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Abstract

Overlay multicast protocol builds a virtual mesh spanning all member nodes of a multicast
group. It employs standard unicast routing and forwarding to fulfill multicast functionality.
The advantages of this approach are robustness and low overhead. However, efficiency is an
issue since the generated multicast trees are normally not optimized in terms of total link
cost and data delivery delay. In this paper, we propose an efficient overlay multicast protocol
to tackle this problem in MANET environment. The virtual topology gradually adapts to
the changes in underlying network topology in a fully distributed manner. To save control
overhead, the participating nodes only keep a fisheye view of the dynamic mesh. The multicast
tree is progressively adjusted according to the latest local topology information. Simulations are
conducted to evaluate the tree quality. The results show that our approach solves the efficiency
problem effectively.
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1 Introduction and Motivation

Mobile Ad Hoc Network (MANET) [1] refers to a form of infrastructureless network connecting
mobile devices with wireless communication capability. The connection between any two nodes
is either a single hop or a multi-hop path supported by other nodes. Most of the applications
of MANETS require group communication support in the network. Various group communication
models are surveyed in [2]. Among them, multicasting is the most general and a frequently used
model. Multicasting in MANET faces many challenges due to the continuous changes in network
topology and limited channel bandwidth. Thus, conventional multicast schemes designed for wire-
line networks cannot be directly applied. Many multicast routing protocols have been proposed for
MANET, which can be classified into tree-based protocols [3, 4, 5|, mesh-based protocols [6, 7, 8, 9],
and combined methods [10, 11].

1.1 Overlay Multicast in MANETSs

Overlay multicast [12, 13, 14] has been proposed as an alternative approach for providing multicast
services in the Internet. A virtual topology can be built to form an overlay network on top of the
physical Internet. Each link in the virtual topology is a unicast tunnel in the physical network.
The IP layer provides a best-effort unicast datagram service, while the overlay network implements
all the multicast functionalities such as dynamic membership maintenance, packet duplication and
multicast routing. When the overlay multicasting technique is applied to the MANETSs, the manner
in which the overlay layer interacts with the physical network is quite different from that of overlay
multicasting in the Internet. In MANETS, each node acts as a router as well as an end host. In
most cases, we can assume the bandwidth homogeneity among the nodes in a MANET topology.
Whereas in the Internet topology, there is a significant difference in available bandwidth at the end
hosts and the routers. Forwarding and duplicating packets at the bandwidth limited end-hosts are
inherently less efficient than at the routers. Thus, there is a major efficiency problem in overlay
multicasting in the Internet, compared to the network layer multicast. However, this problem does
not exist for overlay multicasting in MANET.

AMRoute [11] is the first overlay multicast protocol proposed for MANETSs. The protocol has
two components: the mesh construction procedure and the multicast tree maintenance procedure.
It uses a broadcast-based procedure to build the unicast tunnels for the virtual mesh. During
the mesh construction process, a logical core node is elected for the entire mesh. Then, the core
node periodically disseminates control packets within the virtual mesh to build a shared multicast
tree. The data packets flow along the shared tree for delivery. Though the physical network
poses dynamic topology, the virtual mesh remains unchanged once built. Figure 1 illustrates the
concept of virtual mesh and the multicast tree built by the AMRoute protocol within the mesh.
Using this overlay method, AMRoute does not need any support from the non-member nodes, i.e.,

all multicast functionality and state information are maintained within the group member nodes.
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Figure 1: Concept of virtual topology for overlay multicast.

Other advantages are simplicity and flexibility. The protocol does not need to track the network
mobility since it is totally handled by the underlying unicast protocols. Unlike many other multicast
schemes, AMRoute protocol has no special requirements imposed on the unicast protocol. Thus, it
can operate seamlessly on multiple domains that use different unicast routing protocols.

Several other overlay multicast methods are proposed for MANETS, aiming at improving the
efficiency and reduce the latency of overlay multicast. They include the Location-Guided Tree
Method (LGT) [15] and Prioritized Overlay Multicast (POM) [16]. Under the LGT scheme, the
overlay topology is not built in the explicit manner as other protocols do. With the knowledge of
the full member list and their geometric locations, the source node computes the topology of the
overlay multicast tree. It uses the geometric distance between member nodes as the heuristic of
link costs. Each data packet is unicasted to the children nodes on the computed virtual tree. And
the tree is also encoded in the packet header so that the children nodes know how to duplicate and
forward the packet. LGT complies to the "stateless" architectural principle of network protocols,
i.e. there is no multicast routing tables to be maintained. However, the costs are the heavy packet
headers and the cost of a universal node location service. POM builds multiple overlay trees with
different priority levels. Nodes within the higher priority tree carry more important traffic flows
in overlay networks and low-priority trees are rearranged whenever some nodes temporarily move
to a high-priority tree. Similar to LGT, the tree formation procedure would use the location of
group member nodes as heuristics of optimization. The overlay topology is dynamic in accordance

to change in network traffic properties as well as node mobility.



1.2 Motivations and Objectives

For an overlay multicast protocol, the key property is the controlled spread of its state information,
i.e. the multicast routing tables are kept within the group member nodes. On the other hand, the
traditional MANET multicast protocols maintain state information at all network nodes, i.e., both
member nodes and non-member nodes need to run the protocol in order to support the multicast
session. This widespread maintenance of state information lowers the protocol robustness against
the node mobility. If the routing topology involves some fast moving nodes, even though they are
not member nodes, the multicast session is hampered. Further, when members join or leave the
group, the state information in all the involved nodes should be updated. This is another burden to
both member nodes and the participating non-member nodes. Thus, we expect overlay multicast
protocols to be more robust, due to the constrained spread of state information.

However, the advantages of overlay multicast come at the cost of low efficiency of packet delivery
and long delay. When constructing the virtual infrastructure, it is very hard to prevent different
unicast tunnels from sharing physical links, which results in redundant traffic on the physical links.
Furthermore, if the virtual mesh remains static in the face of node mobility, it can cause performance
problems such as the formation of loops and sub-optimal multicast tree. As pointed out in [17],
AMRoute achieves near perfect packet delivery ratio for no mobility, and its performance drops
significantly even at low mobility. To tackle this problem, we propose an overlay multicast scheme
that constantly optimizes the quality of generated multicast trees.

Thus, we propose an efficient overlay multicast protocol based on dynamic overlay mesh. Our
protocol is composed of two parts: the Dynamic Mesh (DM) scheme and the Progressively Adapted
Sub-Tree forwarding (PAST) scheme. The DM scheme connects the group members using low-cost
virtual links, and continuously eliminates high-cost virtual links from the mesh. While using the
DM scheme, each member maintains a partial view of the virtual mesh. Based on the sender’s
local view, the multicast delivery tree is calculated, instead of forming the tree by passing control
packets. Thus, the control overhead is minimized. Finally, when a packet reaches the root of a
sub-tree, the sub-tree is re-calculated based on the most accurate local view of the DM. The tree
construction protocol, called PAST, is used to achieve a balance between low control overhead and
high multicast tree quality. Simulation studies have shown 40% reduction in average tree cost in
terms of the number of physical links in groups of 40 members.

The rest of the paper is organized as follows. In Sections 2 and 3, we present our multicast
protocol. The basic concepts of the protocol are introduced in Section 2, whereas the detailed
procedures are given in Section 3. In Section 4, we present the results of simulation studies. The

related work are discussed in Section 5. Finally, the concluding remarks are presented in Section 6.



2 Basic Concepts of PAST-DM Protocol

Figure 2 illustrates an example case where the static virtual topology could cause excessive redun-
dancy. Figure 2(a) depicts an initial setup of both virtual topology and physical topology. Node A
is the source node. The virtual topology can serve as a multicast routing tree for data delivery. The
dashed lines in the physical topology are unicast tunnels corresponding to the virtual topology. As
the nodes move, unicast routing protocol will form different tunnels for the same virtual topology,
which is shown in Figure 2(b). As shown in the figure, 9 physical links are used for the virtual
topology. Physical links B-5 and 5-C are redundantly included. Figure 2(c) shows the adapted
virtual topology and its corresponding tunnels, which only requires 7 physical links. Initially, nodes
C and D have higher hop distance and the virtual link C-D is not included in the virtual topol-
ogy. However, with the movement of network nodes, the hop distance between C and D reduces
significantly. With static virtual topology, the virtual link C-D can never be utilized, resulting in
high redundancy. AMRoute[11]| periodically rebuilds the shared routing tree in order to account for
the node mobility. However, it still encounters the situations as shown in Figure 2(b) because the

shared tree is always built using the static virtual mesh.

b) Changed physical topology and initial virtual topology c¢) Changed physical topology and adapted virtual topology

Figure 2: Efficiency of overlay multicast.

2.1 Dynamic Mesh Maintenance by Link State Exchange

The goal of the Dynamic Mesh (DM) method is to keep the virtual mesh optimized by always using
the shortest logical links (unicast tunnels) to connect the group members. The mesh is dynamic
in the sense that it is updated according to the current physical topology, which prevents it from
deterioration due to the node mobility. Each member node in a DM keeps track of the member

nodes in its vicinity. Each node records its virtual neighbors (VN) as its virtual link state. The



maximum degree of the virtual topology is controlled. Each member node of a DM maintains the
topology map of the virtual mesh. This is done by the link state exchange technique, which is
used in the Fish-eye State Routing protocol [19] for ad hoc network. At each member node, the
topology map is represented as a Link State Table (LST). The entries of the LST are the link state
information of all group nodes obtained from virtual neighbors (VNs). Every node periodically
exchanges this link state table with its neighbor nodes only (no flooding). Each entry in a LST
carries a sequence number, and the entry with a higher sequence number will always replace the one
with a lower sequence number. The link state of a node will eventually be carried to the far away
nodes after several exchanges. Through the LSTs, each node has a local view of the whole virtual
topology. To avoid a storm of link state exchanges, each node can make the interval between two
consecutive exchanges as the period plus a small random offset. This will give a more stable overall
network performance. Figure 3 shows an example network with a virtual mesh on five nodes. The
four sub-figures shows the LSTs at different mesh nodes after each round of LST exchanges. The
top-left sub-figure shows the initial LSTs. The top-right sub-figure illustrates the packets involved
for one round of LST exchanges. The bottom-left sub-figure shows the LSTs after fist round of
LST exchanges. And the bottom-right sub-figure shows the LSTs after the second round of LST
exchanges. And after two rounds, each mesh node has a complete view of the virtual mesh.

The link state exchange procedure requires each group member to deliver its LST to all its VNs
at the same time. This can be done by a series of unicasts. However, if all intended receivers are
located within a local range of less than certain number of hops away, a TTL bounded local flooding
will deliver the packet to all receivers at the same time, and much more efficiently. This is justified
by the statistical results obtained from the simulations described in Section 4. For a group of 20
nodes randomly chosen from a network of 100 nodes, the average hop length of the logical links is

3.8 within the virtual mesh.

2.2 Detection of Remote Island

The TTL bounded flooding is efficient only when the TTL bound is small enough, normally no
greater than 4. Thus, this method alone cannot be enough for all cases of link state exchanges.
When one or a small number of clustered member nodes moves far from the cloud of the majority,
long tunnels are needed to keep the virtual mesh connected. Both the ends of a long unicast tunnel
should exchange LST. We term the cluster of a small number of remote members a "remote island".
The cloud of the majority of group members is called the "mainland". It is notable that whether
there is a remote island situation is depending on the range of TTL bounded flooding. At certain
TTL value, one or a small number of member nodes can not be reached by the packets from the
other member nodes. Thus, they form a remote island. However, if the TTL value had been greater,
even greater by one hop, the packets from the "mainland" could have reached them. Then, there is
no remote island situation.

It is necessary to make each node able to detect the case of inefficient communication due to
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Figure 3: Example of LST Exchange

the remote island problem. The solution of this approach uses the "Leaky Bucket" algorithm. The
initial level of the "Leaky Bucket" (LB) at each node is determined by its link state. Each LB leaks
at constant rate. Each time a member node, I, receives a fresh LST packet from another member
node, it adds certain amount of "liquid" to its own LB. When node I stays in the mainland, it
constantly receives LST packets from other virtual neighbors, which maintains its LB level. Only
when node I goes away far off or to an isolated island, its LST packet arrival rate drops gradually

toward zero. Its LB level eventually becomes empty, which makes node I aware of its situation.

2.3 Connecting the Remote Island

For a remote island, it is important that there are bidirectional tunnels between the mainland of
group members and the remote island. To ensure this, when the LB of a member node in remote
island runs empty, it broadcasts a Group REQ packet. The packet will be rebroadcasted until
it reaches other group members. A group member receiving this Group REQ packet will not
rebroadcast it, but will intend to maintain a tunnel to the sender of Group REQ. By following the
distributed "Reconnection Procedure" described in Section 3.1.5, a limited number of bidirectional

tunnels are set up between the remote island and the mainland.

2.4 Group REQ Flooding

A Group_REQ packet is only rebroadcasted by non-member nodes, not by member nodes. This
constraint reduces control overhead. Furthermore, this type of propagation introduces a good

connectivity for the unicast tunnels. For a member node inside the mainland, there are some



member nodes certain hops away in all directions. If it broadcasts a Group REQ packet, the
packet will be consumed by the surrounding members. Thus, the higher the population density of
a multicast group in the network, the higher the possibility that the Group REQ flooding from
one node is constrained within the sender’s VNs. This constraint makes the bootstrap procedure
feasible. Even though all group members are broadcasting Group REQs during this stage, the
overlap of the flooding ranges are insignificant. Thus, the overall overhead is much smaller than the
case when all group members are broadcasting with network-wide flooding without constraining.
Furthermore, the virtual mesh built from the bootstrap procedure are optimized. All logical links
that makes up the virtual mesh are the shortest possible ones based on the current physical topology.

When a node in a remote island tries to connect to the mainland by broadcasting Group REQ
packets, the packet can only reach the member nodes at the border of the mainland. Since it is
consumed by the member nodes, the packet have a very small chance to get inside the mainland.

This property ensures that only the border nodes are maintaining the tunnels for remote islands.

2.5 Progressively Adapted Source-Based Tree

Compared to the shared tree method, the source-based tree approach is more efficient for data
delivery. Each source constructs its own data delivery tree based on its local link state table. No
extra overhead of control message is needed. This is the key difference between our method and
other source-based tree protocols. To minimize the total cost of multicast tree, the source needs to
construct a Steiner tree for the virtual mesh. As the local view of the virtual mesh at the source
node is based on its link state table, the topology information close to the source is more up-to-date
and accurate. It is progressively less accurate as the hop distance increases. Thus, if there is a tie
between two virtual links with the same cost during the tree construction, the one that is closer to
the source node is favored. Specifically, the virtual links adjacent to the source should always be
included in the tree since they are from the most up-to-date link state information. To address this
property, we propose a Source-Based Steiner tree algorithm as discussed in the next section.

By applying the source-based Steiner tree algorithm, the source makes all its neighbors its
children in the multicast tree and divides the remaining nodes into subgroups. Each subgroup
forms a subtree rooted at one of the first-level children. The source node does not need to compute
the whole multicast tree. It puts each subgroup into a packet header, combines the header with
a copy of the data packet, and unicasts the packet to the corresponding child. Each child is then
responsible for delivering the data packet to all nodes in its subgroup. It does so by repeating the
Source-Based Steiner tree algorithm. Eventually, the subgroup will become empty, and the process

stops. If the subgroup has only one node, the data packet is directly unicast to the final receiver.
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Figure 4: Link state table for virtual mesh.

3 Detailed Operations of PAST-DM Protocol

Our proposed protocol for overlay multicast is called PAST-DM. The virtual mesh topology grad-
ually adapts to the changes of the underlying network topology in a fully distributed manner with
minimum control cost. The multicast tree for packet delivery is also progressively adjusted accord-
ing to the current topology. Exploiting the advantages of overlay multicast approach, the join and
leave operations can be simple and robust. The descriptions of the protocol are detailed in the

following subsections.

3.1 Dynamic Virtual Mesh by Link State Exchange
3.1.1 Data Structure

The data structure that is maintained at each member node is the link state table (LST) for virtual
mesh, which is shown in Figure 4. Each LST entry has three fields: Node ID, TimeStamp, and
LinkState. The LinkState field is the virtual link state of the given member node, say node I,
indicated by the Node ID field. The TimeStamp field indicates the time when this link state entry
is originally released from node I. Periodically, each member node releases a packet to its Virtual
Neighbors (VNs), carrying a subset of its LST. This subset, named as Propagate Link State Table
(PLST), contains the entries of LST which are fresher than the "Propagate Threshold". Entries
that are older than the "Propagate Threshold" but fresher than the "Stale Threshold" are valid
but not propagate entries. Entries that are older than the "Stale Threshold" should be expunged
from the LST table. The LinkState field of each LST entry has the following structure. The
Node Deg field indicates the node degree of the given member node, I, in the virtual mesh. It is
followed by a variable number of VN descriptors, each of which describes a VN of node I by its
Node_ ID and its physical hop distance from node I.

3.1.2 Control Packets and Formats

PAST-DM uses four control packets for the maintenance of dynamic virtual mesh. They are
Group REQ, Group_REP, Near PLST and Far PLST. Among these four control packets, Group_ REP



and Far PLST are unicast packets. Group REP and Near PLST are flooding packets, however,
they are flooded with two different bounding techniques. Near PLST packet flooding is bounded
by the TTL field, i.e. the packet is locally flooded within a hop distance specified by its TTL field.
The bounding method of Group REQ packet flooding is different. The packet is only rebroadcasted
by the non group member node, and it gets consumed by the group member nodes. Network-wide
flooding is intrinsically costly and error-prone. These bounding methods for flooding will reduce

control overhead. The purpose of these control packets and their format are summarized as follows:

e Group REQ. This packet is flooded by each group member during the bootstrap process.
A new member joins a multicast group by flooding the Group REQ packet. Finally, when
a member node detects that it moved far away from all other members and becomes a single
remote member, it will flood Group REQ packet in order to maintain connection with other
members. This detection mechanism is described in the upcoming subsection. Though this
packet is purely for signaling, it contains the following fields: SenderID, TimeStamp, and
HopCnt. The TimeStamp field records the time when the packet is released. The HopCnt field
records how many hops the packet has been forwarded. Every time the packet is rebroadcasted,

the forwarding node will increment the HopCnt field by one.

e Near PLST. This packet is used by each member node to locally flood within a limited
region. This packet carries the sender’s PLST information, and reaches all its VNs in the
flooding range. It has the following fields: SenderID, TimeStamp, TTL, HopCnt and PLST.
The PLST field is used to carry the sender’s PLST. The sender assign the T'TL field an initial
value, and it is decremented every time the Near PLST packet is rebroadcasted. The packet

will not be further forwarded if the TTL field becomes zero.

e Group_ REP. This packet is used by a receiver of the Group_ REQ packet to unicast a reply
back to the originator. Thus, both the receiver and the originator will regard each other as
neighbors in the virtual mesh. Later in this section, it is shown that this packet is used to
set up long unicast tunnels for the virtual mesh. It contains the following fields: SenderID,
TimeStamp, and PLST. The node sending this packet should copy its PLST to the PLST
filed of this Group REP packet.

e Far PLST. This packet is used to maintain long unicast tunnels in a virtual mesh. Both end
nodes of a long unicast tunnel will unicast to each other the Far PLST messages to exchange
their PLSTs. It has three fields as SenderID, TimeStamp and PLST. This packet has the

same format and content as the Group_REP packet.

3.1.3 Bootstrap Procedure

At the bootstrap stage of a multicast session, all member nodes first broadcast a Group_ REQ

packet. Each member then waits for a period termed as REQCollect Period to collect Group_REQ
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packets from other group members. When a node receives a Group REQ packet, the receiver can
know the current hop distance between the receiver and the originator from the packet’s HopCnt
field. The Group REQ packets with HopCnt field less than a threshold value termed as RE-
QHop_Threshold are regarded as normal REQs. Other Group REQ packets are regarded as long
REQs. All member nodes follow the same bootstrap protocol. We use one member node, I, as an
example to describe the process. Assume node I has collected n normal REQs and [ long REQs
during the waiting period. Node I selects its VNs from the senders of these n + [ REQs, and fur-
ther determine the bounding TTL value of its Near PLST packets. Each collected normal REQ is
represented by a two-tuple <HopCnt, TimeStamp>. Node I first sorts the normal REQs by their
tuples in an increasing order of HopCnt field and decreasing order of TimeStamp field. Let the
sorted normal REQs be of the following order: Rnl, Rnd,---  Rnl. The TTL bound value for node
I will be:

PLST _TTL(I) = min {HopCnt(Rnl,pp), PLST _TTLMAX},

where VDB is the bound on node degrees in the virtual mesh, and PLST TTLMAX is the bound
on PLST_TTL values for all nodes.

The receivers of the long REQs should be responsible for making sure that the senders of the long
REQs are connected to the main mesh. To achieve this objective, node I randomly selects k REQs,
{Rl1,Rly,---,Rl;}, from the [ collected long REQs, and regards the senders of {Rly, Rly,---, Rl;}
as its far VNs. To ensure mesh connectivity, especially when the multicast group population is
sparse in the network, one should choose large k values, or, even enforce k be equal to [. On the
other hand, larger k£ value results in more longer links in the mesh, and more overhead in bootstrap
and maintenance procedure. In our simulation setups, we can achieve good result with k being set

as one. Up to now, node I can determine its VN set as the following:

V Nset(I) = VNset_Near(I) UV Nset_Far(I); where
VNset Near(I) = {SenderID(Rnﬂ | Hoant(Rnf) < PLST TTL(I),j € [1,n]} and
V Nset Far = {SenderID(R;)}

SenderID(R) indicates the sender of the REQ packet R. This VN set is actually node I’s initial link
state in the virtual mesh. It is the first entry that node I can fill into its Link State Table (LST).
Node I then need to unicast a Group REP packet back to SenderID(R;), carrying its current
PLST. The detailed steps are represented in Algorithm 1.

3.1.4 Maintenance Procedure

When the member nodes have determined their initial link states, they begin their maintenance
procedure. Therefore, a multicast session enters the maintenance stage. The main operation of the
maintenance stage is to keep up the periodical link state exchange among the group members. To
illustrate the maintenance procedure, let us consider an example with node I as a group member.

After a period termed as PLST EXPeriod, node I repetitively generates a Near PLST packet.

11



Algorithm 1: Bootstrap Procedure
Data: Group_REQ packet
Result: Initialize the VNset, the lists of neighbors on the virtual mesh
begin
Initialize the NormalREQ List and LongREQ List;
Broadcast Group REQ packet;
Wait for Group  REQ packets from other member nodes;
foreach received Group REQ) packet, denoted as R do
if HopDistance(ThisNode, SenderID(R)) < NormalREQ MAX then
| put R into NormalREQ List;
else
| put R into LongREQ List;
end
end
Select member nodes for VNset from the NormalRE(Q List and LongREQ List;

Set TTL for PLST packets;
end

The TTL field of the packet is assigned the value of PLST TTL(I), and the PLST field is filled
by node I’s current PLST. The packet is then broadcasted by node I and further flooded within
its local range. Both member and non-member nodes will rebroadcast the packet, and its HopCnt
field get incremented every time by the forwarding node. If its far VN set is not empty, node I
should immediately unicast Far_ PLST packets to all its far VNs. This combined unicast/broadcast
method is the most efficient way of propagating node I’s current PLST to all its VNs.

After propagating its PLST, node I uses the rest of the period collecting fresh Near PLST
packets from other members. A PLST packet, P, is regarded as fresh according to the following
definition. If SenderID(P) is in node I's VN set, the TimeStamp(P) should be later than the last
received PLST packet from SenderID(P). Otherwise, the TimeStamp(P) should be later than any
PLST packet collected in this period. At the end of the period, node I adjust its PLST TTL
parameter based on the collected Near PSLT packets and their HopCnt fields. Using the same
process as the initial PLST TTL determined during the bootstrap stage, node I determines its
PLST TTL value for the next period. Node I’s link state is also updated at the same time, as node
I updates its VN set. The VNset Near(I), which represents node I’s near VNs are updated as the
senders of the newly collected PLST Near packets during current period. In spite of updating the
near VN set, node I keeps its far VN set the same.

Another function of the maintenance procedure is to detect if one or a small number of members
have moved far away from all other members. This is done using a "leaky bucket" algorithm. At
the beginning, node I decides the initial level of its "leaky bucket", LB(I), as the following;:

|V Nset Near(I)|xLBUnit_Normal : if VNset Near(I)#0

LB_Level(I) = { |V Nset Far(I)|xLBUnit_Far 1 otherwise

During the procedure, LB(I) is leaking at constant rate, termed as the LBLeak Rate. Certain

amount of "liquid" is added each time node I receives a fresh PLST packet. Depending on the
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PLST packet being Near PLST or Far PLST, the added "liquid" amount is LB AddUnit N ormal
or LBAddUnit Far, respectively. Given the fact that a node generally has less far VNs than
near VNs, and it takes longer delay for Far PLST packets to reach its destination, the parameter
LBUnit _Far is larger than LBUnit Normal, and similarly is LBAddUnit Far is larger than
LBAddUnit_Near.

To achieve higher accuracy, we propose to add variable amount of "liquid" upon receiving a fresh
PLST packet. The added liquid is proportional to the number of hops that the message has traveled.
Thus, depending on the PLST packet being Near PLST or Far PLST, the amount of added
liquid is LBAddUnit_Near x Hops(PLSTpacket) or LBAddUnit_Far x Hops(PLSTpacket),
respectively. The detailed steps are represented in Algorithm 2.

Algorithm 2: Mesh Maintenance Procedure
Data: PLST packet
Result: Maintain the VNset, adjust the LB level
begin

Set initial LB level;

At periods in length as PLST EXPeriod, do begin
Generate and broadcast Near PLST packet;

if VNset_Far(ThisNode) is not empty then

| Unicast Far_ PLST packet;
if LB level == 0 then enter Reconnection Procedure;
Wait for PLST packets;

foreach received PLST packet do
Update VNset;

if PLST packet is Near PLST then
L amount of added liquid to LB level is

LBAddUnit _Near x Hops(PLSTpacket);
if PLST packet is Far _PLST then

amount of added liquid to LB level is

LBAddUnit _Far x Hops(PLSTpacket);

end
end

3.1.5 Reconnection Procedure

The purpose of this procedure is to setup and maintain the bi-directional tunnels between the
mainland of group members and a remote island. When the LB level at a member node, I, becomes
empty, it should start the reconnect procedure. Node I first broadcasts a Group REQ packet, and
the packet is rebroadcasted until it reaches the other group members. All other member nodes,
which are in the maintenance stage should respond when receiving a Group REQ packet. Suppose
node J has received a Group_REQ packet, R! from node I. If HopCnt(R!) is not greater than
PLST _TTL(J), node J will ignore the packet as an abnormal event. Otherwise, node J should
include I into its far VN set. J then unicasts back to node I the Group REP packet, carrying its
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current PLST. Node I waits for a period REPCollect Period, to collect any responding Group REP
packets. Suppose node I collect p REPs during the period, it only needs to maintain certain number
of the collected REPs, and make the senders of those REPs as its VNs. It then unicasts each of
its VNs the Far PLST packets with its current PLST. At the chosen VNs, upon receiving the
Far PLST, the link state entry in LST that includes this unicast tunnel will be refreshed. At the
senders of other Group REPs, which are not chosen by the destination node, the LST entry will
soon become outdated, and they cease to keep the unicast tunnel. In this way, a controlled number
of tunnels is setup between the mainland and a remote island. The detailed steps are represented

in Algorithm 3.

Algorithm 3: Reconnection Procedure
Data: Group REP packet
Result: Re-establish the list of neighbors on the virtual mesh
begin
Broadcast Group_ REQ packet;
Wait for Group REP packets from other member nodes;
foreach received Group REP packet, denoted as P do
| put P into REP _List;
end
Set VNset(ThisNode) according to REP _ List;

Unicast PLST packets to nodes in VNset;
end

3.2 Progressively Adapted Source-Based Tree (PAST) Algorithm

As discussed in the previous section, the link state exchange algorithm for DM maintenance gives
a special property to the LSTs in the member nodes. The link state entries are progressively less
accurate with increasing hop distance. To address this issue, we developed a novel Source-Based
Steiner tree algorithm for the tree computation.

Let ds(n) denote the hop distance from source node s to node n (regardless of the costs on the

links). For a virtual link (nl1,n2), its hop distance to source node is defined as follows.
ds(ni,mn2) = min[ds(ni), ds(ng)].

Let ¢(n1,n2) be the cost of the virtual link (n1,n2). We define the "adapted cost” of the link as its

cost multiplied by its distance to the source.
ac(ny,ng) = ds(ny,ng) - ¢(ny, ng).

Thus, for any link that is adjacent to the source node, its distance value and the adapted cost should
both be 0. With each link using its adapted cost value, we apply the following heuristic [20] for
computing the Steiner tree. With the zero-cost links, the initial tree can have the source node as
root and all neighbors as its first-level children. The partially constructed tree expands toward the

Steiner tree by including the nearest receiver to it, together with the shortest path connecting them.
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Figure 5: Example of Tree Construction.

Figure 5 shows an example. The source node is S, and its receiver list is {r1---r5}. Figure 5(a)
shows its local view of virtual topology. The source-based Steiner tree using adapted costs is shown
in Figure 5(b). S generates two smaller lists: {r3} and {r4, r5}. They are included into the header
of the packets sent to rl and r2 as shown in Figure 5(c). The detailed steps are represented in
Algorithm 4.

To reduce the computational complexity, the source node can cache the recent tree construction
result for the incoming data packets. This cached result can be kept valid until the local link state

table is updated during the next incoming link state exchange.

3.3 Join and Leave

Contrary to the complicated join and leave process with conventional "stateful" multicast, overlay
multicast supports dynamic membership in a simple and robust manner. When a node intends to
join the multicast group, it starts with a normal neighbor discovery process described in Section 3.1.
As multiple groups may co-exist in the network, it needs a group address in its Group_REQ packets.

As the member nodes of the intended group respond with Group REP packets, it can collect its
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Algorithm 4: PAST Algorithm (for group member node "I")
Data: Virtual link state table local at node I; and header of the data packet;
Result: Partition of node I's sub-tree into smaller trees, one for each children;
begin
foreach pair of group member nodes ny, ny do
if n1 and ny are neighbors in link state table then
Edge (n1,n2) is included in graph G[V,E];
L Assign weight to (n1,n2) as: ac(ni,n2) = ds(ni, ne) - ¢(n1,n9);

end

Use SubTreeList(I) denote the node list in the packet header to node I;

Apply Steiner Tree algorithm to G on its node subset SubTreeList(I), the result is
SubTree(I);

foreach node J as the direct children of I in SubTree(I) do
SubTreeList(J) is the set of all J’s descendants in SubTree(I);

Make a copy of the data packet;
Output SubTreeList(J) into the header of the new packet;

Forward the data packet to J;
end

end

own virtual neighbors and set up its own link state. As the responding group nodes also include
the newcomer as their neighbor, they will start to exchange link state tables with the new member.
In this way, the new member will gradually build its own view of the virtual mesh. At the same
time, the new member’s neighbors on the virtual mesh will exchange their new link state to their
neighbors, carrying the new member’s identity further away into the mesh.

The new member’s identity will eventually reach any data source node in the mesh, then, it can
be included in the header of later data packets. However, the new member can start receiving data
packets right after it is recognized by its virtual neighbors. This is achieved by an additional data
forwarding function on each child node on the multicast tree. When a child node has forwarded the
data packet to all nodes in its subgroup, it checks if it has any virtual neighbor as a new member
in the mesh. A new member can indicate its newcomer status in its first Group_ REQ packets. An
additional unicast is needed for the missing newly joined neighboring receiver. As a new member
may have multiple virtual neighbors, it will receive multiple copies of the same data packet. It
should discard the duplicate ones. However, once the source recognizes the new member and puts
it into the delivery list, it will no longer receive any more duplicate packets.

To leave the group, a member node needs to unicast a Group_ LV message to its current virtual
neighbors. The link state exchange between it and its neighbors will stop. The neighbors will not

deliver the data packet to it even though it may still appear in the subgroup node list for a while.
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4 Performance Evaluation
4.1 Simulation Configuration

Our simulation network has 100 mobile nodes randomly roaming within a 2000m x 750m free space.
The radio transmission range of each node is 250 meters. In this setup, the probability of partition
in network topology is relatively small. The average hop distance is 4.4. The longest hop distance
is 11. Each simulation run lasts for 500 simulation seconds. The movement of each node follows
the random waypoint model [21]. Each node selects a destination location randomly within the
roaming area and moves straight toward the destination with a constant speed. The moving speed

is uniformly distributed over [, Maz] m/s, where MAX is the maximum moving speed normally

set as 20 m/s. For the multicast sessions, we choose the group size to be 5, 10, 20, 30 and 40.
This performance study contains two parts. The first part, as shown in Section 4.2, is for
evaluation of multicast tree quality. We use a specially developed simulator to study the topology
of multicast tree constructed by the PAST-DM protocol, compared with that of AMRoute and the
optimal tree. The simulator implements the random waypoint mobility model, and generates the
instant network topology at each point of simulation time. The second part, as shown in Section 4.3,
is for evaluation of protocol performance, in terms of control overhead and delivery ratio. We use

the wireless network simulator, GloMoSim, for this part of study.

4.2 Study of Multicast Tree Quality

To study the performance of multicast tree quality, we measure the following metrics: (a) (relative)
tree cost; and (b) (relative) longest path delay. The cost of a data delivery tree is the sum of
physical hop lengths of all virtual links of the tree. Longest path delay is the number of physical
hops along the longest path from the source to any of the receivers on the tree. In order to compare
the efficiency of overlay multicast method, we compute the optimal tree cost and optimal longest
path delay at each simulation step. The optimal tree cost is computed as the overall hops of a
Steiner tree built on the physical topology for the same group of nodes. The optimal longest path
delay is the longest path delay of the Shortest Path Tree built on the physical topology with the
same source node. By definition, the optimal values are the best we can have based on existing
physical network topology. The relative value of the metrics are the ratio of measured value over
the corresponding optimal value, which represent quality and efficiency of the generated multicast

trees.

4.2.1 Time-line of tree quality

Figures 6(a) and (b) show the time-line of multicast tree quality for a multicast group of size 40
under AMRoute and PAST-DM. The tree quality indicators considered here are relative tree cost
and relative longest path delay, which are shown in the two figures respectively. The period of

AMRoute tree creation process is 40 simulation seconds. The period of virtual link state exchange
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Figure 6: Time-line of multicast tree quality (group size is 40).

for PAST-DM is also set to 40 simulation seconds.

In both figures, the time-lines of the two protocols are intermingled together during the first
20 seconds. This is because the virtual mesh is being just built up by AMRoute. As the mobile
nodes have not moved far from their initial places, the virtual mesh still reflects the underlying
physical topology. As time elapses, both the relative tree cost and the relative longest path delay of
AMRoute increase rapidly. PAST-DM, however, presents a stable tree quality, which is the effect
of the dynamic virtual mesh protocol implemented by the virtual link state exchange process. A
noticeable gap between the time-lines in both sub-figures indicates that PAST-DM consistently
builds more efficient multicast trees than AMRoute.

The oscillation of the time-lines is also noticeable. High oscillation in relative tree cost will
result in unstable network traffic, while oscillation in relative longest path delay can cause out-of-
order delivery problem. In both sub-figures, the time-lines for PAST-DM have much less oscillation
compared to those of AMRoute. This will yield a much more stable network performance for the
PAST-DM protocol.

4.2.2 Tree quality versus group size

Figures 7(a) and 7(b) show the average tree cost and longest path delay of the multicast trees versus
the group size. At each simulation step of PAST-DM protocol, a data delivery tree is constructed
with the source randomly chosen from the group members. The average tree cost and longest path
delay is recorded for all step-wise multicast trees. For PAST-DM, we set the parameter of update
period to be 5 seconds and 40 seconds, which is labeled as "PAST-DM-5" and "PAST-DM-40"
in the figures. Similarly, the legend labels "AMRoute-5" and "AMRoute-40" mean the AMRoute
protocol with 5 and 40 second of tree re-build period. PAST-DM yields close to optimal trees for all
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Figure 7: Comparison of multicast tree quality with different group size.

group sizes. The cost of the trees built by AMRoute increases faster than the optimal value as the
group size increases. The same is true for the longest path delay. Thus the multicast trees become
less efficient as the multicast group grows. We can also calculate the average hop length of virtual
links in the multicast tree. For example, for any delivery tree spanning a group of 20 nodes needs
just 19 virtual links. The total costs of trees by AMRoute-5 and PAST-DM-5 are 95.9 and 72.6

respectively. So the average length of virtual links in both trees are 5.0 and 3.8.

4.2.3 Tree quality versus update period

Figures 8(a) and 8(b) show the change of multicast tree quality with different update periods. The
update period for AMRoute and PAST-DM refers to the tree re-creation period and the virtual link
state exchange period, respectively. As higher update period results in less protocol overhead, we
are looking for a high update period that does not result in much worse tree quality. As shown in
the figure, tree cost and longest path delay of AMRoute increases rapidly with update period. This
means it needs frequent re-creation of multicast tree to keep up with the change of physical hop
lengths of the virtual links. PAST-DM yields a stable tree quality as update period increases. It is
less sensitive to the frequency of link state exchange. Thus, with PAST-DM, we can make the link
state exchange among group members to be less frequent in order to reduce the overhead of the

protocol.

4.2.4 Tree quality versus mobility

Figure 9(a) and 9(b) show the change of tree quality with respect to different mobility speeds.

We use the random waypoint mobility model, and the actual speed is randomly chosen from the

range of [202 Maz]. The maximum speed ranges from 0 to 30 m/s. The non-zero minimum speed

prevents the harmful situations in random waypoint model discussed in [22].
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Figure 8: Comparison of multicast tree quality with different update period (group size is 40).
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Figure 9: Comparison of multicast tree quality with node mobility (group size is 40).

For both tree quality metrics, the protocols present similar performance value which are close
to the optimal, when the moving speed is zero. As mobility increases, the average tree cost for
both AMRoute-5 and AMRoute-40 increases dramatically as shown in Figure 9(a). Beyond 20 m/s
moving speed, the increase of tree cost slows down because the formation of sub-optimal trees is
close to a saturated situation. However, the tree cost value of DM-PAST is less than half of the
value of AMRoute. It remains stable in the face of increasing node mobility. The longest path delay
has similar trend, as shown in Figure 9(b). It is slightly different in the sense that the increase
of longest path delay for AMRoute does not slow down. This indicates that though the cost of a

sub-optimal tree does not increase, the the longest delivery path can still be even longer.
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Figure 10: Comparison of protocol performance.

4.3 Study of Protocol Performance

We study the performance of PAST-DM protocol by protocol overhead and the packet delivery
ratio. Protocol overhead is measured by relative control bit overhead, defined as the amount of
control overhead in bits per delivered bit. The transmitted control bits includes the control packets
and the bytes in each packet header. Moreover, the involved unicast control bit overhead is also
included. The packet delivery ratio of multicast is defined as the sum of the received data packets at
all member nodes divided by product of the number of sent packets from the source node multiplied
by the number of member nodes. We use the GloMoSim|[25], a wireless network simulator developed
by UCLA. The parameters are described in Section 4.1. At the physical layer, GloMoSim uses a
comprehensive radio model that includes the Two-Ray radio propagation model and also accounts
for noise power. At the MAC layer, IEEE 802.11 is used.

We focus on the performance with regard to the different group sizes. Thus, for all simulations,
the mobility parameters remains the same. We use random waypoint mobility model, with 40
seconds in pause time and 10 m/s in maximum moving speed. We compare the the PAST-DM with

the ODMRP (8], which is a mesh-based multicast protocol.

4.3.1 Relative Control Overhead

Figure 10(a) shows the result for protocol control overhead, with regard to the group size. In both
figures, the legend labels of "PAST-DM-5" and "PAST-DM-10" mean the update period being set
respectively. It is noticeable that the curve for ODMRP first decreases with growing group size,
then the curve goes up when group size is 15. From 5 members to 15 members, though the amount
of control packets increases, the number of delivered packets increases faster with more receivers.

As the group population becomes more dense, more control packets sent by all members nodes need
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to gather at the sender node. Thus, the packet implosion problem becomes causing higher collision
and retransmission of the control packets.

PAST-DM, on the other hand, shows steady decrease of relative bit overhead with growing group
size. The control packets sent by each node only need to reach its local area, as opposed to the
ODMRP, where the periodic JOIN REPLY packets from each receiver need to reach the sender
node. As the group population becomes denser, the reachable region of each control packets should
shrink accordingly, which further reduces bit overhead. Thus, we see that, even though PAST-DM

has extra bit overhead in packet headers, the overall overhead is less, compared to ODMRP.

4.3.2 Packet Delivery Ratio

Figure 10(b) shows the result for packet delivery ratio, also with regard to the group size. As shown
by the curves, when the group is small PAST-DM does not perform as well as ODMRP. This is
because the group population is sparse, and the mesh connectivity is under worse challenges with
the distance between adjacent members nodes being larger. When the update period time is 20
seconds, the PAST-DM performance is very poor. However, as the group grows larger, PAST-DM-5
out-performs ODMRP when group size is up to 20. Similarly, PAST-DM-20 gets better performance
when group size is larger than 25. We can also observe that, the performance difference between
PAST-DM-5 and PAST-DM-20 becomes less when the group size is larger. Thus, it is possible that,
when the group population becomes dense, the update period can be longer, so that the protocol

overhead can be significantly reduced while the packet delivery ratio is only slightly lower.

5 Related Work

Besides overlay multicast, our work is also closely related to stateless multicast. This approach is
similar to overlay multicast in the sense that it also employs standard unicast routing and forwarding.
The difference is that there is no explicit concept of overlay virtual topology. SGM][23]| was first
proposed for small group multicasting on the Internet. The source node first performs a route table
look up to determine the next hop for each receivers in its group. It then partitions the group based
on the next hops. Each subgroup is encoded into a SGM packet header and the packet is unicast to
the corresponding next hop. The receiving next hop will further partition its subgroup and forward
the data to it next hops. SGM is considered as a scalable solution to support large number of small
multicast groups on the Internet. DDM][24] is a stateless multicast protocol proposed for MANET.
In DDM, receivers can be listed in the DDM packet header in a differential manner, which means
it only includes the difference with respect to the receiver list in the last packet. Each node in
the forwarding paths remembers the subset it has been forwarded to last time, together with the
corresponding next hop information. By caching routing decisions in the intermediate nodes, the
source does not need to list the group members in future packets. In making routing decisions,

intermediate nodes need to query the unicast route table.
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With GPS devices, each mobile node is aware of its location within the network area. Location
Guided Tree (LGT) construction scheme[15] builds overlay multicast tree using geometric distance
between member nodes as the heuristic of link costs. Two tree construction algorithms are proposed:
greedy k-ary tree construction (LGK) and Steiner tree construction (LGS). With LGK, the source
nodes selects k nearest neighbors as its children, and partitions the remaining nodes according their
distance to the children nodes. LGS constructs the Steiner tree using link costs as their geometric
lengths. Each children node is then responsible for packet delivery to its own subgroup using the
same algorithm. Our work is inspired by the stateless multicast approaches. The difference is that
our approach uses virtual mesh so that no GPS or location information are needed. This makes the

protocol applicable to more situations.

6 Conclusions

In this paper, we present an overlay multicast protocol aiming to solve the efficiency problem of
overlay multicast approach. To achieve this goal, we propose dynamic virtual mesh that adapts itself
to the mobility of network nodes. Virtual links with long physical hop lengths are replaced by short
links. A novel tree construction algorithm is proposed that fully utilizes the latest local topology
information. Simulation studies have shown that the yielded multicast tree is close to optimal in
terms of total hop cost with a stable quality. Thus stable and efficient multicast performance is
observed. The control overhead can be reduced to a low level since the tree quality is only moderately

hampered when the periodic update behaviors are conducted less frequently.
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