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Abstract—Peak Signal-to-Noise Ratio (PSNR) is the simplest
and the most widely used video quality evaluation methodology.
However, traditional PSNR calculations do not take the packet
loss into account. This shortcoming, which is amplified in wireless
networks, contributes to the inaccuracy in evaluating video
streaming quality in wireless communications. Such inaccuracy
in PSNR calculations adversely affects the development of video
communications in wireless networks. This paper proposes a
novel video quality evaluation methodology. As it not only con-
siders the PSNR of a video, but also with modifications to handle
the packet loss issue, we name this evaluation method MPSNR.
MPSNR rectifies the inaccuracies in traditional PSNR compu-
tation, and helps us to approximate subjective video quality,
Mean Opinion Score (MOS), more accurately. Using PSNR values
calculated from MPSNR and simple network measurements, we
apply linear regression techniques to derive two specific objective
video quality metrics, PSNR-based Objective MOS (POMOS)
and Rates-based Objective MOS (ROMOS). Through extensive
experiments and human subjective tests, we show that the two
metrics demonstrate high correlation with MOS. POMOS takes
the averaged PSNR value of a video calculated from MPSNR as
the only input. Despite its simplicity, it has a Pearson correlation
of 0.8664 with the MOS. By adding a few other simple network
measurements, such as the proportion of distorted frames in
a video, ROMOS achieves an even higher Pearson correlation
(0.9350) with the MOS. Compared with the PSNR metric from
the traditional PSNR calculations, our metrics evaluate video
streaming quality in wireless networks with a much higher
accuracy while retaining the simplicity of PSNR calculation.

I. INTRODUCTION

Multimedia streaming is becoming one of the most popular

applications in today’s computer networks. Video streaming

penetrates every aspect of our lives, ranging from commu-

nications to entertainment. With the wide deployment of

IEEE 802.11 Wireless Local Area Networks (WLANs), video

streaming over WLANs is very common. Video quality mea-

surement, based on criteria and metrics that can be mea-

sured objectively and automatically by a computer program,

is important to various parties, including government and

industries. People evaluate video quality for specification of

system performance requirements, comparison of competing

service offerings, network maintenance and so on. From the

beginning of digital imagery and video, the video research
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community has proposed a number of metrics to measure

video quality. The common metrics include Peak Signal-to-

Noise Ratio (PSNR), Structure Similarity (SSIM) index [1],

Czekanowski Distance (CZD) [2], etc. PSNR as well as the

other objective video quality metrics do not perfectly correlate

to perceived visual quality. In addition to the non-linearity

of the human visual system, these metrics fail to capture the

packet loss characteristics of wireless networks. While these

metrics work well for evaluating video quality in the en-

coding/decoding process and streaming over wired networks,

noticeable inaccuracy arises when they evaluate video quality

over wireless networks, particularly in lossy networks such

as multihop wireless mesh networks. For instance, it could

happen that a video stream with a PSNR around 38dB (the

full score of PSNR is 100dB) is actually perceived to have

the same quality as the original undistorted video. In our

subjective video quality evaluation, that will be discussed in

Section V-A, all the viewers rate this video stream at the

highest subjective quality.

Video streaming applications use UDP, which unlike TCP,

provides unreliable transmissions as the transport layer proto-

col as a trade off for satisfying delay requirements. In WLANs,

due to the instability of wireless channels, the probability of

a packet loss is much higher than that in wired networks.

Losing consecutive packets causes the loss of an entire image

frame in the video’s raw format (for example, raw YUV-

formatted video file is a sequence of image frames in YUV

color space). Most of the objective video quality metrics,

including PSNR, are per-pixel quality metrics. They compare

every pixel in each frame of a processed video (for example,

a video after streaming) with the corresponding pixel in each

corresponding frame of a reference video (the original video)

to evaluate the quality of a processed video. If a frame in the

processed video is lost during streaming, the metrics compare

two non-corresponding frames from the processed video and

the reference video. This discrepancy results in inaccuracies

in the final metric value. We will explain this phenomenon in

more detail in Section III-A.

In this paper, we propose a new objective video quality

evaluation methodology particularly well suited for video

streaming over lossy wireless networks. Because of the pop-

ularity and simplicity of PSNR, our evaluation method also
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calculates the PSNR of a video. However, we modify the

traditional PSNR calculation for video so that it handles

video frame losses. As it involves the modification of PSNR

calculations, we name our new evaluation method MPSNR.

Using linear regression against Mean Opinion Score (MOS)

collected from human subjective evaluation, we derive two

specific objective video quality metrics fromMPSNR. The first

metric, called PSNR-based Objective MOS (POMOS), takes

the averaged PSNR calculated from MPSNR as the only input

for predicting MOS. Despite its simplicity, it has a Pearson

correlation [3] of 0.8664 with the MOS. By adding a few other

simple network measurements, such as the distorted frame

rate and frame loss rate in a video streaming, the second

metric, called Rates-based Objective MOS (ROMOS, achieves

an even higher Pearson correlation of 0.9350 with the MOS.

Using MPSNR, the required parameters, such as PSNR and

frame loss rate, can all be measured when both the processed

and the reference videos are available. 1 Other objective

video quality metrics that closely approximate MOS, such

as Perceptual Evaluation of Video Quality (PEVQ) [4] and

National Telecommunication and Information Administration

Video Quality Metric (NTIA VQM) [5], are complex and do

not explicitly handle frame losses in wireless channels. In

contrast to these metrics, the proposed MPSNR-based metrics

consider frame losses while retaining the simplicity of PSNR.

The contribution of this paper is two-fold:

• We identify the detrimental impact of packet losses

during video streaming on video quality metrics, such

as PSNR.

• We propose a simple objective video quality evalua-

tion methodology, MPSNR, that alleviates the inaccuracy

caused by packet losses. We also derive two specific

video quality metrics from MPSNR. The metrics provide

a tool for evaluating video streaming over lossy wireless

networks.

The rest of the paper is organized as follows. Section II

describes related work on video quality measurements. The

motivation for developing our new video quality evaluation

methodology, MPSNR, is given in Section III. The proposed

MPSNR is discussed in Section IV. In Section V, we present

experiments that measure the MOS of video streaming in lossy

wireless networks and we develop our objective metrics. We

compare MPSNR-based metrics with MOS and evaluate their

effectiveness in Section VI. Section VII concludes the paper.

II. BACKGROUND AND RELATED WORK

For most applications, video quality is a subjective term.

It is evaluated visually by the viewers. The subjective video

quality is measured through each viewer giving a score ranging

from one (worst) to five (best). The metric, Mean Opinion

Score (MOS), is the arithmetic mean of all these individual

scores. However, the measurement of MOS is an expensive

1The method proposed in this paper is mainly used for evaluating the video
streaming capability of wireless networks. Therefore, similar to PSNR, the
video evaluation we propose is a full reference (FR) method. That means the
reference (original) video is also available in the receiver.

process as it needs a large number of viewers and controlled

evaluation environments, such as a fixed screen size for

displaying a video. It is often impossible to conduct video

quality measurements by collecting MOS for every processed

video. To cope with this difficulty, objective video quality

measurement is used. Objective video quality is based on

the criteria and metrics that can be measured objectively

and automatically by a computer program. The goal of an

objective video quality metric is to approximate the subjective

measurement such as the MOS. PSNR is the most widely

used objective video quality metric. But due to its inability of

approximating the non-linearity of the human visual system,

it does not perfectly correlate with the human perceived visual

quality. Other complex metrics, such as SSIM [1] and CZD [2]

have been proposed to simulate the non-linearity of the human

visual system. However, all these metrics were developed from

evaluating static image quality, so they are based on a pixel-

by-pixel comparison [6]. More importantly, their computation

methods do not consider the case in which some frames in the

video raw file are lost in the streaming process. Such losses

result in mis-alignment of frame sequences in the processed

video and the reference video, causing inaccuracies in quality

metrics calculation. More complex objective measurements,

such as PEVQ [4] and NTIA VQM [5] have been proposed

recently. Although they could approximate MOS accurately

in general, they still do not explicitly handle frame losses in

wireless channels. For example, NTIA VQM requires users to

ensure there is no frame missed or dropped in the process;

otherwise the quality evaluation will be affected [7].

Besides these traditional and standard metrics, researchers

have also proposed other objective metrics. The proposals

in [8], [9] are good examples. Engelke et al [8] suggested

a hybrid image quality metric that extracts different image

features, such as blocking, blur, and etc., for video quality

evaluation. It is a frame-by-frame video evaluation method.

Its simulation results showed a close correlation between the

metric and MOS, but the metric does not consider frame

loss. Furthermore, these image features extraction algorithms

greatly increase the complexity of the video evaluation com-

pared with other frame-by-frame evaluation methods (for

example, SSIM [8]). On the other hand, the work of [9]

proposed a content-based metric. It evaluates the quality of

a video by categorizing the types of content of the video.

For each type of content, different parameters are used in the

evaluation function. This method avoids the issue of frame loss

in the processed video, but it tends to complicate the design

and the resource demands in the implementation process.

Due to its simplicity, PSNR still remains the most widely

used objective video quality metric. In a recent meeting of

International Telecommunication Union (ITU-T), an improved

PSNR calculation algorithm was proposed to tackle the prob-

lem of constant delay in a processed video [10]. Although it

did not tackle the problem of frame losses in the processed

video, its approach of finding the corresponding frame can

be utilized. We propose our objective video quality evaluation

methodology, MPSNR, that enhances the PSNR calculation



3

Fig. 1. Illustration of video streaming quality evaluation.

of a video. Using an approach similar to [10], we address

the problem of frame losses in the processed video, while

retaining the simplicity of the computation. We also use linear

regression against MOS to derive two specific metrics from

MPSNR.

III. MOTIVATION FOR DEVELOPING A NEW VIDEO

QUALITY EVALUATION METHODOLOGY

A. Inaccuracy in the Existing PSNR Calculation

PSNR, as a video quality measurement, does not accurately

indicate the subjective quality of a video. In addition to

the effect of the non-linearity of human visual system, the

calculation method for PSNR of a video introduces errors in

evaluating quality, especially when a video is streamed over a

lossy wireless channel.

Traditionally, PSNR is calculated by comparing the first

frame of the streamed video (i.e. processed video) with the

first frame of the reference video, and then comparing the

second frames of the streamed and the reference videos, and

so on. This simple calculation method assumes no frames are

lost in the streamed video. It works well for evaluating video

encoding/decoding errors and video streaming in wired net-

works, where the frame losses in a video stream rarely occur.

However, frame losses are prevalent in wireless networks. In

wireless networks, contiguous packet losses could cause the

loss of an entire frame in the video stream. (A frame in a

video is composed of several packets in the network layer).

Figure 1 shows how a video in the original YUV format is

encoded, streamed and converted back to the YUV format for

evaluation. Due to packet losses during streaming, some YUV

frames are missing after converted from the stream file (for

example, an mpeg4 file). A missing frame results in the latter

frames in shifted positions when compared with the reference

video. The shifted frame position causes incorrect frames

to be compared in the PSNR calculations. A human cannot

usually detect the loss of a few frames, but the off-position

comparisons severely underestimate the average PSNR value

of the streamed video.

Figure 2 shows the snapshots of three videos. Figure 2(a) is

a snapshot of the reference video that has the “highest” quality.

The other two snapshots are from the videos as they are being

streamed over a wireless network. The average PSNR value

of the reference video is 100dB, that is the highest value. It

refers to the case when there are no distortions in any frame

of the video. Note that if there is no distortion, the PSNR

value should be infinity according to the definition. But for

the sake of calculation and analysis, we use the same approach

in [8] to define the highest value of PSNR to be 100dB. The

average PSNR of video streaming A (Figure 2(b)) is about

38dB, while that of video streaming B (Figure 2(c)) is about

40dB. However, we can clearly see that the quality of the

video stream A is much better than that of the video stream

B. This example demonstrates how the off-positioned frames

(due to the loss of few frames in video A) causes the PSNR

to be severely underestimated. This simple example provides

the motivation to develop a more comprehensive evaluation

method for video streaming in wireless networks. However, it

is important to preserve the simplicity of PSNR in any new

metric as the expensive hardware and software for complex

video evaluation are not always available, and the speed for

video evaluation is important especially when there are a large

number of videos to be evaluated.

B. Brief Description of the New PSNR Calculation

The error introduced to PSNR calculation due to frame

losses in video streaming cannot be easily corrected, as there is

no timing information recorded in the raw video frames. Thus,

the correct corresponding frame pair from the streaming video

and the reference video is not easily identifiable. To solve this

problem without introducing significant overhead, we calculate

the PSNR of the video frames using a different approach.

Instead of ignoring the lost frames and blindly comparing

frames from the reference video with those from a streamed

video in the order of received, we introduce a “matching”

process before determining the “actual” PSNR of the frames

in the streamed video. The matching process is critical in our

proposed MPSNR (modified PSNR calculation), as it helps

us locate the correct frame to compare and calculate the

“actual” PSNR value. In Section IV, we discuss an optimized

algorithm for matching process. To reduce the complexity of

the matching process, and thus the complexity of MPSNR, we

also present a heuristic.

In the video stream A (Figure 2(b)), the matching process

indicates that 0.3% of the frames are lost, but none of the

received frames have any distortion. That means that all

the received frames should have the PSNR value of 100dB

when compared with the correct corresponding frames in the

reference video. Due to the frame losses, the traditional PSNR

calculation compares the incorrect frames and returns low

PSNR values. However, the proposed MPSNR calculation uses

the correct corresponding frames for comparison and returns

100dB of PSNR for every received frame. Therefore, the

average PSNR of video streaming A is 100dB. For the video

stream B, although there are no frame losses, the received

frames have distortion. MPSNR also returns the average PSNR

value of about 40dB for video streaming B. This example

shows the importance of our matching process in the correct

PSNR calculation.

IV. ANATOMY OF MPSNR

As an objective video quality evaluation methodology,

MPSNR measures PSNR of the streamed (i.e. processed) video
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(a) Reference video (b) Video streaming A (c) Video streaming B

Fig. 2. Snapshots of different videos.

frames and other network parameters such as loss rate of

the video frame, proportion of distorted video frames in a

video streaming, etc. These measurements are plugged into

linear models, which will be detailed in Section V, to predict

the MOS of the video. As mentioned in Section III-B, the

matching of correct corresponding frames in the streamed and

the reference videos is critical in MPSNR. We first discuss an

optimized algorithm for the matching process.

A. An Optimized Algorithm for Matching Corresponding

Frames

As shown in Section III, the limitation of the traditional

video PSNR calculation is its erroneous pair-up of the corre-

sponding frames from the streamed video and the reference

video. An intuitive way to fix this limitation is to incorporate

timing information into the raw video, for example the YUV

file. However, this approach involves modifications in the

decoding mechanism that coverts the streaming file (e.g.

mpeg4) to the raw video (e.g. YUV). A number different video

coding standards use different coding/decoding mechanisms

[11]. Inserting timing information to the raw video is also

different from one coding standard to another, and hence

increases the complexity in video decoding and affects many

other aspects of video processing.

Instead of modifying the decoding mechanism and the raw

video file format, we improve the PSNR measurement by

introducing a “frame matching process.” The matching process

helps us locate the correct frame to compare with. We use the

similarity of the streamed video and the reference video to find

the correct match. First, we make the following assumption.

The sum of PSNR of all frames in a streamed video is the

maximum when all the frames are correctly matched with the

corresponding frames in the reference video. We make this

assumption because the corresponding pair of frames should

have the greatest similarity and their PSNR value should

be the largest among the PSNR values of other unmatched

frame pairs. The same assumption was also made in [10]

to determine the most probable corresponding frame in the

reference video. In [10], the corresponding frame in the

reference video is located only for the first frame in the

processed (e.g. streamed) video that may experience a constant

delay. In our approach, we use this assumption to locate the

corresponding frames for all frames in the streamed video.

Each frame in a streamed video must have a matched frame

in the reference video, and we consider a global maximization

of the sum of PSNR. Therefore, the problem of the matching

process is stated as:

Match each frame in a streamed video to a frame in the

reference video so that the sum of PSNR of all frame pairs

are maximized.

It is very similar to a sequence alignment problem in bioin-

formatics [12]. In bioinformatics, DNA or RNA sequences

are aligned to identify the region of similarity. In our video

quality evaluation, the streamed video and the reference video

frame sequences are aligned to find the match. The difference

is that in sequence alignment, unmatches (called gaps) are

allowed in both sequences, while in our case, every frame in

the streamed video must find a match in the reference video.

Although there is a standard optimized algorithm to solve the

sequence alignment problem [13], due to this difference, we

need a new algorithm for our use.

We define OPT(i, j) to be the maximum total PSNR value

achieved when a streamed video with j frames is matched

to the reference video with i frames. Let psnr(x, y) be the

PSNR value of frame x and frame y. If no match can be

found for a frame in the reference video, we ignore the frame

in the calculation of the total PSNR value. Figure 3 shows

the three possible cases for the last match in two videos. An

underline segment indicates no frame is matched. Different

from an ordinary sequence alignment, the Case 3 in Figure 3

would never happen as the reference video is always longer

than the streamed video. In other words, all frames in the

streamed video must find the match in the reference video.

But the reverse, that all frames in the reference video must

find the match in the streamed video, is not true, so Case 2 is

possible. Therefore, the recurrence equation in MPSNR is

OPT(i, j) = max[ psnr(i, j) + OPT(i − 1, j − 1),

OPT(i − 1, j) ]
(1)

Equation (1) states that when Case 1 is selected,

the largest possible total PSNR value for the video is

psnr(i, j)+OPT(i − 1, j − 1). The largest possible total

PSNR is OPT(i − 1, j) when Case 2 is selected. So, for

OPT(i, j), we have to choose the largest among these two

possible cases. The recurrence equation (1) shows that similar
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Fig. 3. Three possible cases for the last match.

to a sequence alignment problem, our matching process can be

solved by a dynamic programming algorithm [13]. By using

dynamic programming, we can find the optimum match of the

frames in the streamed video to the frames in the reference

video with the maximum total PSNR.

In MPSNR, a frame in the streamed video does not have to

compare with every frame in the reference video to find the

optimized match. Suppose there are a total of g frames lost

during streaming. A frame in the streamed video should only

compare with at most g frames in the reference video. To see

this, consider frame q in the streamed video. Frame q can only

match with a frame between p + 1 and p + g, where frame p
matched with frame q−1 of the streamed video in the previous

iteration of dynamic programming. If frame q matches with

any frame beyond frame p + g, that implies there are more

than g frames lost in the streamed video. It is contradictory

to the fact that the total number of frame losses in streaming

is g. Adding this constraint to the dynamic programming and

together with the recurrence equation (1), the time complexity

of the optimized matching process in MPSNR is O(gn), where
n is the number of frames in the streamed video and g is the

total number of frames lost.

B. A Heuristic Algorithm for Matching Corresponding Frames

Although the time complexity of the optimized matching

algorithm is polynomial, the running time can be significant

when both the number of frames in the streamed video (n) and
the number of frame losses (g) are large. If a poor wireless

channel quality results in a constant loss rate of streaming

video and when the length of streaming video increases, the

execution time of the matching process will be increased in a

much faster rate than the video length because the total number

of lost frames also increases. In practice, given a streamed

video of 40 seconds (1000 frames) with 20 frames lost (about

2% frame loss rate), a personal computer with 2.8GHz CPU

and 1GB RAM needs about 20 seconds to run MPSNR and

return the PSNR values of all the frames in the streamed video.

The traditional PSNR calculation on the other hand takes less

than two seconds for the same video in the same computer.

Therefore, we need a faster algorithm for the matching process

in MPSNR.

Instead of considering the global maximization of total

PSNR in the optimized algorithm, we consider a local maxi-

mum PSNR search. Let inPSNRji be the PSNR value calcu-

lated for frame j in the streamed video when it is compared

with frame i in the reference video. Frames i and j are

not necessary the last frames in the reference video and the

streamed video respectively. We use window to denote a group

of continuous frames in the reference video for the matching

process. Let Wj be the set containing the continuous frames

in the reference video when frame j in the streamed video is

processed.Window size, w, is the number of continuous frames

in Wj . Let PSNRj be the PSNR value of the frame j in the

streamed video. PSNRj is determined using the following.

PSNRj = maxi∈Wj
(inPSNRji) (2)

When PSNRj is determined, we know the frame, say k, in
the reference video is matched with frame j in the streamed

video. At this moment, the window moves. Now, Wj+1

contains frames from (k+1) to (k+w). The matching process

is then carried out for frame j + 1 in the streamed video. The

matching of frame j implies that all the frames that precede

frame k in Wi in the referenced video cannot be found in the

streamed video (i.e., they are lost in the streaming process).

When we perform the matching, we must make sure that the

number of remaining frames in the referenced video is no less

then the number of remaining frames (the frames that have

not gone through the matching process) in the streamed video.

Otherwise, some frames in the streamed video cannot match

to any reference frame.

According to Equation (2), we take the maximum value

of inPSNRji, as the final PSNR, PSNRj , of frame j in

the streamed video. It could happen that frame j in the

streamed video is distorted severely and has a larger similarity

to a non-corresponding frame, k, than to the actual corre-

sponding frame, h. For example, inPSNRjk = 10.25 while

inPSNRjh = 10.19. In this case, the matching process returns

an incorrect corresponding frame. To mitigate this problem,

we introduce a parameter called PSNR threshold, thresh, into

the matching process. We take the maximum inPSNRji, as the

final PSNR, only if it is greater than thresh. This ensures the

returned matched frame has a certain large degree of similarity

with the frame j in the streamed video. The larger the PSNR

threshold, the more accurate the frame matched. However, if

thresh is too large, the probability of returning a matched

frame from the matching process becomes very small. Even for

the corresponding frame pair, the frame in the streamed video

could have a certain degree of distortion which decreases the

PSNR to be less than thresh. If this case happens (i.e., the

maximum inPSNRji is not larger than thresh), we will regard

the first frame in Wj as the matched frame.

Setting an appropriate thresh is not straightforward as it

depends on how much the streamed video is distorted and

it is unknown before the evaluation. We try different thresh

values around 30dB for each run of MPSNR and take the

largest overall averaged PSNR as the final PSNR value of the

streamed video. The reason for choosing 30dB as the mid

value is that the distorted frames have an average PSNR of

30dB in lossless streaming. If the maximum inPSNRji is not

less than 30dB, we are confident that frame j is the same frame

as frame i, but with distortion. In our multihop wireless video

streaming environment that will be discussed in Section V-A,

we use three different thresh values of 20dB, 30dB and 40dB.

Another important parameter that affects the performance

of this algorithm is window size, w. If the window size is
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too small, the “real” matching frame may be outside of the

window, and it results in an incorrect match. A large window

size has a high probability of finding the correct match, but

at the cost of a long computation time. The selection of the

window size should consider how much loss the streaming

suffers from. In our multihop 802.11 wireless video streaming

environment (see Section V-A), a window size of five is large

enough.

Using this heuristic matching algorithm we can reduce the

time complexity of MPSNR. The time complexity for this

heuristic algorithm is O(twn), where t is the number of

different thresh tried, w is the window size and n is the total

number of frames in the streamed video. Both t and w depend

on how lossy the wireless channel is. They are constants in a

particular wireless system, for example, in our 4-hop wireless

network, t = 3 and w = 5. Although the values of t and w vary

from networks to networks, in any given wireless network, t
and w are small constants. Therefore, the time complexity

of this heuristic matching algorithm is O(n), the same as

that of traditional PSNR calculation. Using the same example

scenario of a streamed video of 40 seconds (1000 frames)

with 20 frames lost (2% frame loss rate), a personal computer

with 2.8GHz CPU and 1GB RAM needs about four seconds

to run this heuristic in MPSNR and return the PSNR values

of all the frames in the streamed video. To further evaluate

the effectiveness of this heuristic matching algorithm, we use

this heuristic in MPSNR to evaluate video quality and derive

quality metrics in Section V. In Section VI, we also derive the

metrics fromMPSNR using the optimized matching algorithm.

The two sets of metrics have similar performances.

C. Measuring Other Parameters

Calculating PSNR of the video frames is the major func-

tion of MPSNR. Along with the PSNR calculation, MPSNR

measures other following video streaming related parameters.

• Distorted frame rate (d): the percentage of distorted

frames (in which the PSNR is less than 100dB) in a

streaming video;

• Averaged PSNR of distorted frames (dPSNR): the mean

PSNR value of all the distorted frames;

• Frame loss rate (l): the percentage of lost frames in a

streaming video. We derive it from comparing the total

number of frames in the received streamed video with

that in the reference video;

Once the corresponding frames in a streamed video and the

reference video are matched and the PSNR of each frame

in the streamed video is calculated, all the above parameters

are readily available. In Section V, we use these parameters

together with the average PSNR of a video calculated from

MPSNR, aPSNR, to derive objective metrics for predicting

Mean Opinion Score (MOS) of videos.

V. DEVELOPING METRICS FROM EXPERIMENTS

A. Experiments

1) Collecting videos of different quality: We first collect

videos from a series of streaming experiments over multihop

wireless mesh network [14]. Figure 4 shows the different

scenarios in which the video streaming is performed. M1,

M2 and M3 are three mesh access points (MAPs). They are

mesh routers that relay the network traffic from a client (for

example, C1) to another (C2). In our case, C1 is a video

streaming server and the video is streamed from C1 to C2

(video streaming client). Figure 4(a) shows a 4-hop wireless

mesh network. To collect videos with varying qualities, we

configured 3-hop and 2-hop networks as well by removing

one and two MAPs, respectively. The degree of intra-flow

interference affects the video quality, with longer-hop paths

suffering from more interference [15]. We also add inter-

flow interference by having another client (C3) receive video

streaming from C1 at the same time (Figure 4(b)). In another

setting, we add background TCP and UDP data traffic to

interfere the video streaming (Figure 4(c)). In each scenario,

we also vary the limit of link-layer retransmissions in video

streaming. The standard “highway” video [16] is used for

streaming because it has constant moving scenes that are

sensitive to the frame distortion and loss. Our MPSNR can

also apply to videos of other contents. For demonstrating

the principle of deriving new quality evaluation metrics from

MPSNR, we only focus on the “highway” video in this paper.

Through these experiments, a total of 40 streamed videos

with different qualities are collected. We randomly divide

these 40 video clips into two groups, a training set and a

validation set. We have 30 video clips in the training set that

is used to derive the objective video quality metrics. The other

10 video clips form the validation set and they are used to

evaluate the effectiveness of the derived objective metrics. It

is worth noting that in [9] 39 videos are used for deriving

video quality metrics by a linear regression method. Their

training set and validation set contain the same set of videos,

but with different human subjects to evaluate. We believe this

approach is inadequate as different videos could have very

different qualities but the scores from different human subjects

actually have good agreement. Therefore, different videos in

the training set and the validation set give higher confidence

in evaluating the performance of the metrics.

2) Collecting subjective evaluation for video quality: We

engaged 21 volunteers as the subjects to score the quality of

every video clip (according to ITU-R BT.500-11 subjective

assessment standard [17], at least 15 subjects are needed for

subjective quality evaluation, so 21 subjects in our case should

be enough). Each subject was asked to score the watched video

on a standard five-grade scale [17]. Score 1 is for a video with

the worst quality and it means the impairment in the video is

very obvious and very annoying. Score 5 is for a video with

the best quality and it means the impairment is imperceptible

and the video is perfect.

Our test was performed according to the single-stimulus

(SS) method [17]. The standard videos with the five different

scores were shown to the viewer at the beginning of the test.

During the test, only the videos to be scored were shown

without any display of the standard/perfect video. For each

video clip, we average the quality scores given by the subjects
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(a) Streaming with intra-flow interference.

(b) Streaming with inter-flow interference.

(c) Streaming with background data flow.

Fig. 4. Video streaming in different scenarios.

Fig. 5. MOS and 95% confidence intervals of videos in the training set.

and obtain a mean score that is the Mean Opinion Score

(MOS).

Diversity was taken into account when we chose the test

volunteers. The age of our volunteers ranges from 20 to 45.

Eight of them (38.1%) are female while 13 are male. Their

occupation ranges from university undergraduate students to

laboratory technicians. Each subject was asked to score the

same set of video clips (but in different sequence order)

twice. To avoid unreliable and inconsistent results, for each

video, if scores from a particular subject in the two rounds

of experiments differed by two or more, the score from this

specific subject is discarded. Throughout the entire test, 1.19%

of the scores were rejected under this condition.

Figure 5 shows that the MOS of the videos in the training

set ranges from 1.095 to 5. This shows that we have chosen a

set of videos with a wide range of quality. The averaged size

of 95% confidence interval among the videos in the training

set is 0.38 in the 1 to 5 MOS scale. This indicates a good

agreement among the subjects.

B. Deriving Metrics from Subjective Evaluation and MPSNR

1) POMOS: By applying MPSNR with the heuristic match-

ing algorithm to the videos in the training set, we first obtain

the aPSNR (the average PSNR calculated from MPSNR) and

the traditional PSNR (tPSNR) for each video. Noted that

traditional PSNR of the video can also be obtained from

MPSNR by setting the window size (w) to one. Figure 6(a)

shows the scattered-plot of MOS for both aPSMR and tPSNR

of each video in the training set. Compared with tPSNR,

aPSNR demonstrates a more consistent relationship with MOS.

Although the tPSNR also demonstrates a linear trend with

MOS when PSNR values are small, they deviate significantly

when the PSNR gets larger. Thus, the mapping of traditional

PSNR to MOS does not hold. However, aPSNR demonstrates

a close-to-linear relationship with MOS. Hence, we use linear

regression to predict MOS of a video from its aPSNR.

We propose a two-parameter linear model to predict MOS.

POMOS = β0 + β1aPSNR (3)

for some constants β0 and β1. In this linear model, we use

the average PSNR, aPSNR, calculated from MPSNR as the

predictor variable. POMOS is the predicted MOS, not the

actual MOS that is evaluated from the human subjects. Hence,

POMOS is an objective video quality metric (“objective

MOS”) based on aPSNR.

Since POMOS itself is already a mean value (as MOS is

a mean value), the error term, ǫ, that is usually added in a

regression analysis can be dropped [18]. If we predict a quality

score, Y , given by a particular user, we have

Y = β0 + β1X + ǫ E[ǫ] = 0 (4)

where X can be any predictor variable. We are only interested

in predicting the mean value of Y that is POMOS, hence we

ignore the error term, ǫ.
Figure 6(b) shows the linear fit of the estimated POMOS,
̂POMOS. We use the linear model package of the statistics

tool, R [19], to derive β̂0 and β̂1, that are respectively the

estimates of β0 and β1 in Equation (3). The final linear

equation for estimating MOS is

̂POMOS = 0.8311 + 0.0392aPSNR (5)

The 95% confidence interval for β̂1 is (0.03431, 0.04411).

The small interval indicates that the sample size (number

of videos) in the training set is large enough for a good

estimation. Mean of β̂1 (0.0392) is significant to POMOS

prediction as POMOS ranges only from 1 to 5 while aPSNR

ranges from 0 to 100. This justifies our decision of including

aPSNR in our linear model for predicting MOS.

aPSNR is a mean value over all PSNR values of the frames

in a video clip calculated from MPSNR. According to the

definition of PSNR, if the received frame has no distortion

compared with the corresponding frame in the referenced

video, the PSNR value of this perfect frame is infinity. For

calculation of aPSNR, we must give a finite value for the
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Fig. 6. Mapping of different measurements of videos to MOS.

PSNR of such frame. Therefore, we assigned a PSNR of

100dB for the perfect frames. However, the PSNR value of

such perfect frames affects aPSNR and in turn the MOS

prediction. To mitigate this problem, we develop another linear

model that does not use the PSNR value of the perfect frames.

2) ROMOS: As in Section IV-C, we define dPSNR as the

averaged PSNR of all the distorted frames in a streamed video,

and d as the distorted frame rate. The video quality decreases

as dPSNR decreases, but the video quality also decreases as

d increases. From Figure 6(c), we find that as the ratio of

distorted frame rate to averaged PSNR of distorted frames

(d/dPSNR) increases, MOS of the video decreases. Therefore,

instead of using aPSNR, we use d/dPSNR in our linear model

to predict MOS of a video. For those lost frames, they are

neither perfect frames nor distorted frames. We must take the

lost frames into account in the prediction of MOS. Thus, we

include the frame loss rate, l, in the prediction. Finally, we

have our linear model of MOS prediction as Equation (6).

ROMOS = β0 + β1

d

dPSNR
+ β2l (6)

Like POMOS, ROMOS is an objective video quality metric,

but it is based on rates d and l. Figure 6(d) shows the plane

fits the scatter MOS values. Again, we use the linear model

package of R to derive β̂0, β̂1 and β̂2, that are respectively the

estimates of β0, β1 and β2 in Equation (6). The final linear

equation for estimating MOS is

̂ROMOS = 4.367 − 0.5040
d

dPSNR
− 0.0517l (7)

where ̂ROMOS is the estimated ROMOS from our linear

model (6). The 95% confidence interval for β̂1 is (-0.58902,

-0.41894). The small interval indicates that the sample size

(the number of videos) in the training set is large enough

for a good estimation. Mean of β̂1 (-0.5040) is significant

to ROMOS prediction as ROMOS ranges only from 1 to 5

while d/dPSNR in our case ranges from 0 to 8. This justifies

the inclusion of d/dPSNR in our linear model. For β̂2, its

mean is -0.0517 and the 95% confidence interval is (-0.15428,

0.05098). Its mean is close to zero and its 95% confidence

interval is large. These imply that the inclusion of l is not

significant for the prediction of MOS and the sample size in

training set is not large enough to show the significance of l in
prediction. The reason is that the frame loss rate is often small

(around 0.2%) in our wireless video streaming experiments.

Such a small frame loss rate causes significant inaccuracy in

traditional PSNR calculation, but it does not greatly affect the

subjective quality evaluation. However, in some other wireless

scenarios, the frame loss rate may be much severe, and hence

we include it in our linear model for predicting MOS.

VI. EVALUATION OF OBJECTIVE METRICS

In Section V-B, we use the 95% confidence interval of the

estimated coefficients of the linear models to evaluate the

effectiveness of different predictor variables. In this section,

with the help of the validation set of videos, we evaluate

the accuracy of our newly developed objective video quality

metrics. We first find the MOS of each video in the validation

set by recording all the quality scores rated by the 21 subjects.

For each video in the validation set, we then calculate ̂POMOS

and ̂ROMOS from Equations (5) and (7) respectively. For

comparison, we also develop a linear model for predicting

MOS from the traditional PSNR (tPSNR).

TOMOS = β0 + β1tPSNR (8)

The model is similar to Equation (3), with traditional PSNR

tPSNR replacing aPSNR calculated from MPSNR. We find

the Pearson correlation (also known as correlation coefficient)

[3] between the MOS and the estimated MOS values from
̂TOMOS, ̂POMOS and ̂ROMOS, where ̂TOMOS is an estimated

value of Equation (8). Pearson correlation is used to evaluate

the prediction accuracy of the linear models. The higher the

correlation, the more accurate the prediction. For ̂POMOS, it

has a Pearson correlation of 0.8666 with MOS. For ̂ROMOS,

it has an even higher Pearson correlation of 0.9346. Although

we see a linear trend of MOS against traditional PSNR in

Figure 6(a), the Pearson correlation of ̂TOMOS with MOS is

only 0.7274. Figure 7(a) visualizes the relationship between

the actual MOS from 21 subjects and the estimated MOS val-

ues from the objective calculation of different linear models.
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Fig. 7. Scatter plot of estimated (objective) MOS values against actual
(subjective) MOS.

We can see that for the videos in the validation set, ̂ROMOS

are the closest to the reference line and ̂TOMOS are the

farthest from the reference line. Compared with [8] that

also used the “highway” video clip as the evaluation video,

their objective video quality evaluation metric only achieves

a Pearson correlation of 0.896. The content based metric

in [9] although classify the content categories of the video,

its averaged Pearson correlation is only 0.8303. Furthermore,

their objective metrics have much higher complexity than ours

as we use a simple pixel-by-pixel PSNR calculation algorithm.

We now change the matching algorithm in MPSNR from

heuristic to optimized, and again perform the derivation of

metrics. As expected, the Pearson correlation of the metrics

with the MOS increases, but the improvement is not signifi-

cant. For ̂POMOS, it has a Pearson correlation of 0.8838 with

MOS while for ̂ROMOS, 0.9509. The scatter plot of these

estimated MOS values against MOS is shown in Figure 7(b),

that is quite similar to Figure 7(a). This similarity shows that

our heuristic matching algorithm works very well.

It is worth noting that the coefficient values we derived in

Equation (5) for ̂POMOS, and in Equation (7) for ̂ROMOS

are specific for videos with the content belonging to the same

category as “highway” video. According to [9], there are only

five different video content categories and technologies exist

to classify the content category of a video. By following the

same procedure in Section V to derive the coefficient values

of Equation (3) and Equation (6) for each content category,

we can apply POMOS and ROMOS to all other videos.

VII. CONCLUSION

Traditional PSNR calculation overlooks the packet loss in

wireless networks, and hence it is not an adequate method

to compute PSNR of video streaming over wireless net-

works. We develop a novel video quality evaluation method-

ology, MPSNR, to address the shortcomings of the traditional

method. By matching the correct frame pairs in the streamed

video and the reference video, MPSNR calculates accurate

PSNR of the streamed videos. From human subjective video

evaluations, we find that the PSNR value calculated from

MPSNR demonstrates a close-to-linear relationship with the

subjective MOS. Using linear regression, we derive an ob-

jective video quality metric, POMOS, based on PSNR value

to predict the MOS of a video. POMOS has a high Pearson

correlation of 0.8664 with the MOS. Adding other video

streaming measurements, such as the proportion of distorted

frames in video streamings, we derive a more comprehensive

metric, ROMOS, to predict the MOS of a video. ROMOS

has a Pearson correlation of 0.9350 with the MOS. Both

metrics assess the video quality more accurately than the

traditional PSNR while retaining the simplicity of PSNR.

With the popularity of video applications in wireless networks,

these two metrics provide a significant tool for evaluating the

performance of such applications. Based on the correct video

quality evaluation, we expect further advancement of video

over wireless network technologies.
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