
Architecture for Blocking Detection in Wireless

Video Source Authentication

Amit Pande1, Shaxun Chen1, Prasant Mohapatra1 and Gaurav Pande2

1Department of Computer Science, Univerisity of California, Davis, CA, USA
2Department of MCA, R.K. Goel Institute of Technology, Ghaziabad, UP, India

Email: {pande, sxch pmohapatra}@ucdavis.edu, reachgauravpande@gmail.com

Abstract—Blocking is a common artifact in wireless video
streaming services, mainly attributed to packet loss degradation
in real-time transmission scenarios. In this paper, we present a
simple algorithm and architecture for robust detection of blocking
artifact. We first take Discrete Wavelet Transform of the original
video frame followed by utilizing a unique property of staircase
sized repeated pattern in the videos. The variance of this pattern is
measured as the extent of blocking in a video frame. We propose
two architectures for blocking detection: one using orthogonal
wavelets which can be seamlessly integrated to video source
authentication, and the other based on bi-orthogonal wavelets, and
can be used in robust stand-alone blocking detection. A prototype
implementation on a Xilinx Virtex-6 XC6VLX75 FPGA device
was optimized to obtain a clock frequency of 167 (396) MHz for
orthogonal (and bi-orthogonal wavelets) using 4 (0) multipliers in
the design respectively.

Index Terms—digital camera identification, hardware architec-
ture, blocking

I. INTRODUCTION

Video surveillance is an important application in both con-

sumer (home), enterprise and defense scenarios. With the preva-

lence of small portable wireless video cameras, the amount of

video crossing the network, originating from embedded devices

is increasing at enormous rates. Traditional authentication mech-

anism are not suitable for these surveillance cameras as they

put an enormous computational load leading to power drainage.

Therefore, there have been efforts to develop schemes for real-

time video authentication in wireless networks.

The idea behind recently proposed video forensics based

schemes [1]–[3] is inherently based on pixel-non-uniformity

(PNU) noise present in camera sensors by virtue of their

construction. Every camera inserts a unique PNU noise to the

images and videos acquired using the device, which can be used

to authenticate that the recorded video was indeed streamed

from the specific device [1]. The authenticity of the camera is

as important as the camera footage itself [4]. This evidence has

been used in the court-of-law for some time now, to establish

the authenticity of videos or images shown in court and this

field is known as image or video forensics. It can also be used

against movie piracy [5], [6]. However, with the emergence of

surveillance industry, it is desired to extend the analysis to real-

time videos streamed in a networked domain to authenticate

that the feed is coming from desired camera. This is applicable

to versatile cameras installed in drones used by military for

aerial surveillance and commodity surveillance cameras used

by shopkeepers. The commodity cameras are not equipped with

special watermarks, now embedded by camera makers into the

high-range models, however, PNU noise is present. A hardware

implementation of this forensics scheme, making it real-time on

Virtex-6 FPGA device was performed by Pande et al. [2].

Fig. 1. Illustration of blocking artifact in network transmitted video

However, in the case of wireless cameras streaming real-time

video (over UDP) to the client, the proposed scheme fails to

work because of the blocking and blurring artifacts introduced

by wireless channel losses. Figure 1 gives an illustration of

blocking artifacts in a wireless streamed video at different

channel conditions. It can be seen that blocking artifacts can

be quite severe even at normal packet losses. These artifacts

limit the performance of video source authentication algorithm.

Chen et al. [3] propose removal of wireless artifacts to speed up

the performance of source authentication in wireless networks

and make it real-time. A hardware implementation for blocking

detection is proposed in this paper.

Video and image compression codecs such as MPEG or JPEG

use block coding techniques where a video frame or an image

is typically divided into small blocks of 8x8 or 16x16 pixels

and subsequently processed by frequency transform, motion

compensation, quantization and entropy encoding procedure.

Reduction of data rate for compression and loss of packets

during transmission leads to several artifacts in the received

video (image) such as blocking, blurring and ringing. Of these,

blocking is the most prominent artifact. Prior research [3],

[7] has shown that blocking and blurring artifacts are highly

correlated in wireless transmission scenarios where packet loss

is the main culprit. Blocking artifacts appear as a regular pattern

of visible block boundaries. This degradation is a direct result

of the coarse quantization of the coefficients or loss of packets

and the independent processing of the blocks which does not

take into account the existing correlations among adjacent block

pixels.

As we mentioned earlier, these artifacts are mainly present

in the form of blocking artifacts i.e. small rectangular block

regions are whitened or blackened or hanged out in the video

Fig. 2. Block Diagram of Blocking extraction process

playback. In this paper, we present a simple algorithm for

accurate detection of such artifacts in videos and then present

its prototype implementation on Xilinx Virtex-6 FPGA. The

algorithm is based on observation of staircase like pattern ob-

served in diagonal wavelet decomposition coefficient of blocked

images.

The paper is organized as follows: Section II discusses related

works in video source identification and blocking detection

in videos. Section III gives a brief explanation of blocking

detection algorithm followed by a prototype implementation in

Section IV. Section V gives the performance improvements in

source identification algorithm achieved using blocking detec-

tion and implementation details on Virtex-6 FPGA followed by

Conclusions in Section VI.

II. RELATED WORKS

Canon Data Verification Kit [8] calculates the hash of images

and uses a special secure memory card to enable tracing the

image to a camera, but only high-end Canon DSLR cameras

support this solution. The same applies to embedding wa-

termarks into images, which is only applicable for specially

designed devices rather than commodity devices.

Kharrazi et al. [9] proposed a novel idea for camera identifica-

tion based on supervised learning. They compute image features

in spatial and wavelet domain and then train a Support-Vector-

Classifier to find camera model. Geradts et al. [10] proposed

to utilize sensor hot pixels or dead pixels to identify the image

source (unique device identification). However, all cameras do

not have such defective pixels, and many cameras post-process

to remove such defects from output images. Lukas et al. [1]

employed sensor pattern noise as an inherent fingerprint of

the camera for source identification. More specifically, they

use Pixel Non-Linearity (PNU) noise to identify the individual

video camera. So far, the sensor pattern noise based schemes

report the most reliable results. Pande et al. [2] give a hardware

architecture for proposed scheme. Chen et al. [6] extend this

prior work to networked videos. However, they require as

long as 10 minutes of processing time for low resolution

(264 × 352) and 40 seconds for higher resolution (536 × 720)

videos. The work of [3] improves this value to 10 seconds

(∼ 300 − 400 frames) using network characteristics, however,

blocking detection is done as a post-processing task.

Existing blocking detection schemes [11], [12] are based

on weighted mean-square difference along block boundaries or

second and third order statistical features and cannot distinguish

how much of the gray level difference between block boundaries

is due to real blocking discontinuity or the oscillation of original

signal itself. The blocking detection algorithm proposed in this

work is based on Wavelet domain alignment of coefficients, and

elaborated next. There is no known hardware implementation

of these schemes.

2-Dimensional Discrete Wavelet Transform (DWT) is used

to transform image into wavelet domain. Applying a 2-D DWT

to an image of resolution M × N results in four images of

dimensions M
2

× N
2

: three are detailed images along the

horizontal (LH), vertical (HL) and diagonal (HH), and one is a

coarse approximation (LL) of the original image. LL represents

the low frequency component of the image, while LH, HL, and

HH represent the high frequency components. This LL image

can be further decomposed by DWT operation [13].

Bi-orthogonal Wavelet Filter Banks (BWFBs) are commonly

used for DWT for image compression but as they have irrational

coefficients, the associated DWT requires a high precision im-

plementation, leading to an increased computational complexity.

In a hardware implementation, rational binary coefficients can

help in achieving a multiplier-free implementation of filter

coefficients [14]–[16]. These multiplier-free implementations

and other optimizations [17]–[19] involve image reconstruction

quality trade-offs and have not been tested for denoising appli-

cations.

The DWT architectures can be broadly classified into lifting

based, convolution-based and B-spline based architectures. The

lifting based architectures are popular and became the main-

stream because they need fewer multipliers and adders and

have a regular structure. Similarly B-spline-based architectures

have been proposed to minimize the number of multipliers by

using B-spline factorization [20]. However, the lifting based

architecture has a larger critical path. Convolution-based ap-

proaches have a lower critical path but require a larger number

of multipliers. The 9/7 poly-DWT filter in [16] has best known

image compression and hardware-efficient implementation.

However, our application uses orthogonal db8 filter instead

of biorthogonal filters used for DWT-based image compression

applications. This is because forensics require denoising that

typically uses orthogonal wavelets while as against CDF 9/7

and similar filters which are based on bi-orthogonal wavelet

construction.

III. ALGORITHM

Now, we focus exclusively on the scope of this paper:

to present a simple algorithm and architecture for blocking

detection in wirelessly transmitted videos. The main steps are

given in Figure 2.

In our observation, this method gives good results on the

images/frames in which the blocking is obviously composed of

small “unit blocks” (like 4× 4, 8× 8 or 16× 16 squares), and

the “unit blocks” are well aligned. for example, two samples

attached below can give good results. This method was tested

for motion JPEG, Mpeg-1 and Mpeg-4 videos, that we obtained

with our surveillance cameras (detailed in Section V).

First of all, we transform the image into smaller tiles or

blocks of small size. This decomposition helps us to locally

detect blocking within an image. The block size was taken to

be 32 × 32 in our settings. A smaller block size also reduces

the computational requirements of block processing. However,

choosing a small size, such as 8×8 may be unsuitable when the

codec has block size of 16×16 or 32×32. When we transform

an block over to wavelet domain, we obtain a peculiar property

in diagonal details coefficients. We observe that the coefficients

have a staircase or saw tooth pattern which repeats every 4

values if blocking is present in the videos. Thus, if we sum the

coefficients across rows or columns and plot the histogram of

the coefficients, the histogram is ‘staircase-like’ in the case of

frames with blocking. A sample histogram is shown in Figure 3,

using a tile size of 512× 512 to illustrate the staircase pattern.

We use this property for detection of blocking in videos.

0 50 100
0

0.1

0.2

0.3

0.4

0.5

0 50 100
0

0.5

1

1.5

2

2.5

3

5 10 15 20 25
0

0.5

1

1.5

2

Fig. 3. Sample histogram plot for transform coefficients across rows and columns for diagonal coefficient of wavelet decomposition using orthogonal wavelet
for (a-left) original frame, and (b-middle) frame with blocking. (c-right) shows zoom-in to (b) showing clear staircase like pattern with repetition every 4 pixels.
The entire sample frame (512× 512 pixels) is considered as a single tile for illustration purposes.

The algorithm can thus be summarized as follows:

1) Divide the image or frame into tiles (32× 32).

2) Obtain the Discrete Wavelet Transform of each tile.

3) Sum the coefficients across row and bin them into 4 (A,B,C

and D bins) by adding the values.

4) Bin the coefficients into 4 bins and find the accumulated

value for each bins. Sort the values. If the coefficients are

in the ratio 4:3:2:1, blocking is present in the frame. Else,

if the coefficients are almost equal, blocking is absent.

IV. ARCHITECTURE

A. Image Decomposition

We use the periodic extension mode of DWT which effec-

tively generates least wavelet coefficients and thus maximizes

throughput. One level of DWT implementation involves ap-

plying the low and high pass filter across rows and columns

successively. As mentioned before, tile size of 32× 32 is used

and DWT is applied independently to each one. Since each pixel

is 8 bits input, we need only 4Kb memory which is available

on-board in modern FPGAs.

B. DWT Filter Design

1) Orthogonal Filter: In [1], the authors propose using

‘db8’ orthogonal wavelet for denoising operation for PNU

extraction. The same filter is to be used for extracting the

blocking pattern, to maintain the possibility of hardware reuse.

Named after Ingrid Daubechies who did monumental research

on wavelets and their applications, ‘db8’ is an orthogonal and

asymmetric wavelet filter. The filter coefficients are irrational

and asymmetric and 16 taps are present in both decomposition

low pass LoD and high pass HiD filters. They are all distinct

and irrational (truncated values are shown). Consequently, a

direct implementation in hardware will require 16 multipliers

and subsequent 15 adders to get a high or low pass output. The

filter is asymmetric and no coefficients are same across high and

low pass filter. Use of 32 multipliers and 30 adders to obtain a

single level of wavelet decomposition will lead to significant

area and computational requirements. It is also possible to

represent ‘db8’ filter coefficients using lattice implementation

TABLE I
HARDWARE REQUIREMENTS OF DWT FILTERS

Filter ‘db8’ ‘db2’ CDF

Details FB lattice FB MFB binary

Adders 32 5 6 6 9

Multipliers 30 5 8 4 0

as follows:
[
LoD(z)
HiD(z)

]

=
8∑

i=2

([
1 −αi

αi 1

] [
1 0
0 z−2

])[
1 −α1

α1 1

] [
1

z
−1

]

(1)

where αi, i ∈ {1, ...8} are the lattice coefficients. This im-

plementation on hardware will require 16 multipliers but will

greatly reduce the throughput and latency owing to large critical

path (for low pass filter).

We want to simplify this design, leading to area, com-

putational and power savings in the design. For denoising

applications, it is not possible to simplify the coefficients, an

approach presented in [16], [21], because that will lead to

visible distortions. Rather, we propose to use ‘db2’ filter. The

filter coefficients for the ‘db2’ filter are represented as:

LoD(z) = a1 + a2z
−1 + a3z

−2 + a4z
−3

HiD(z) = b1 + b2z
−1 + b3z

−2 + b4z
−3

where a1, a2, a3 and a4 are low pass filter coefficients and b4 =
a1, b3 = −a2, b2 = a3 and b1 = −a4 respectively. The lattice

representation of the same filter is given by following equations:
[
LoD(z)
HiD(z)

]

= K

[
1 −α2

α2 1

] [
1 0
0 z−2

] [
1 −α1

α1 1

] [
1

z
−1

]

(2)

where K is a constant and α1, α2 are coefficients for lattice

representation. It can be seen that ‘db2’ filter requires fewer

adders and multipliers than ‘db8’ filter. For the ‘db2’ filter, the

lattice approach requires only five multipliers while Filter Bank

based approach requires 8 multipliers.

Figure 4(a) shows the basic architecture for lattice imple-

mentation of ‘db2’ filter. Figure 4(b) shows architecture for

Filter Bank implementation of ‘db2’ filter. We observe the

redundancy in multiplications (the eight multipliers perform

only four distinct unsigned multiplications). Thus, we introduce

additional buffers to present a Modified Filter Bank (MFB)

implementation which reuses the multiplier computations and

re-uses them using time-buffers. This design is shown in Fig-

ure 4(c) and it leads to a saving of four multipliers in the

design. It introduces three cycles of delay in high-pass filter

calculations. Mathematically, we can write it as follows:

A1 A2 A3 A4

LoD(z) =
︷︸︸︷
a1 +

︷ ︸︸ ︷

a2z
−1 +

︷ ︸︸ ︷

a3z
−2 +

︷ ︸︸ ︷

a4z
−3

HiD(z) = b1 + b2z
−1 + b3z

−2 + b4z
−3

= −A4z
3 +A3z

1 −A2z
−1 +A1z

−3

= z3
(
−A4 +A3z

−1 −A2z
−3 +A1z

−6
)

This implementation is shown in Figure 4(c). The hardware

resource requirements of direct implementation of the above

discussed filters are provided in Table I.

2) Biorthogonal Filter: The bi-orthogonal filters are more

popular in image compression algorithms and many architec-

tures are proposed in literature to efficiently map them in

hardware. The CDF 9/7 filter is commonly used and it has

irrational coefficients. They can be rationalized by adding more

degrees of freedom on the Lagrange Half-Band Filter equation

and imposing the condition of rational coefficients [22] along

with the condition for perfect reconstruction. We refer to the

implementation in [16] which provides a hardware-efficient

multiplier-less approach to implement CDF 9/7 filter with

rationalized coefficients. The filter coefficients are symmetric,

hence they are clubed together to simplify the computationsL

wp = pixel(i− p) + pixel(i− p), p ∈ {0, 1, 2, 3, 4}

The low and high pass coefficients are obtained using shifts and

add logic operations on these values, instead of using dedicated

hardware multipliers.

LoD(i) = 1/2× w1 + w0 − 1/32× w0 + 1/64× w4

HiD(i) = −1/16× w2 − 1/8× w1 + 3/8× w0 − 1/32× w1

The architecture is presented in Figure 4(d). Division by 4,8

or 16 is implemented using arithmetic shift operations. This

eliminates the need of multipliers in the circuits.

C. Blocking detection

The accuracy of blocking detection and measure of blockiness

in the given frame is determined by the extent of staircase like

structure in the current frame. In this setting, we took tiles of

size 32× 32, hence the size of diagonal coefficients is 16× 16
values . We accumulate (add) the values of pixels over the rows

and then aggregate them along 4 bins. The four bins are placed

across the columns while all the pixels in rows are summed.

Mathematically, this can be described as follows:

bin(j%3) + = HH4(i, j)

Now, the values in these four bins are sorted into A,B,C and

D such that (A > B > C > D). As we mentioned earlier,

for tiles with blocking, A:B:C:D is approximately 4:3:2:1,

while the ratio is 1:1:1:1 for non-blocking cases. Sorting the

(a) Lattice implementation

(b) Filter Bank implementation

(c) Modified Filter Bank implementation

(d) Bi-orthogonal multiplierless Filterbank implementation

Fig. 4. Proposed DWT architectures for blocking detection. (a-c) show ‘db2’
based implementations with optimizations. The MFB implementation is neatly
pipelined, requires the fewest number of multipliers and achieves the highest
clock frequency. (d) shows multiplierless implementation (suitable for blocking
detection for image compression applications but unsuitable for denoising or
PNU extraction)

bins is easy because we can implement the design in signed

mathematics and bit-comparisons can lead to solution. A direct

implementation of comparison logic in hardware would require

several multiplier, divider and comparator circuits.

To efficiently implement this in hardware, we use the fol-

lowing approximate logic and implement this with help of shift

registers and comparators:

E = A+B + C +D

if (A > (E ≫ 2 + E ≫ 4) & D < (E ≪ 3))

blocking = true

Here, ≫ and ≪ refer to linear right and left shift operations.

The idea is that A must be greater than 31% of sum while

D must be less than 12.5% of the sum E to declare blocking

in the tile. This threshold is chosen between the two extreme

boundaries (4:3:2:1 and 1:1:1:1) and is also simple to implement

in hardware because it uses binary arithmetic.

This process is repeated for every tile. For each tile, we obtain

a binary value (O for no blocking and 1 for blocking). We

can average this value over a frame to obtain a normalized

index of blocking in the given image (ranging from 0 to 1 to

show percentage of blocking in the image). Existing blocking

detection schemes don’t give any normalized score, hence this

is an added advantage of our scheme.

For source camera identification, we need to instead quaran-

tine the blocks with blocking from the algorithm used subse-

quently for camera identification.

V. IMPLEMENTATION

A. DWT implementation

We evaluate our approach on the Xilinx Virtex 6 XC6VLX75

FPGA by generating the different architectures proposed earlier.

We prefer FPGAs because they provide a means for rapid

implementation of proposed architectures and support functional

parallelism. However, the designs presented don’t use any

reconfiguration-specific properties and can be further acceler-

ated for performance in VLSI technology. The architectures

presented in this paper have been analyzed in terms of kernel

area clock frequency and throughput considerations. Our design

is written in VHDL and synthesized using Xilinx ISE Design

Suite 12.4. iSim simulations were performed to test the wave-

form. The extracted frame can be loaded to the FPGA using

Xilinx frame buffer module onto SRAM allowing us to make

row and column accesses to extracted frame in single cycle. We

focus on DWT because it forms the cruz of computational time

of this algorithm (subsequent blocking detection requires only

two comparators).

The DWT and IDWT operations are identical and can be

performed using a similar architecture (by minor modification

in signs of coefficients). Before we move ahead, we verified that

simplifying the filter design from ‘db8’ to ‘db2’ will not have

any significant impact on our PNU extraction process. The CDF

filter, although excellent in blocking detection performance is

unsuitable for denoising step involved in source identification.

A direct implementation of the ‘db8’ filter using Filter Bank

scheme requires 32 DSP slices, where each slice consists

of multiplier-accumulate unit. The design achieves a clock

frequency of 45.56 MHz. The detailed hardware resources

are shown and compared in Table II. We implemented the

‘db2’ filter using both the lattice approach and the Filter Bank

approach. The lattice DWT kernel achieves a clock frequency

of 106 MHz while requiring 5 DSP slices on-board. The

architecture for lattice, Filter Bank (FB) and Modified Filter

Bank (MFB) implementations is shown in Figure 4(a-c).

The MFB implementation is neatly pipelined and it achieves

a higher clock frequency of 167 MHz (corresponding to 167

MBps) on target device while requiring 4 DSP slices. Details

of other resources (LUTs, slices and registers) is given in

Table II. Multiple independent kernels can be launched for DWT

kernel to accelerate processing. Since each kernel requires little

hardware resources and an 8-bit (pixel) input every cycle, loop

unrolling gives linear improvements in performance.

TABLE II
IMPLEMENTATION OF DWT FILTERS IN XILINX XC6VLX75 FPGA

Filter ‘db8’ ‘db2’ CDF

Details FB lattice MFB binary

slices 112 88 96 245

LUTs 48 99 138 175

Registers 112 88 96 210

DSP48E1 32 5 4 0

Frequency (MHz) 45.56 105.94 166.5 396

B. Performance

We used 6 available surveillance cameras along with 1 laptop

camera for the source authentication experiment.This comprises

4 Linksys WVC80N, 1 Dlink 942L, 1 Axis M1011-W and

1 Lenovo X301 web cam. To make the experimental settings

close to physical settings, we set the resolution to 640 × 480
(maximum possible) at a frame rate of 30 frames per second.

MPEG-4 codec was used, with the GOP size set between 15

to 20 depending on the camera model. At 30 fps, it requires

about 26.7 MBps throughput to process them in real-time. The

software implementation, on the other hand, takes 5 seconds

per frame on a core I7 computer. Hence, we look towards

hardware acceleration to make real-time video authentication

available in commercial scenarios. We conducted tests over 140

such samples collected in a number of trials and then check the

accuracy and throughput of our approach. The FPGA modules

proposed above can process at 167 or 396 MHz per coefficient,

which can be augmented to [2] to make a practical real-time

authentication system. Against the requirement of 26.7 MBps,

this system can achieve a throughput of 167 Mbps.

The speedup in video source authentication achieved by

augmenting the blocking module is shown in Figures 5 and

6 respectively. In Figure 5, the dotted lines indicate the per-

formance of existing detection scheme without removing the

false positives caused by blocking. The dotted lines show the

performance of existing approach while the solid lines show

the improvement caused by incorporating blocking detection. At

500 kbps, camera identification accuracy is at most 60% after

processing 30 seconds (90 seconds) of transmitted video but it

increases to 100% in 25 seconds only with our approach. For 1.5

Mbps video, 100 accuracy is reached 2.3X faster (10 seconds

against 23 seconds). Order of magnitude improvements can also

be observed in cases of heavy blocking where identification

accuracy increases from 20% to 100% for low bitrate video

(500 kbps)

VI. CONCLUSION

In this paper, we presented a simple approach to detect

blocking artifacts in images and video frames. This approaches

uses ‘stair-case’ property observed in diagonal wavelet decom-

position coefficients. We presented two architectures, based on

orthogonal and bi-orthogonal wavelets, to realize this scheme.

The bi-orthogonal wavelet based architecture is simple and effi-

cient for hardware implementation, requires no multipliers and

gives higher clock frequency. The orthogonal implementation is

helpful for integration and re-use in video forensics application

where it is used for real-time camera source detection in

surveillance feeds. We showed that the system can provide upto

Fig. 5. Improvement in identification accuracy of video surveillance feeds using
blocking detection approach in case of light blocking (light network losses)

Fig. 6. Improvement in identification accuracy of video surveillance feeds
using blocking detection approach in case of heavy blocking (heavy network
losses)

167 Mbps speed and significantly improve the performance of

source camera authentication schemes.

The future work will involve implementation and deployment

of prototype implementation on hardware boards with surveil-

lance cameras to learn difficulties in a practical settings.

REFERENCES

[1] J. Lukas, J. Fridrich, and M. Goljan, “Digital camera identification from
sensor pattern noise,” IEEE Transactions on Information Forensics and

Security, vol. 1, no. 2, pp. 205–214, 2006.

[2] A. Pande, S. Chen, P. Mohapatra, and J. Zambreno, “Hardware ar-
chitecture for video authentication using sensor pattern noise,” IEEE

Transactions on Circuits and Systems for Video Technology, to appear.

[3] S. Chen, A. Pande, K. Zeng, and P. Mohapatra, “Video source identifi-
cation in lossy wireless networks,” in The 32nd IEEE International Con-

ference on Computer Communications (IEEE Infocom mini-conference),
2013, pp. 215–219.

[4] O. Kerr, “Searches and seizures in a digital world,” Harvard Law Review,
vol. 119, p. 531, 2005.

[5] F. Lefèbvre, B. Chupeau, A. Massoudi, and E. Diehl, “Image and video
fingerprinting: forensic applications,” Media Forensics and Security, pp.
725 405–725 405–9, 2009.

[6] M. Chen, J. Fridrich, M. Goljan, and J. Lukas, “Source digital camcorder
identification using sensor photo response non-uniformity,” in Proceedings

of the SPIE, vol. 6505, 2007.

[7] P. Mcdonagh, A. Pande, C. Vallati, P. Mohapatra, P. A. Perry, and
E. Mingozzi, “Investigation of scalable video delivery using h.264 svc
on an lte network,” in 14th Symposium on Wireless Personal Multimedia

Communications (WPMC 2011), 2011, pp. 1–5.
[8] “Canon data verification system,” online, http://cpn.canon-europe.com/

content/education/infobank/image verification/canon data verification
system.do, 2013.

[9] K. Mehdi, H. Sencar, and N. Memon, “Blind source camera identification,”
in International Conference on Image Processing, vol. 1. IEEE, 2004,
pp. 709–712.

[10] Z. Geradts, J. Bijhold, M. Kieft, K. Kurosawa, K. Kuroki, and N. Saitoh,
“Methods for identification of images acquired with digital cameras,”
Enabling technologies for law enforcement and security, vol. 4232, no. 1,
pp. 505–512, 2001.

[11] H. Wu and M. Yuen, “A generalized block-edge impairment metric for
video coding,” IEEE Signal Processing Letters, vol. 4, no. 11, pp. 317–
320, 1997.

[12] Z. Wang, A. C. Bovik, and B. Evan, “Blind measurement of blocking
artifacts in images,” in Proceedings of IEEE International Conference on

Image Processing, vol. 3. Ieee, 2000, pp. 981–984.
[13] M. Vetterli and J. Kovačevic, Wavelets and subband coding. Upper Saddle

River, NJ, USA: Prentice-Hall, Inc., 1995.
[14] D. Redmill, D. Bull, and R. Martin, “Design of multiplier free linear

phase perfect reconstruction filter banks using transformations and genetic
algorithms,” in Proc. Intl. Conf. Image Processing and Its Applications,
Jul. 1997.

[15] M. Martina and G. Masera, “Multiplierless, folded 9/7 - 5/3 wavelet VLSI
architecture,” IEEE Trans. Circuits and Systems II, vol. 54, no. 9, pp. 770–
774, Sep. 2007.

[16] A. Pande and J. Zambreno, “Poly-DWT: Polymorphic wavelet hardware
support for dynamic image compression,” ACM Transactions on

Embedded Computing Systems, vol. 11, no. 1, pp. 6:1–6:26, Apr. 2012.
[Online]. Available: http://doi.acm.org/10.1145/2146417.2146423

[17] J. Ritter and P. Molitor, “A pipelined architecture for partitioned dwt based
lossy image compression using FPGAs,” in Proc. Intl. symposium on Field

Programmable Gate Arrays (FPGA), 2001, pp. 201–206.
[18] M. Alam, C. Rahman, W. Badawy, and G. Jullien, “Efficient distributed

arithmetic based dwt architecture for multimedia applications,” in Proc.

Intl. Work. SoC for Real Time Applications, 2003, pp. 333–336.
[19] M. Martina and G. Masera, “Low-complexity, efficient 9/7 wavelet filters

implementation,” in Proc. IEEE Intl. Conf. Image Processing (ICIP), Sep.
2005.

[20] C.-T. Huang, P.-C. Tseng, and L.-G. Chen, “VLSI architecture for discrete
wavelet transform based on B-spline factorization,” Proc. IEEE Work.

Signal Processing Systems, 2003. SIPS 2003, pp. 346–350, Aug. 2003.
[21] S. Murugesan and D. Tay, “New techniques for rationalizing orthogonal

and biorthogonal wavelet filter coefficients,” IEEE Transactions on Cir-

cuits and Systems I: Regular Papers, vol. 59, no. 3, pp. 628–637, 2012.
[22] D. Tay, “Rationalizing the coefficients of popular biorthogonal wavelet

filters,” IEEE Trans. Circuits & Systems for Video Technology, vol. 10,
no. 6, pp. 998–1005, Sep. 2000.

