multiple
humans when their vital signs are sufficiently distinct. However, in practical scenarios,
individual’s vital signs can vary substantially in a short time period. A similar work
[Ravichandran et al. 2015] studied a natural setting in the home with both Line-
of-Sight (LOS) and Non-LOS (NLOS) cases to estimate a single person’s respiration
rate using customized WiFi hardware. The work is limited to measuring breathing
rate (not heart rate) and can only monitor multiple humans’ breathing rates when
they are sufficiently different. The authors in Huang et al. [2016] proposed a self-
calibrating vital sign monitoring system based on the Doppler radar; however, the
required demodulation procedure only focused on the case of single subject monitoring.

Authors in Prakash et al. [2016] developed a Global System for Mobile communica-
tions (GSM)-based Internet of Things (IoT) network to monitor vital signs, in which
computational and network processors are interfaced with sensing components and
transmit signals through GSM and Simple Mail Transfer Protocol (SMTP) servers.
Different from mmVital, the vital sign sensors in Prakash et al. [2016] are required to
be attached to users. A wireless sensor system using 802.15.4 devices was proposed to
monitor vital signs in Patwari et al. [2014], which requires the deployment of many
sensor nodes/links for the accurate monitoring of a single human. Adib et al. [2015]
proposed to use Frequency-Modulated Continuous-Wave (FMCW) radar for breathing
and heart rates estimation. The proposed work can monitor multiple human subjects in
parallel. However, it utilizes a customized dedicated hardware with a large bandwidth
of 1.8GHz (between 5–7GHz). In contrast, mmVital can reuse the IEEE 802.11ad com-
mercial communication/networking hardware for the purpose of vital sign monitoring.
Although we use customized mmWave platform (due to the unavailability of off-the-
shelf hardware), our techniques simply rely on RSS and can be easily implemented on
low-cost future commercial 60GHz Wireless Local Area Network (WLAN) devices.

mmWave sensing and networking: While some research has found that the ex-
posure under mmWave might moderately increase human skin’s temperature [Gandhi
and Riazi 1986; Wu et al. 2015], mmWave is otherwise shown to have no significant
detrimental effects on the human body [Price 2012], given that the transmission power
and antenna gain are carefully chosen as per the regulations [Rappaport et al. 2014].
Previous works have also studied vital signs detection using the mmWave signal in
different frequencies, such as 228GHz [Petkie et al. 2009], 94GHz [Mikhelson et al.
2012; Bakhtiari et al. 2012] and 60GHz [Kao and Lin 2013; Chuang et al. 2012]. The
primary focus of these papers has been to demonstrate the feasibility of vital sign
monitoring with mmWave. They assume simple controlled settings with one human
subject at a close distance from the transmitter and receiver. In addition, Bakhtiari
et al. [2012] and Chuang et al. [2012] focused on mmWave sensor and hardware/chip
design for vital sign detection. In our work, our focus is on solving practical challenges
such as finding the human’s location in a room and realizing the true potential of di-
rectional beams by sensing multiple humans concurrently. mmVital is designed to be
operational in realistic indoor environments like offices, homes, and so on as shown in
our evaluation.

In the literature, 60GHz millimeter wave sensing has been studied extensively for
other applications like target tracking and automotive radar. In a recent work, Wei
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and Zhang [2015] proposed the high-precision tracking of objects (writing with pen)
using mmWave beam scanning. The reflection characteristics of different objects for
mmWave signals have been studied in Langen et al. [1994]. Authors in Sur et al. [2015]
provided a link level measurement of blockage and reflection in an indoor environment,
and our reflection measurements closely match their results due to the similarity of
60GHz transmitter and receiver system. 60GHz communication has been studied for
outdoor picocells [Zhu et al. 2014] with its reflection and absorption characteristics,
for wireless links in data center networks [Zhou et al. 2012] and for WLANs [Nitsche
et al. 2015] with beamforming assisted via out-of-band 2.4/5GHz WiFi. The reflection,
blockage, and beam-steering characteristics studied in these works are in agreement
with our work.

Sleep monitoring systems: Polysomnography is a commonly used clinical test to
diagnose the sleep apnea disorder [Spriggs 2014], whereas it requires the patient to
attach multiple sensors during sleep in the hospital. To overcome this inconvenience is-
sue, Kayyali et al. [2008] showed a home-based polysomnography system for monitoring
sleep disorders, rather than the conventional polysomnography equipment where sub-
jects are required to sleep in a hospital laboratory. Masa et al. [2011] proposed a home
respiratory polygraphy, a cost-effective home-based sleep monitoring system, for the
diagnosis of sleep apnea-hypopnea syndrome. Furthermore, some portable and/or mo-
bile device-based sleep monitoring systems have also been developed in recent times.
Mamelak and Hobson [1989] mounted transducers on a headband to monitor sleep
states by predicting non-rapid-eye-movement and rapid-eye-movement. Rofouei et al.
[2011] developed a wearable neck-cuff system for real-time monitoring of sleep disor-
ders, which consists mainly of a neck cuff and a cellphone/computer with Bluetooth
wireless communication. Fullpower [2014] designed a mobile application for sleep ap-
nea, snore, heart rate, and weight loss monitoring. Nguyen et al. [2016] presented a
wearable sleep staging monitoring system that uses an in-ear recorder to evaluate bio-
electrical brain wave signals. However, all of the approaches above still require either
a variety of specialized sensors or mobile devices attached to the subject.

The authors in Mack et al. [2009] developed a ballistocardiography-based monitoring
system to monitor breathing, heartbeat, and musculoskeletal movements. Shin et al.
[2010] used balancing tubes to evaluate the performance of an air mattress sensor
system on monitoring heart rate, breathing rate, snoring events, sleep apnea, and body
movement of the subject. Norman et al. [2014] validated a mattress-based monitoring
system that detects sleep disordered breathing behaviors without sensors attached
to the subject. Although subjects are not required to wear sensors in these methods,
the mattresses are customized to embed various pressure sensors. The authors of
Nandakumar et al. [2015] recently proposed to use sound wave with FMCW to measure
breathing and detect apnea events, in which the smartphone running the application
needs to be placed close to the subject. Our non-intrusive approach based on mmWave
wireless signals does not require any other additional sensors attached to subjects, or
any modification of the sleeping furniture. It can be easily coupled with future 60GHz
WLAN devices.

3. SYSTEM DESIGN

We now describe our 60GHz communication platform, design goals, and challenges and
provide an overview of mmVital.

3.1. mmWave Communication Platform

mmVital is implemented using a 60GHz transmitter and receiver which use a mmWave
development platform provided by Vubiq [Pasternack 2015]. The mmWave platform
provides a 60GHz RF front end and a waveguide module as shown in Figure 1. On
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Fig. 1. mmVital 60GHz transmitter and receiver system.

the transmitter side, we use a signal generator (Keysight EXG N5172B) that produces
a 10MHz baseband sine wave signal that is input to the Vubiq transmitter module.
On the receiver side, the 60GHz receiver module is connected to a spectrum analyzer
(Keysight EXA N9010A) that allows us to analyze the received baseband signal. We
calculate the RSS using the power spectral density distribution provided by the spec-
trum analyzer. The RSS values are available at an average of 62 samples per second
in experiment setup, which is sufficient for monitoring breathing and heart rates. Due
to the unavailability of any reconfigurable phased array, we use a horn antenna with
3dB beamwidth of 12◦ (estimated First Null Beamwidth (FNBW) of 24◦) and 24dBi
gain on the transmitter and receiver. A mechanical rotator is used to form the beams
in different directions and scan the surroundings for reflections.

3.2. Design Goals and Challenges

To compensate for the high attenuation loss, 60GHz radios use directional antenna
(e.g., horn antenna or phased array). The central objective of mmVital is to exploit
the directional nature of mmWave communication to accurately measure a human’s
breathing and heart rates. The mmWave Tx directs its signal to the human body and
the reflected signal is received by the Rx. In terms of design, mmVital should be able
to exploit the directional nature of mmWave and measure the vital signs of multiple
humans concurrently. mmVital should be non-invasive, which means that it should not
require the human to perform any specific actions to monitor the vital signs. mmVital
should also be ubiquitous where the monitoring can be performed anywhere within
the reach of Tx and Rx. Additionally, the monitoring should be accurate even when
the human is sleeping, standing, or sitting, and should be robust to different postures
(front, back, right, and left).
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Fig. 2. Overview of mmVital.

Although the directional nature of 60GHz communication reduces the inaccuracies
introduced by other motions and indoor multi-paths, it also raises multiple challenges:

(1) Because a human can be at different places compared to the Tx and Rx, it is
necessary that the reflection-based monitoring is robust to different incident angles
of signal onto the human body and different postures (front, back, left, right) of
the body. We study the impact of incident angle and body postures on vital sign
monitoring, and also develop a technique to identify sleep postures and detect sleep
apnea.

(2) Before starting the vital signs monitoring, it is first required to find the human in
the vicinity of Tx and Rx. Since various indoor objects (e.g., wall, metal cabinet)
reflect the mmWave signal, mmVital needs to distinguish the reflections from objects
and humans. Although this can be accomplished by inspecting each reflection for
heartbeats, the time overhead of such inspection with many possible reflections
indoors can be very high. We develop an algorithm for human finding, where the
Tx and Rx engage in an iterative scanning to profile the indoor environment in
terms of its current reflections, and inspect them to identify the reflection from a
human body.

(3) With narrow beamwidths, it is possible to use multiple non-overlapping beams
to monitor the vital signs of multiple humans in parallel. The relative position of
multiple humans results in many complex reflection scenarios such as the blockage
of one human by the other or multiple reflections. We systematically classify various
scenarios and study the angular and distance separation necessary for concurrent
sensing.

3.3. System Overview

Various components of mmVital are shown in a block diagram in Figure 2. At a high
level, mmVital contains two subsystems: (i) human finding subsystem and (ii) vital
sign monitoring subsystem. The goal of the former subsystem is to find the human in
a room (or an indoor space) so that Tx can direct its signal toward the human and
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Rx can receive the reflection. For accomplishing this efficiently, mmVital utilizes an
omni-sweep procedure that profiles the indoor environment in terms of its reflections
and tracks any changes to it. When new reflections are detected, the reflection loss is
evaluated to classify if they are from movable objects (e.g., chairs, laptops) or a human.
mmVital leverages the diversity in material permittivity to accurately identify human
reflections. Once the Tx and Rx beamforming angles toward the human are determined,
the second subsystem performs the vital sign monitoring.

The signal reflected by the human body is analyzed through RSS samples to estimate
the vital signs. The RSS samples first undergo a data denoising procedure where a slid-
ing window-based moving average filter is applied to remove the high-frequency noise.
Apart from that, we also apply a bandpass frequency filter with cutoff of 0.1–20Hz
in order to remove the impact of a slow moving DC component as well as moderate to
high-frequency human movements [Munguia Tapia 2008] (e.g., shaking of body parts).

The filtered RSS samples are then used by four separate modules. The breathing
rate and heart rate modules further apply their custom filters and peak detection
algorithms (discussed in the next section) for estimation. The filtered samples are also
utilized by the posture module to identify a user’s current sleeping posture. The apnea
detection module monitors a human’s breathing pattern to detect any central apnea
or hypopnea events. We note that posture classification and apnea detection do not
require estimating vital signs, and hence, can operate separately and in parallel. We
first provide the details of a vital signs subsystem in the next section and defer to the
discussion on a human finding subsystem to Section 6.

4. MEASURING VITAL SIGNS

4.1. Breathing and Heart Rates

In order to estimate the breathing rate, we transform the filtered RSS data to the
frequency domain. We observe that the RSS signal is very sensitive to the periodic
movement of human breathing, which results in a peak (dominant frequency) in the
frequency domain. The frequency of the peak represents the breathing rate at a coarse-
grain. However, simply selecting the highest peak is not always accurate due to vari-
ations introduced by noise and motion. To achieve a better accuracy, we select the
highest-magnitude peak as well as the frequency of the two adjacent bins and create
a custom narrow band-pass filter. We apply the filter on the RSS data and perform an
Inverse FFT (IFFT) to yield the filtered time-series data. We then use a simple peak
detection algorithm for precisely counting the breathing rate in Bpm.

The normal heart rate of an adult is known to be in the range of 60–100bpm [Ganong
and Barrett 2005]. However, during high-intensity activities like exercising, the heart
rate can exceed 170bpm [Ganong and Barrett 2005]. For such activities and to detect
any other abnormal conditions, we select the heart rate range to be 50–220bpm.
Similar to the breathing rate estimation, we apply an Fast Fourier Transform (FFT)
on the RSS time-series data and determine the dominant frequency. In this case,
we select the highest-magnitude peak along with four adjacent bins of frequency to
create the custom band-pass filter because the heart beat motion is smaller than the
breathing motion and can exhibit larger variations. We apply the filter, perform IFFT,
and use the peak detection for estimating heart rate.

Figure 3 shows an example of raw RSS samples along with filtered breathing and
heart beat samples. We offset the RSS values by the transmission power to present the
RSS and RSS loss on the same scale. After applying the customized filters, we apply
a peak detection algorithm for accurate counting. We note the mmVital estimates the
vital signs in real time using a sliding window of 30 seconds offset by approximately
100ms (every six RSS samples in our testbed).
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Fig. 3. Raw RSS of the reflected signal and extracted breathing and heart beats.

4.2. Impact of Incident Angle

Because a human can be anywhere within the Tx and Rx vicinity while being monitored
for his/her vital signs, the transmitted signal can impinge on the human body at any
angle (referred to as incident angle). We now investigate the impact of incident angle
on the reflected signal and the robustness of breathing rate and heart rate estimation.
The amount of energy reflected from an object can be quantified using a power reflection
coefficient which can be derived from a reflection coefficient. The reflection coefficient is
the ratio of the complex amplitude of the reflected electromagnetic wave to that of the
incident wave. The coefficient depends on factors such as the permittivity (a complex
value) of the object material and the signal incident angle. The reflection coefficient (r)
can be calculated [Ahmadi-Shokouh et al. 2009] as

r = 1 − e− j2ω

1 − ri e− j2ω
ri, for i ∈ {⊥, ‖} , (1)

where ω = 2πl
λ

√
ε2/ε1 − sin2 γ , l denotes the thickness of the reflecting source; λ denotes

the signal wavelength; γ is the incident angle; and ε1 and ε2 are the permittivities of the
first medium and the second medium, respectively. In a simplified single layer model,
the first medium can be assumed as air, which has the permittivity of one. r⊥ and r‖ are
the Fresnel’s reflection coefficients when the electric field is perpendicular and parallel
to the incidence plane, respectively. The coefficients can be calculated as

r⊥ = cos γ −
√

ε2/ε1 − sin2 γ

cos γ +
√

ε2/ε1 − sin2 γ
, (2)

r‖ =
ε2 cos γ −

√
ε2ε1 − ε2

1 sin2 γ

ε2 cos γ +
√

ε2ε1 − ε2
1 sin2 γ

. (3)
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Fig. 4. The impact of incident angle: more transmitted signal power is reflected back to the receiver as the
signal incident angle increases.

The reflection coefficient (r) can be used to estimate the power loss due to reflection
(or power reflection coefficient) as LR = PO

PI
= |r|2 where PO and PI are the values of

reflected (after reflection) and incident (before reflection) power, respectively.
We empirically evaluate the impact of incident angle on the reflection power loss

as shown in Figure 4(a). In the experiments, the Tx and Rx move symmetrically on
a circle with a 3 meter radius. The human sits at the center of the circle, and both
Tx and Rx point their horn antennas to the human. Since the PI is unknown, we
first use an aluminum plate at each incident angle in the place of the human and
measure the received power. As an aluminum plate is regarded as a perfect reflector
(reflection loss nearly 0dB), and we use its received power as a reference for human
measurements. Figure 4(b) shows the reflection loss (LR) for incident angles from
5◦ to 75◦. It also compares the theoretical value of reflection loss calculated using
Equations (1) and (2) (perpendicular). For the calculations, three different values of
human body/skin permittivity are considered based on previous work from Gabriel
et al. [1996], Gandhi and Riazi [1986], and Hwang et al. [2003]. These values are
7.89 − j10.90, 8.89 − j13.15, and 8.05 − j4.13 at 60GHz, respectively [Zhadobov et al.
2011]. We observe that our measurements are in agreement with the permittivity
models of Gabriel et al. [1996] and Hwang et al. [2003]. Higher variations observed in
the measurements are due to the human’s breathing motion. Examples of the reflected
RSS (raw and filtered) at different incident angles are shown in Figure 5. It can be
seen that as the incident angle increases, the RSS samples become less and less noisy
mostly due to the decrease in the reflection loss. The main observation in Figure 5 is
that the reflected RSS is representative of the breathing motion at all incident angles.
Hence, mmVital is robust to the human changing location relative to Tx and Rx. Also,
if mmVital is used to monitor humans when they do not change their locations (e.g.,
sleeping in a bedroom or hospital bed), it is advisable to deploy the Tx and the Rx at
larger incident angles to increase the estimation accuracy. We will evaluate the vital
sign estimation accuracy for multiple human subjects with different incident angles in
Section 8.
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Fig. 5. Raw and filtered RSS for 5◦, 25◦, 45◦, and 65◦ incident angles. The RSS samples are comparatively
less noisy at higher incident angles due to reduced reflection loss.

5. SLEEP MONITORING

mmVital performs sleep monitoring through identifying a user’s current posture and
the detection of apnea events.

5.1. Posture Detection and Classification

Detecting the human’s current sleep posture and posture change events is useful in
determining the quality of sleep as well as sleep related disorders [Oksenberg and
Silverberg 1998]. Sleep posture affects the breathing pattern and oxygen inhalation,
and can aggravate existing sleep disorders such as apnea [Oksenberg and Silverberg
1998]. For example, a sleeping-on-stomach posture may cause some breathing obstruc-
tion that impacts the subject’s breathing pattern and oxygen inhalation. In this work,
we are primarily interested in detecting a human’s sleeping posture and apnea events
by observing the RSS of the reflected signal in mmVital.

mmVital utilizes the observed variance in the denoised RSS samples to detect posture
change events. As shown in Figure 6, a typical posture change event causes considerable
variation in the RSS for a certain amount of time. We leverage this observation to design
a threshold-based technique that detects if the RSS variance is higher than a certain
value for a given amount of time to determine a posture change event.

For the posture classification, we are interested in four sleep postures: sleeping on
back (Front), sleeping on stomach (Back), facing left (Left), or facing right (Right).
mmVital leverages the fact that when a wireless signal strikes the human body, the
reflection is affected by the body posture. Figure 7 shows the frequency domain of
the filtered RSS samples for a subject in four different postures. It is observed that
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Fig. 6. An example of posture change event: posture change can be detected by monitoring the RSS variance
for a pre-defined amount of time.

Fig. 7. Frequency domain analysis of RSS can be used to classify different postures.
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Table I. Time Window Features (Time and Frequency Domains)
Used for Posture Classification

Mean
Maximum

Time domain Variance
Range
First, second, and third quartiles
Energy (Equation (4))
Entropy (Equation (5))

Frequency domain Dominant frequency ratio
Mean
Variance

a signal reflected off the human’s chest in facing right posture has a much higher
magnitude than facing left. However, the difference in breathing motions in front and
back postures cannot be observed through visual inspection. To classify among the four
postures, we use a set of statistical features calculated over a moving time window
of RSS samples. Table I lists the time and frequency domain features that we use in
posture classification.

The dominant frequency ratio [Munguia Tapia 2008] is calculated as the ratio of the
highest magnitude FFT coefficient to the sum of the magnitude of all FFT coefficients.
The energy [Munguia Tapia 2008] is calculated as

Energy =
window length/2∑

i=1

m2, (4)

where m is the magnitude of FFT coefficients. The entropy [Munguia Tapia 2008] is
calculated as

Entropy = −
window length∑

i=1

ni log2(ni), (5)

where ni is the normalized value of FFT coefficients.
Figure 8 shows the effectiveness of the selected features in posture classification.

We observe that energy provides important indication about the posture. The energy
reflects the position of human’s heart compared to the Tx and Rx. When the human
is facing right, his/her heart is closer to the signal’s point of impact on the human
body. The received signal is thus more sensitive to the chest movement caused by
breathing and heart beats. Table II shows the standard deviation of four postures, in
which the facing right posture has the largest value. In the frequency domain, facing
right results in the highest observed energy in the reflected RSS. This is followed by
front and back postures where reflection from the front exhibits more energy than from
the back. When the human is facing left, least energy is observed due to his/her heart
being farthest from the reflection point among all four postures. We build a decision
tree-based machine learning classifier with the features described above, and mmVital
uses the classifier to identify the user’s current posture.

5.2. Apnea Detection

Apnea disorder is widely characterized as disruption in normal breathing pattern
especially during sleep. It was shown in Nandakumar et al. [2015] that it affects over
18 million American adults with a variety of resulting disorders. There are two major
types of breathing pattern changes that are associated with different types of apnea.
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Fig. 8. Frequency domain analysis provides useful clues for posture classification. Energy and Dominant
frequency radio from the frequency domain features are selected as the example features.

Table II. Standard Deviation of Filtered
RSS at Different Postures

Postures Standard deviation
Front 1.4168
Right 1.9392
Left 0.5908
Back 1.2991

In the first type, a human’s oro-nasal airflow is obstructed and there is no breathing
related movements in the lungs and chest muscles. In central apnea, this stoppage of
breathing occurs for more than 10 seconds [Berry et al. 2012]. In the second type, the
intensity of breathing motion and movement of chest muscles is substantially low. In
hypopnea, such low intensity breathing happens for more than 10 seconds [Berry et al.
2012]. Although there are other types of apnea such as obstructive apnea, mixed apnea,
and the like, the two types of changes in breathing pattern (stoppage or low intensity)
are commonly associated with them. Hence, we primarily focus on central apnea and
hypopnea. Our intuition behind this investigation is that during both apnea events,
the motion of chest muscles is significantly different. If so, it is possible to detect the
apnea events using mmVital monitoring system. Since apnea is an abnormal breathing
pattern, the frequency filter that extracts the breathing rate is not required. Instead,
we can monitor the flatness or the shallow variations on the denoised RSS samples to
detect the apnea events.

Utilizing mmWave for monitoring apnea events has an added advantage that its
time-series RSS samples are already a good representation of human chest motion. This
means that with only denoising and the filtering process (mentioned in Section 3.3),
the apnea event can be detected in real time.

Examples of filtered RSS samples with two types of apnea events are shown in
Figure 9. We use NeuLog respiration monitor (chest strap) [NeuLog 2015] to establish
the ground truth of apnea events. Figure 9 demonstrates that the processed mmWave
RSS samples provide clear indications of apnea (similar to polysomnography tests).
The central apnea is detected when the distance between two peaks is (or absence of
any peak for) more than 10 seconds. The hypopnea events are detected by measuring
the amplitude of the reflected RSS. If the amplitude drops below 30% of normal breaths
for more than 10 seconds [Berry et al. 2012], a hypopnea event is detected.
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Fig. 9. Examples of central apnea and hypopnea events as observed through RSS variations.

6. FINDING HUMAN FOR VITAL SIGN MONITORING

A major challenge in the design of mmVital is that it is required to determine where the
human is before it can start monitoring his/her vital signs. In home, office, or a similar
indoor place where humans can freely move from one place to another, mmVital should
be able to find the human and point the transmitted signal toward his/her body.

In this section, we introduce a human finding procedure that can be used to determine
precise Tx and Rx angles to transmit the signal to a human body and receive the
reflection, respectively. The challenge of human finding is further complicated by the
fact that a 60GHz signal is reflected by many different objects in an indoor environment.
Such objects include walls, metal objects such as cupboards, monitors, microwave,
trash-cans, and so on. In the presence of many possible reflections, it is difficult for the
Tx and Rx to know which reflection is indeed coming from a human.

mmVital utilizes a novel approach to distinguish humans from objects based on re-
flective loss as it is known to be different for different objects [Langen et al. 1994].

The permittivity dictates the amount of signal that penetrates the object and reflects
from it. Apart from penetration and reflection, the signal is also absorbed by the objects
and scattered from its surface. However, absorption and scattering effects are difficult
to measure in our system. Instead, mmVital leverages the difference in reflection loss
due to the different permittivity to distinguish the objects from a human.

In order to measure the reflection loss, it is first necessary to remove the effect of
distance dependent path loss. Figure 10(a) shows an example reflection event from an
object. If transmission power is PT , transmit antenna gain is GT , received power is PR,
and receiver antenna gain is GR, the total loss L = (PT + GT + GR) − PR is as follows

L = LP(dT ) + LP(dR) + LR(εo), (6)

where LR(εo) is reflection loss from an object with permittivity of εo, and dT and dR are
the distances of the object from the Tx and Rx, respectively. The reflection loss can be
calculated as shown in Section 4.2. The path loss LP(dT ) and LP(dR) at distance d can
be calculated using the Friis model of free-space attenuation as

LP(dT ) = 20 log10

(
4πdT

λ

)
(7)
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Fig. 10. Reflection loss for different types of objects.

LP(dR) = 20 log10

(
4πdR

λ

)
, (8)

where λ is the signal wavelength. The Tx and Rx have the knowledge of PT and PR, and
the distance between them (d). As shown in Figure 10(a), dT and dR can be calculated
using the angle of transmission (α) and reception (β) to derive LP(dT ) and LP(dR). Using
Equations (6), (7), and (8), they can calculate the reflection loss LR(εo). The reflection
loss can then be used to distinguish if the reflection is coming from a human or an
object.

To evaluate the feasibility of the object/human classification based on reflection loss,
we test a variety of reflective objects and place them at one fixed location (fixed path
loss) one by one. The observed RSS values for the objects and human are shown in
Figure 10(b). Based on a 30-second measurement for each target, we can observe
that different objects and humans, depending on their material permittivity, reflects
different amounts of signals. Hence, we use regression on the reflection loss to identify if
it is from an object or a human. In our experiments, we observe that the human/object
classification can be done using even a single RSS sample based on the reflection
loss, making the human finding procedure very efficient. With the use of more RSS
samples, the confidence of classification can be further improved since the RSS for
human reflected signal varies more due to heartbeat and breathing motion compared
to the objects.

Before the classification can be applied, mmVital is required to find the reflection
profile of the indoor environment. The reflection profile can be found by a brute-force
omni-directional sweeping of Tx and Rx beams. The procedure is formally described in
Algorithm 1. For each Rx angle (in steps from 0◦ to 360◦), the Tx scans the entire 360◦ to
determine all reflections. Note that although the omni-sweep procedure is brute-force,
it can be completed in a short time with digital beamforming where beam switching
can be performed at much smaller time scales. Also, the procedure is only required to
be performed when human’s vital signs can no longer be monitored and the human
finding procedure has to be initiated. Also, both Tx and Rx can use discrete steps for
angle increment for generating non-overlapped beams (similar to sectors in 802.11ad)
to reduce the time complexity.

To demonstrate the omni-sweep procedure, we use our testbed to build the reflection
profile of a room. Due to our horn antenna 3-dB beamwidth of 12◦, the Rx scans all
directions in increments of 12◦. For each Rx angle, Tx scans the entire 360◦ with
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Fig. 11. Changes in the reflection profile can be monitored to detect new reflections and to determine if the
new reflection is from a human or an object.

ALGORITHM 1: Human Finding Procedure
Input: Tx power (PT ), RSS variation tolerance threshold (κ), Beam sweep step size

(s◦), number of previous RSS samples (k), Human/object classifier (
(·)), distance
between Tx and Rx (d)

Output: Tx and Rx angles toward human
Procedure:
1: for α : 0◦ → 360◦ do #Omni-sweep procedure
2: for β : 0◦ → 360◦ do
3: Rt

(α,β) = RSS(α, β)
4: �t

(α,β) = |Rt−1
(α,β) − Rt

(α,β)|
5: if �t

(α,β) > κ then #Change in reflection
6: Calculate dT and dR using α, β and d
7: for i : t − k → t do #Analyze last k samples
8: Li

(α,β) = PT − Ri
(α,β) − LP(dT ) − LP(dR)

9: �(α,β) = �(α,β) ∪ Li
(α,β)

10: end for
11: if 
(�(α,β)) = “Human” then #Human-object
12: return α, β #classification
13: end if
14: end if
15: β = β + s◦
16: end for
17: α = α + s◦
18: end for

continuous rotation. The reflection profile in the absence of any human is shown in
Figure 11(a). As we can see, a typical room has many different reflections from walls
and other objects. In mmVital, the profile can be built in the absence of a human and
then only the changes in reflections need to be monitored to find a human. Note that a
change in reflection can occur due to the presence of a human (increase if new reflection
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Fig. 12. (a) Relative position of humans compared to Tx and Rx gives rise to three cases - blockage, multiple
reflections, and multi-beam sensing. (b) Angular separation between two humans can be calculated as
min(δT , δR).

and possible decrease if existing reflection blocked) as well as movement of any existing
object (e.g., moving a chair or laptop). Figure 11(b) shows the reflection profile with a
human and a laptop (with metal enclosure) in the room. Both laptop and human reflect
the signal, which can be tagged as the change in the reflections. As in Algorithm 1, each
change in reflection is inspected using the reflection-loss–based classifier to identify if
the change is due to a human or an object.

As we observe from Figure 11(b), in some cases, the existing reflections exhibit
minor differences in RSS at different times. This can be due to the changes in object
temperature. In order to ignore such minor variations, we utilize an RSS variation
tolerance threshold (κ). Whenever a change in RSS is within the threshold, mmVital
does not consider the reflection for object-human classification. Lastly, for the changed
reflections, the Tx and Rx angles are used to determine the path loss and calculate
the reflection loss as in Equation (6). This reflection loss is input to the object-human
classifier, and if the reflection loss is classified as “human,” the Tx and Rx angles of the
reflections are used to start monitoring the human for his/her vital signs.

7. MONITORING MULTIPLE HUMANS

Due to the directional nature of 60GHz communication, it can monitor multiple hu-
mans in a room concurrently. Monitoring multiple humans is useful in many practical
scenarios. For example, more than one family member in a house or multiple patients
in a hospital room can be monitored in parallel using the same mmWave Tx-Rx pair.
In this section, we first systematically categorize various scenarios of monitoring mul-
tiple people with mmWave and then study how much separation between humans is
necessary to sense their vital signs in parallel.

7.1. Single and Multi-Beam Sensing

The cases of monitoring multiple humans can be classified as follows (refer to Fig-
ure 12(a))—

(1) Single-Beam Sensing: In single-beam sensing, two (or more) humans are moni-
tored with the use of only one pair of fixed Tx and Rx beams without any switching
of beam direction. These cases can be further classified into two classes:
(a) Blockage where one human blocks the other human completely, allowing only

one human to be monitored at a time.
(b) Multiple reflections where mmWave signal is reflected partially from both the

humans. With multiple reflections, it is possible to sense the vital signs for
both the humans if they have distinct heart and breathing rates. Most of the
current 2.4/5GHz RF-based vital sign monitoring research [Liu et al. 2015;
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Fig. 13. Experiment setup used for evaluating the impact of angular separation.

Ravichandran et al. 2015; Abdelnasser et al. 2015] assume such distinct vital
signs of users for all users within the omni-directional range of the Tx and
Rx. However, in reality, multiple users can have similar vital signs and even
the vital signs vary substantially over time. With mmVital, such restrictions of
distinct vital signs are limited only to a small region within the beams.

(2) Multi-Beam Sensing: When there is a second human outside the Tx and Rx
beams of the first human being monitored, both of them can be monitored by
switching the beams between the two at a fast rate (using digital beamforming
in nanoseconds [Valdes-Garcia et al. 2010]). We refer to such cases as multibeam
monitoring (Figure 12(a)), where multiple non-interfering beams are used by the
Tx and Rx to monitor people outside the beams of each other.

7.2. Human Separation

We now study the separation necessary between two humans for all cases of single and
multi-beam sensing. In order to characterize the spatial reuse (from sensing perspec-
tive) in the area of interest, we identify two types of separation—angular and distance.
As shown in Figure 12(b), let δT denote the angle between the straight lines connecting
Tx to human A and human B. Similarly, let δR denote the angle between the straight
lines connecting Rx to human A and human B. The angular separation (δmin) is de-
fined as min(δT , δR). The distance separation (s) is simply calculated as the Euclidean
distance between human A and human B.

7.2.1. Angular Separation. We now empirically derive a relationship between the min-
imum required angular separation and the antenna beamwidth. In our experiment
setup (Figure 13), one human (A) stands in the center with Tx and Rx pointing their
beam to him/her. Another human (B) changes his/her position from L1 to L4 and R1 to
R4 to vary the angular separation from 5◦ to 13◦. Recall that in our testbed, the FNBW
φ ≈ 24◦ and 3-dB beamwidth θ = 12◦. We intentionally ask humans A and B to breathe
at different rates (human A at 8–11Bpm and human B at 21–27Bpm) in order to make
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Fig. 14. FFT of RSS samples for subject A when subject B stands at different locations (Figure 13) to create
blockage, multiple reflections and multi-beam sensing scenarios.

their breathing rates distinguishable in the frequency domain. We repeat the setup
and experiments in three different rooms for verification.

Figures 14(a), 14(b), and 14(c) show normalized FFT of the received RSS for the 10
cases. We choose locations L1 and R1 to emulate blockage scenarios where either the
signal is blocked by human A before it reaches human B (L1) or the signal reflection
from human B (R1) is blocked by human A before it reaches the receiver. We observe
from Figure 14(a) that for Locations L1 and R1 of human B, only human A’s breathing
can be detected from the reflected RSS.

For locations L2, L3, R2, and R3, the transmitted signal is reflected from both humans
A and B (multiple reflections). This can be seen as FFT peaks around 0.23–0.45Hz
(human B) and 0.13–0.18Hz (human A) in Figure 14(c). It shows that vital signs of
both humans can be calculated by applying appropriate frequency band-pass filters.
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Fig. 15. Schematic showing physical regions of blockage, multiple reflections, and multi-beam sensing.

At locations L4, R4, T1, and B1, no breathing of human B is detected in Figure 14(b),
indicating that human B is outside the Tx and Rx beams being used for human A. For
these cases, both A and B can be monitored by switching the beams between them in
time.

The following relationship between the angular separation and the beamwidth is
observed from the above experiments. It is also schematically shown in Figure 15.

(1) Blockage: when the angular separation between two humans is less than half the
3dB beamwidth of antenna 0 ≤ δmin ≤ θ

2 , one human is likely to block the signal
from impinging the other human.

(2) Multiple reflections: when the angular separation between two humans is θ
2 ≤

δmin ≤ φ

2 , both humans can be monitored in parallel as long as their breathing/heart
rates are different.

(3) Multi-beam sensing: when δmin >
φ

2 , both humans can be monitored by switching
the beams between the two at a fast rate.

7.2.2. Distance Separation. The angular separation is essential to understand the con-
ditions that dictate single and multi-beam sensing cases. However, it does not provide
sufficient insight in how much physical distance is required between two humans for
parallel sensing. In this section, we study distance separation and derive its relation-
ship with beamwidth and relative positioning of Tx, Rx, and human subjects.

Figure 16 shows an example setup where the Tx and Rx pair is monitoring a human
at location O. Let α = ∠OAB and β = ∠OBA indicate the Tx and Rx beam directions,
respectively. We assume that Tx is located at Point A(−d/2, 0) and Rx is located at Point
B(d/2, 0) where d is the distance between Tx and Rx. We can observe from Figure 13
that another human can be at the four nearest locations (points C(xC, yC), D(xD, yD),
E(xE, yE), and F(xF , yF ) in Figure 16) for multi-beam sensing. Here, we primarily focus
on the multi-beam sensing cases as they are more practical compared to multiple
reflection cases which occur in relatively smaller areas and also require the users’ vital
signs to be different. We define the distance separation (s) to be the minimum of the four
distances OC, OD, OE, and OF. The distance s indicates the best-case of minimum
separation necessary between the two humans. It is dependent on α, β, and φ (FNBW),
and can occur in any direction from the human at location O.
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Fig. 16. Four nearest locations where another human can be present without interfering with the target
human at Point O.

The four distances OC, OD, OE, and OF can be calculated by deriving the coordi-
nates of the points in the 2D Euclidean space. Note that we assume θ = φ

2 because the
3dB beamwidth can be approximated as half of FNBW in most mmWave horn anten-
nas. Using these, X and Y coordinates of Point O (when θ < α, θ < β) can be calculated
as

xO = −d
2

+ dcos α sin β

sin(α + β)
; yO = dsin α sin β

sin(α + β)
. (9)

The complete derivation of the coordinates of points and four distances can be found
in Yang et al. [2016b]. We use them to calculate the best-case distance separation (s∗).

In the experiment setup of Figure 13, we also evaluate two additional locations (T1
and B1) for human B. As we observe from Figure 14(b), we observe that the presence
of human B is not detected in the FFT which means that it has a sufficient distance
separation from human A to allow multi-beam sensing. We also evaluate the best-case
distance separation for all points in a room of 10m × 10m and the results are shown
in Figure 17. We find that for the majority of locations within the room, the value of s∗
is relatively small (median = 1.67 meters) which indicates that mmVital in our testbed
setup can monitor multiple humans even when they are relatively close to each other.

8. EVALUATION

We perform an extensive evaluation of mmVital in two different indoor scenarios as
shown in Figure 18. The first room is a laboratory room (size: 6m × 9m) in a university
building with objects such as cubicle partitions, white boards, metal cupboard, com-
puters, and the like. The second room is an apartment bedroom of size 4.5m × 6m with
a bed in the center and other furniture on the sides. Figure 18 shows the positions of
Tx and Rx. The transmission power is set to 0dBm and the horn antenna is 24dBi,
both of which are under the regulation at 60GHz frequency [Rappaport et al. 2014].
Power density is a commonly used metric to evaluate the amount of power exposed to
a human body. The power density (PD) can be calculated as

PD = PT GT

4 · π · d2
T

, (10)

where PT and GT denote transmission power and the gain of antenna, respectively; dT
denotes the distance between the object and the transmitter in meters. This indicates
that even though the human is very close to the transmitter (at 0.1m), the observed
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Fig. 17. Best case distance separation in a 10m× 10m room.

Fig. 18. Experiment setup in office and home.

power density is 191mW/m2, which is still significantly lower than the maximum allow-
able value of 200W/m2 at 30GHz ∼ 300GHz as per the ANSI/IEEE C95.1-2005 standard
[Wu et al. 2015]. We enroll seven participants over a period of two weeks to monitor
their vital signs. Out of the seven subjects, six subjects have a Body Mass Index (BMI)
of around 19–25kg/m2 and one subject (Subject #6) has the BMI of around 29kg/m2.
The BMI is correlated with breathing rate and other cardiovascular parameters
[Sorlien 2015]. Table III shows the detailed information of subjects. In our experi-
ments, all human subjects were wearing ordinary casual clothes. Different type of
clothing/fabric can be worn by people in their daily lives. Also, it is likely that a pa-
tient can be under sheets/blankets while sleep monitoring is carried out. Measurement
studies such as in the work of Bjarnason et al. [2004] and Xiao et al. [2008] show
that common fabric materials (such as cotton, linen, and wool) do not significantly
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Table III. Gender, Height, Weight, and BMI Information of Seven Subjects

Subject Index Gender Height (cm) Weight (kg) BMI
# 1 M 168.2 65.1 23.2
# 2 M 180.7 79.8 24.4
# 3 F 170.5 61.6 21.2
# 4 M 172.1 65.3 22.0
# 5 F 163.3 50.5 18.9
# 6 M 169.1 84.1 29.4
# 7 M 168.0 72.4 25.7

Fig. 19. An example of raw RSS, filtered RSS, and ground truth on monitoring breathing rate.

attenuate the millimeter wave signal even in case of multiple layers of bed coverings
or pull-overs. However, in this work, we focus on experimentation with people wearing
normal clothing to evaluate our system.

The ground truth is established using a finger pulse oximeter [Gurin 2015] (for heart
rate) and Neulog chest-strap respiration monitor [NeuLog 2015]. Note that the finger
pulse oximeter is only able to provide a numeric value of heart beats. On the other
hand, the wearable breathing rate monitor records the complete breathing signal as
shown in Figure 19. Based on the ground truth, the mean estimation error is defined
as

Mean estimation error = �m
i=1|ground truth − estimated vital sign|

m
, (11)

where m denotes the duration of measurement in minutes, and ground truth and
estimated vital signs are measured in bpm (heart rate) or Bpm (breathing rate).

8.1. Accuracy of Vital Sign Monitoring

8.1.1. Breathing and Heart Rate Estimation Accuracy. For evaluating the breathing and
heart rates of participants, we use three different incident angles in the university
room. Figure 20(a) and (b) show the mean estimation error with (95% confidence
internals) for breathing rate (Bpm) and heart rate (bpm) for the seven participants
at three different incident angles (70◦, 50◦, 30◦). The accuracy is calculated for three
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Fig. 20. Accuracy of breathing rate and heart rate.

experiment runs of 10 minutes for each of the participants. For the incident angle of
70◦, the mean estimation error in breathing rate and heart rate estimation is less than
0.5Bpm and 2.5bpm, respectively, for all seven participants. This shows that 60GHz
vital sign monitoring can provide a highly reliable estimate of breathing and heart
rates. The estimation error increases with the decrease in the incident angles, which
proves the relationship between the reflection loss and the incident angle discussed
in Section 4.2. At higher incident angles, the reflection loss decreases as well as
the reflected RSS is observed to be less noisy. Both these factors increase the vital
sign estimation accuracy. We observe that the breathing and heart rate estimation
errors are slightly higher for Subject #6, which is likely due to higher BMI. Since
these experiments are performed with the participants either standing or sitting, the
estimation error is likely to be even lower when they are sleeping on a bed as one’s
breathing rate is substantially more stable when a human is sleeping.

8.1.2. Robustness to Distance and Posture. We also evaluate the impact of a human’s dis-
tance from Tx and Rx on the observed RSS and the accuracy of vital sign monitoring.
We fix the incident angle to be 45◦ and the location of the human subject, while mov-
ing the Tx and Rx away from the human in steps of 1 meter. We evaluate the RSS
and breathing rate estimation accuracy while varying the Tx-human (and Rx-human)
distance from 1 meter to 10 meters. Figure 21(a) shows RSS loss and breathing rate
estimation accuracy for the varying distance. Note that the distance in Figure 21(a)
indicates the Tx to human (or human to Rx) distance, so the total signal propagation
distance (Tx to human and human to Rx) is actually double. As expected, the RSS loss
increases and estimation accuracy decreases with increase in distance. The confidence
intervals on RSS loss indicates that sufficient variations in the signal is observed even
at a larger distances (up to a Tx-human distance of 8 meters). Recall that this signal
variation is useful in finding the human and distinguishing its reflection from other
objects (Section 6). For distances lower than 8 meters, the mean breathing rate esti-
mation error is less than 0.42Bpm (mean accuracy is 98.8%), and beyond 8 meters the
mean estimation error drops close to 1.07Bpm, (mean accuracy is 97%). This shows
that the vital sign estimation of mmVital is robust to distances common in rooms of
typical indoor spaces like offices and homes.
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Fig. 21. Impact of distance apart, and robustness to different postures.

Since the signal can impinge anywhere on the human body depending on the hu-
man’s orientation relative to the Tx and Rx, we evaluate the impact of a human’s facing
direction (or posture) on breathing and heart rate estimation accuracy. In this exper-
iment, five participants are asked to lay down and pretend to sleep on the bed in the
apartment bedroom (see Figure 18(b)) for 3 minutes (repeated 10 times) in four differ-
ent postures: sleeping on back (Front), sleeping on stomach (Back), facing left (Left)
or facing right (Right). The antenna height of Tx and Rx is set as 1.2m. The results
of breathing rate and heart rate estimation accuracy are shown in Figure 21(b). We
observe that the highest breathing rate estimation accuracy is observed for the front
posture in which the signal directly strikes and reflects from a human’s chest area,
which exhibits the maximum breathing motion. However, for the other three postures,
breathing rate estimation accuracy also remains close to 98%. In terms of heart rate
estimation, front posture also provides highest accuracy, followed by the back posture.
In both front and back postures, the reflected signal better captures the heart beat
motion compared to left and right postures. When the human is facing right, his/her
heart is toward the incoming signal from the Tx compared to when she is facing left,
resulting in a better heart rate estimation accuracy for the right posture. In all cases,
we observe that mmVital achieves high vital sign monitoring accuracy even when the
human is in different postures.

8.1.3. Behind a Wall Estimation. The breathing rate estimation accuracy is evaluated
for the behind-the-wall case shown in Figure 18(a). Here, a human stands on the
other side of the wall from the Tx-Rx pair. Because penetration loss and reflection loss
change depending on the incident angle, two incident angles (10◦, 20◦) are evaluated.
The mean estimation error of breathing rate is observed to be 0.58Bpm and 0.93Bpm
for 10◦ and 20◦, respectively. In contrast to line-of-sight cases, an increase in incident
angle increases the estimation error in behind-the-wall cases. This is because at higher
incident angles, more signal is reflected and a lesser signal penetrates through the wall
to strike a human body. The RSS reflected also undergoes the same phenomenon and
the received RSS carries a weaker signature of breathing motion. It is worth noting that
if the application does not require behind-the-wall monitoring, the transmission power
can be reduced or larger incident angles can be used (more reflection, less penetration)
to contain the 60GHz signal within the room.
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Fig. 22. Accuracy of posture classification for five
subjects. Number (#) of subjects refers to how many
subjects are involved in the training and testing.

Fig. 23. Accuracy of central apnea and hypopnea
detection.

8.2. Posture Classification and Apnea Detection

We evaluate our posture detection and classification and apnea detection schemes with
five participants sleeping in an apartment bedroom scenario (Figure 18(b)). For the
posture detection, the detection scheme in Section 5.1 is applied on the time duration
in which each participant is asked to make 100 random posture changes. The variance-
based posture change detection scheme achieves a very high accuracy of 99.6%.

For the posture classification, we use the machine learning classifier described in
Section 5.1 using the data from a varying number of participants. For each participant,
we evaluate 40 instances of four postures (a total of 160 for one participant). The results
of posture classification accuracy are provided in Figure 22. Ten-fold cross-validation
is used to evaluate the machine learning classifier. The results show that when trained
and tested for the same participant (the number of subjects is one), the average posture
classification accuracy is higher than 98%. For a classifier built using the data of all
five participants (the number of subjects is five), the posture classification accuracy is
higher than 90%. The reduction in classification accuracy with more subjects can be
attributed to how different people assume the postures and BMI variations. It is also
observed that the majority (over 89% of misclassified instances) of misclassification
occurs between “back” and “facing left” postures.

Figure 23 shows the apnea event detection accuracy for central apnea and hypopnea.
For the apnea experiments, participants emulate the apnea events while lying on the
bed in different postures. We evaluate 16 central apnea and 16 hypopnea events using
the technique described in Section 5.2. The detection accuracy of central apnea and
hypopnea is observed to be 93.7% and 87.5%, respectively. The lower detection accu-
racy of hypopnea is mostly due to the fact that during the emulated events, different
participants drop the breathing intensity at different levels (not necessarily 30%), mak-
ing it difficult to set the detection threshold, which in turn results in the unsuccessful
detection of some events.

8.3. Reflection Loss-based Human Finding

The human finding procedure described in Algorithm 1 is evaluated in the labora-
tory room scenario. We create 20 different scenarios where eight objects (laptop, metal
kitchen utensil, plastic trash can, metal trash can, empty 5gal. water bottle, chair,
wooden board, partition board) and a human subject are randomly relocated inside
the room. Similarly, Tx and Rx are also moved to randomly chosen points in the room.
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Fig. 24. Accuracy of object/human classification with varying dwell time (number of RSS samples). TP, FN,
FP, and TN denote true positive, false negative, false positive, and true negative, respectively.

The movement of objects, human, and Tx-Rx ensures that a wide variety of distances
and incident angles are evaluated for moving as well as non-moving objects (walls,
tables, etc.). For each of the 20 scenarios, we find the reflection profile to determine the
reflection from moved objects and the human. The reflection loss-based classification is
then applied to the RSS values of changed reflections as described in Section 6. The re-
sults of the classification are presented in Figure 24. We vary the time interval for which
RSS samples are collected (dwell time) at each angle before performing the classifica-
tion. It can be observed that as the dwell time increases, the accuracy of human-object
classification increases. Whether a reflection is from a human or an object can be de-
termined with an average accuracy of 96.2% only with one RSS sample (available after
16ms). With 100ms of dwell time, the accuracy increases to 98.4% with false-positive
rate of <2%. This means that the human finding procedure is highly robust to envi-
ronment changes and can accurately determine the Tx and Rx angles for monitoring.

8.4. Monitoring Vital Signs of Multiple People

To evaluate the accuracy of vital sign estimation for multiple people using mmVital, we
carefully design an experiment as shown in Figure 25(a) and 25(b). In this setup, we
choose a rectangular area of 6m × 2.5m in which human subject A stands at the center
of the rectangle. The Tx and Rx point their antenna beams toward human A. We then
ask human B to stand at different 0.5m×0.5m square blocks within the rectangle. In
order to create and detect all of the scenarios we proposed in Section 7, we ask both
subjects to intentionally breathe at different rates. For each position of human B, we
estimate the breathing rate of human A. Figure 25(a) shows a heat map where the color
of each square block indicates human A’s mean estimated breathing rate error, when
human B is standing in the square. Note that human A’s location remains unchanged
during the experiment.

In Figure 12(a), the signal transmitted toward or reflected from human A is affected
by the presence of human B at different positions, resulting in (1) blockage, (2) multiple
reflections, and (3) multi-beam sensing cases as discussed in Section 7. For the case that
human B is between Tx and human A (the black blocks), the transmitted signal does not
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Fig. 25. Accuracy of human finding and multiple people.

reach human A, resulting in blockage of human A. When human B is close to human A,
the transmitted signal is reflected from both the humans (multiple reflections). How-
ever, due to the presence of human B, the mean estimation error of the breathing rate
of human A drops close to 0.9Bpm (four adjacent positions of human A). For many loca-
tions when human B is sufficiently far from human A, it does not interfere with the vital
sign monitoring (multi-beam sensing). This means that human B is outside the current
Tx and Rx beam of human A (angular separation higher than half of the FNBW), and
multiple separate Tx-Rx beam pairs can be used to monitor both humans. Due to the
unavailability of digital beamforming phased array antenna for 60GHz, we leave the
evaluation of multiple humans through fast switching Tx-Rx beams to future work.

9. CONCLUSIONS

In this article, we presented mmVital, a vital sign monitoring system utilizing mmWave
signal reflected from the human body. We (1) empirically demonstrated the feasibility
of the monitoring of breathing and heart rates using 60GHz mmWave signals; (2)
developed a contactless sleep monitoring procedure that does not require the user to
attach any devices on his/her body during sleep; (3) proposed a novel human finding
technique that can locate a human body before vital sign monitoring using reflection
loss characteristics. We extensively evaluated mmVital using a state-of-the-art 60GHz
testbed and seven participants, and showed that it can provide accurate and robust (to
incident angles and distances) vital sign monitoring, accurate posture change detection
and classification, and timely central apnea and hypopnea detection. mmVital also
investigates how to monitor multiple people concurrently in terms of angular and
spacial separations. Monitoring multiple people is feasible due to directional nature of
millimeter wave communication. mmVital is also shown to be effective in monitoring
subjects behind a wall.

With the upcoming fifth-generation (5G) wireless networks, where millimeter wave
technology will be widely used, our contribution can be implemented on the future
millimeter wave WLAN devices that can serve as a communication as well as a sensing
infrastructure. We note that our current evaluation of mmVital is limited to seven
participants. As part of our future work, we plan to evaluate mmVital for a more diverse
set of users with varying body and age characteristics. In our ongoing research, we
are exploring human movement tracking through mmWave and other smart home
applications.

ACM Transactions on Sensor Networks, Vol. 13, No. 2, Article 14, Publication date: April 2017.



14:30 Z. Yang et al.

REFERENCES

Heba Abdelnasser, Khaled A. Harras, and Moustafa Youssef. 2015. UbiBreathe: A ubiquitous non-invasive
WiFi-based breathing estimator. In Proceedings of the 16th ACM International Symposium on Mobile
Ad Hoc Networking and Computing. ACM, 277–286.

Fadel Adib, Hongzi Mao, Zachary Kabelac, Dina Katabi, and Robert C. Miller. 2015. Smart homes that
monitor breathing and heart rate. In Proceedings of the 33rd Annual ACM Conference on Human
Factors in Computing Systems. ACM, 837–846.

Javad Ahmadi-Shokouh, Sima Noghanian, Ekram Hossain, Majid Ostadrahimi, and James Dietrich. 2009.
Reflection coefficient measurement for house flooring materials at 57-64 GHz. In Proceedings of the
Global Telecommunications Conference (GLOBECOM’09). IEEE. IEEE, 1–6.

S. Bakhtiari, T. W. Elmer, N. M. Cox, N. Gopalsami, A. C. Raptis, S. Liao, I. Mikhelson, and A.V.
Sahakian. 2012. Compact millimeter-wave sensor for remote monitoring of vital signs. IEEE Trans-
actions on Instrumentation and Measurement 61, 3 (March 2012), 830–841. DOI:http://dx.doi.org/
10.1109/TIM.2011.2171589

Richard B. Berry, Rohit Budhiraja, Daniel J. Gottlieb, David Gozal, Conrad Iber, Vishesh K. Kapur, Carole
L. Marcus, Reena Mehra, Sairam Parthasarathy, Stuart F. Quan, and others. 2012. Rules for scoring
respiratory events in sleep: Update of the 2007 AASM manual for the scoring of sleep and associated
events. J Clin Sleep Med 8, 5 (2012), 597–619.

J. E. Bjarnason, T. L. J. Chan, A. W. M. Lee, M. A. Celis, and E. R. Brown. 2004. Millimeter-wave, terahertz,
and mid-infrared transmission through common clothing. Applied Physics Letters 85, 4 (2004), 519–521.

Huey-Ru Chuang, Hsin-Chih Kuo, Fu-Ling Lin, Tzuen-Hsi Huang, Chi-Shin Kuo, and Ya-Wen Ou. 2012.
60-GHz millimeter-wave life detection system (MLDS) for noncontact human vital-signal monitoring.
IEEE Sensors Journal 12, 3 (2012), 602–609.

Fullpower. 2014. MotionX 24/7. Retrieved from https://itunes.apple.com/us/app/motionx-24-7-sleeptracker/
id505074676?mt=8.

S. Gabriel, R. W. Lau, and Camelia Gabriel. 1996. The dielectric properties of biological tissues: II. Mea-
surements in the frequency range 10 Hz to 20 GHz. Physics in Medicine and Biology 41, 11 (1996),
2251.

Om P. Gandhi and Abbas Riazi. 1986. Absorption of millimeter waves by human beings and its biological
implications. Microwave Theory and Techniques, IEEE Transactions on 34, 2 (1986), 228–235.

William F. Ganong and Kim E. Barrett. 2005. Review of Medical Physiology. Vol. 21. McGraw-Hill Medical,
New York, New York.

Gurin 2015. Finger Pulse Oximeters. Retrieved from http://gurinproducts.com/products/oximeters/.
Ming-Chun Huang, Jason J. Liu, Wenyao Xu, Changzhan Gu, Changzhi Li, and Majid Sarrafzadeh. 2016.

A self-calibrating radar sensor system for measuring vital signs. IEEE Transactions on Biomedical
Circuits and Systems 10, 2 (2016), 352–363.

Hyeonseok Hwang, Jounghwa Yim, Jei-Won Cho, Changyul Cheon, and Youngwoo Kwon. 2003. 110 GHz
broadband measurement of permittivity on human epidermis using 1 mm coaxial probe. In Proceedings
of the 2003 IEEE MTT-S International Microwave Symposium Digest, Vol. 1. IEEE, 399–402.

IEEE. 2012. IEEE approved draft standard for LAN - specific requirements - part 11: Wireless LAN medium
access control (MAC) and physical layer (PHY) specifications - amendment 3: Enhancements for very
high throughput in the 60 GHz band. IEEE P802.11ad/D9.0, July 2012 (Draft Amendment based on
IEEE 802.11-2012) (Oct 2012), 1–685.

Intel. 2014. Intel Gigabit Wireless. Retrieved form http://www.intel.com/content/dam/www/public/us/en/
documents/product-briefs/tri-band-wireless-ac17265-brief.pdf.

Te-Yu Jason Kao and Jenshan Lin. 2013. Vital sign detection using 60-GHz Doppler radar system. In
Proceedings of the 2013 IEEE International Wireless Symposium (IWS). IEEE, 1–4.

Hani A. Kayyali, Sarah Weimer, Craig Frederick, Christian Martin, Del Basa, Jesse A. Juguilon, and Fe-
licitas Jugilioni. 2008. Remotely attended home monitoring of sleep disorders. TELEMEDICINE and
e-HEALTH 14, 4 (2008), 371–374.

B. Langen, G. Lober, and W. Herzig. 1994. Reflection and transmission behaviour of building materials at 60
GHz. In Proceedings of the 5th IEEE International Symposium on Personal, Indoor and Mobile Radio
Communications, 1994. Wireless Networks-Catching the Mobile Future. IEEE, 505–509.

Jian Liu, Yan Wang, Yingying Chen, Jie Yang, Xu Chen, and Jerry Cheng. 2015. Tracking vital signs during
sleep leveraging off-the-shelf WiFi. In Proceedings of the 16th ACM International Symposium on Mobile
Ad Hoc Networking and Computing. ACM, 267–276.

David C. Mack, James T. Patrie, Paul M. Suratt, Robin A. Felder, and Majd Alwan. 2009. Development and
preliminary validation of heart rate and breathing rate detection using a passive, ballistocardiography-

ACM Transactions on Sensor Networks, Vol. 13, No. 2, Article 14, Publication date: April 2017.

http://dx.doi.org/10.1109/TIM.2011.2171589
http://dx.doi.org/10.1109/TIM.2011.2171589
https://itunes.apple.com/us/app/motionx-24-7-sleeptracker/id505074676?mt=8
https://itunes.apple.com/us/app/motionx-24-7-sleeptracker/id505074676?mt=8
http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/tri-band-wireless-ac17265-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/tri-band-wireless-ac17265-brief.pdf


Vital Sign and Sleep Monitoring Using Millimeter Wave 14:31

based sleep monitoring system. IEEE Transactions on Information Technology in Biomedicine 13, 1
(2009), 111–120.

A. Mamelak and J. A. Hobson. 1989. Nightcap: A home-based sleep monitoring system. Sleep 12, 2 (1989),
157–166.

Juan F. Masa, Jaime Corral, Ricardo Pereira, Joaquin Duran-Cantolla, Marta Cabello, Luis Hernández-
Blasco, Carmen Monasterio, Alberto Alonso, Eusebi Chiner, Manuela Rubio, and others. 2011. Effective-
ness of home respiratory polygraphy for the diagnosis of sleep apnoea and hypopnoea syndrome. Thorax
(2011), thx–2010.

Ilya V. Mikhelson, Philip Lee, Sasan Bakhtiari, Thomas W. Elmer, Aggelos K. Katsaggelos, and Alan V.
Sahakian. 2012. Noncontact millimeter-wave real-time detection and tracking of heart rate on an am-
bulatory subject. IEEE Transactions on Information Technology in Biomedicine 16, 5 (2012), 927–934.

Emmanuel Munguia Tapia. 2008. Using Machine Learning for Real-time Activity Recognition and Estimation
of Energy Expenditure. Ph.D. Dissertation. Massachusetts Institute of Technology.

Rajalakshmi Nandakumar, Shyamnath Gollakota, and Nathaniel Watson. 2015. Contactless sleep apnea
detection on smartphones. In Proceedings of the 13th Annual International Conference on Mobile Systems,
Applications, and Services. ACM, 45–57.

NeuLog 2015. NeuLog Sensors. Retrieved from https://neulog.com/.
Anh Nguyen, Raghda Alqurashi, Zohreh Raghebi, Farnoush Banaei-kashani, Ann C. Halbower, Thang Dinh,

and Tam Vu. 2016. In-ear biosignal recording system: A wearable for automatic whole-night sleep
staging. In Proceedings of the 2016 Workshop on Wearable Systems and Applications. ACM, 19–24.

Thomas Nitsche, Adriana B. Flores, Edward W. Knightly, and Joerg Widmer. 2015. Steering with eyes closed:
Mm-wave beam steering without in-band measurement. In Proceedings of the 2015 IEEE Conference on
Computer Communications (INFOCOM). IEEE, 2416–2424.

Mark B. Norman, Sally Middleton, Odette Erskine, Peter G. Middleton, John R. Wheatley, and Colin E.
Sullivan. 2014. Validation of the Sonomat: A contactless monitoring system used for the diagnosis of
sleep disordered breathing. Sleep 37, 9 (2014), 1477.

Arie Oksenberg and Donald S. Silverberg. 1998. The effect of body posture on sleep-related breathing disor-
ders: Facts and therapeutic implications. Sleep Medicine Reviews 2, 3 (1998), 139–162.

Pasternack. 2015. Pasternack. Retrieved from http://www.pasternack.com/60-ghz-test-development-system-
pem003-kit-p.aspx.

Neal Patwari, Lara Brewer, Quinn Tate, Ossi Kaltiokallio, and Maurizio Bocca. 2014. Breathfinding: A
wireless network that monitors and locates breathing in a home. Selected Topics in Signal Processing,
IEEE Journal of 8, 1 (2014), 30–42.

Douglas T. Petkie, Carla Benton, and Erik Bryan. 2009. Millimeter-wave radar for vital signs sensing. In
SPIE Defense, Security, and Sensing. International Society for Optics and Photonics, 73080A–73080A.

R. Prakash, Siva V. Girish, and A. Balaji Ganesh. 2016. Real-time remote monitoring of human vital signs
using internet of things (IoT) and GSM connectivity. In Proceedings of the International Conference on
Soft Computing Systems. Springer, 47–56.

Jeffrey Price. 2012. Practical Aviation Security: Predicting and Preventing Future Threats. Butterworth-
Heinemann.

Theodore S. Rappaport, Robert W. Heath Jr, Robert C. Daniels, and James N. Murdock. 2014. Millimeter
Wave Wireless Communications. Pearson Education.

Ruth Ravichandran, Elliot Saba, Ke-Yu Chen, Mayank Goel, Sidhant Gupta, and Shwetak N. Patel. 2015.
WiBreathe: Estimating respiration rate using wireless signals in natural settings in the home. In
Proceedings of the 2015 IEEE International Conference on Pervasive Computing and Communications
(PerCom). IEEE, 131–139.

Mahsan Rofouei, Mike Sinclair, Ray Bittner, Tom Blank, Nick Saw, Gerald DeJean, and Jeff Heffron. 2011.
A non-invasive wearable neck-cuff system for real-time sleep monitoring. In Proceedings of the 2011
International Conference on Body Sensor Networks. IEEE, 156–161.

Jae Hyuk Shin, Young Joon Chee, Do-Un Jeong, and Kwang Suk Park. 2010. Nonconstrained sleep mon-
itoring system and algorithms using air-mattress with balancing tube method. IEEE Transactions on
Information Technology in Biomedicine 14, 1 (2010), 147–156.

Molly Sorlien. 2015. BMI and Respiratory Function. Retrieved from http://www.livestrong.com/article/
84685-bmi-respiratory-function/.

William H. Spriggs. 2014. Essentials of Polysomnography. Jones & Bartlett Publishers.
Sanjib Sur, Vignesh Venkateswaran, Xinyu Zhang, and Parmesh Ramanathan. 2015. 60 GHz indoor net-

working through flexible beams: A link-level profiling. In Proceedings of the 2015 ACM SIGMETRICS
International Conference on Measurement and Modeling of Computer Systems (SIGMETRICS’15). ACM,
New York, NY, USA, 71–84. DOI:http://dx.doi.org/10.1145/2745844.2745858

ACM Transactions on Sensor Networks, Vol. 13, No. 2, Article 14, Publication date: April 2017.

http://www.pasternack.com/60-ghz-test-development-system-pem003-kit-p.aspx
http://www.pasternack.com/60-ghz-test-development-system-pem003-kit-p.aspx
http://www.livestrong.com/article/84685-bmi-respiratory-function/
http://www.livestrong.com/article/84685-bmi-respiratory-function/
http://dx.doi.org/10.1145/2745844.2745858


14:32 Z. Yang et al.

Alberto Valdes-Garcia, Sean T. Nicolson, Jie-Wei Lai, Arun Natarajan, Ping-Yu Chen, Scott K. Reynolds, Jing-
Hong Conan Zhan, Dong G. Kam, Duixian Liu, and Brian Floyd. 2010. A fully integrated 16-element
phased-array transmitter in SiGe BiCMOS for 60-GHz communications. IEEE Journal of Solid-State
Circuits, 45, 12 (2010), 2757–2773.

Teng Wei and Xinyu Zhang. 2015. mtrack: High-precision passive tracking using millimeter wave radios. In
Proceedings of the 21st Annual International Conference on Mobile Computing and Networking. ACM,
117–129.

Ting Wu, Theodore S. Rappaport, and Christopher M. Collins. 2015. The human body and millimeter-
wave wireless communication systems: Interactions and implications. In Proceedings of the 2015 IEEE
International Conference on Communications (ICC). IEEE, 2423–2429.

Zelong Xiao, Jianzhong Xu, and Taiyang Hu. 2008. Research on the transmissivity of some clothing materials
at millimeter-wave band. In Proceedings of the International Conference on Microwave and Millimeter
Wave Technology (ICMMT’08). Vol. 4. IEEE, 1750–1753.

Zhicheng Yang, Parth H. Pathak, Yunze Zeng, Xixi Liran, and Prasant Mohapatra. 2016a. Monitoring vital
signs using millimeter wave. In Proceedings of the 17th ACM International Symposium on Mobile Ad
Hoc Networking and Computing (MobiHoc’16). ACM, New York, NY, 211–220. DOI:http://dx.doi.org/
10.1145/2942358.2942381

Zhicheng Yang, Parth H. Pathak, Yunze Zeng, Xixi Liran, and Prasant Mohapatra. 2016b. Technical Report.
Retrieved from http://spirit.cs.ucdavis.edu/pubs/tr/zhicheng-TOSN-techReport.pdf.

Maxim Zhadobov, Nacer Chahat, Ronan Sauleau, Catherine Le Quement, and Yves Le Drean. 2011.
Millimeter-wave interactions with the human body: State of knowledge and recent advances. Inter-
national Journal of Microwave and Wireless Technologies 3, 02 (2011), 237–247.

Xia Zhou, Zengbin Zhang, Yibo Zhu, Yubo Li, Saipriya Kumar, Amin Vahdat, Ben Y. Zhao, and Haitao Zheng.
2012. Mirror mirror on the ceiling: Flexible wireless links for data centers. ACM SIGCOMM Computer
Communication Review 42, 4 (2012), 443–454.

Yibo Zhu, Zengbin Zhang, Zhinus Marzi, Chris Nelson, Upamanyu Madhow, Ben Y. Zhao, and Haitao Zheng.
2014. Demystifying 60GHz outdoor picocells. In Proceedings of the 20th Annual International Conference
on Mobile Computing and Networking. ACM, 5–16.

Received April 2016; revised February 2017; accepted February 2017

ACM Transactions on Sensor Networks, Vol. 13, No. 2, Article 14, Publication date: April 2017.

http://dx.doi.org/10.1145/2942358.2942381
http://dx.doi.org/10.1145/2942358.2942381
http://spirit.cs.ucdavis.edu/pubs/tr/zhicheng-TOSN-techReport.pdf

