
Asymptotic Analysis of a Peer Enhanced Cache

Invalidation Scheme

Julee Pandya1, Prasant Mohapatra2 and Dipak Ghosal3

University of California, Davis, CA 95616, USA
pandya@cs.ucdavis.edu, prasant@cs.ucdavis.edu, ghosal@cs.ucdavis.edu

Abstract. A major factor in determining the effectiveness of caching in wireless networks
is the cache coherency scheme which maintains consistency between mobile stations (MSs)
and the server. Because the wireless channel is inherently a broadcast medium, a cache
coherency scheme in which the server broadcasts cache invalidation reports (IRs) containing
data update information is suitable. However, one key issue that IR based techniques must
resolve is the intermittent disconnectedness of MSs. Since connecting to the network uses
power and because power is a limited resource, MSs connect to the network only when
necessary. During periods when the MS is disconnected, IRs are missed, which may result
in the MS’s cache becoming invalid. This means that upon reconnection, the MS will have
to purge its cache if it missed an IR while it was disconnected. In this paper, we propose a
Peer Enhanced Cache (PEC) invalidation scheme. This scheme utilizes the ad-hoc mode of
operation which is now available with new generation wireless interfaces. PEC exploits the
peer-to-peer capability that is enabled by ad-hoc mode by having MSs store IRs on behalf of
other MSs. If an MS misses an IR due to disconnection, it can retrieve the missed IRs from
its peers. PEC can be used in conjunction with any cache invalidation method since it is
an orthogonal scheme. We develop a mathematical model to derive the throughput and hit
rate of PEC when it is used in combination with the previously proposed Amnesic Terminal
(AT)[1] cache invalidation scheme. Our results show that incorporating PEC significantly
improves both the throughput and the hit rate.

1 Introduction

The key characteristics of the wireless network are the mobility of the clients, the scarcity of resources
such as power and bandwidth, the varying capabilities of wireless devices, and the disconnectedness of
the clients. These characteristics pose significant challenges to achieving fast reliable access for various
types of content. The challenges of designing a protocol for wireless access lie in the fact that designs
must take all of these attributes of the wireless network into account. One important mechanism that
can help overcome these design challenges is caching.

Caching is an important mechanism in the wireless domain because it greatly reduces access time by
avoiding unnecessary access across the wireless channel. In order to implement a robust caching scheme,
caches must be placed locally on the wireless devices and at the server. In such an organization, the
cache coherency scheme used to maintain cache coherency between the wireless devices and the server is
a major factor in determining the effectiveness of the caching mechanism. If the cache coherency scheme
is not properly designed, the performance of the system could be even worse than a configuration without
any caching mechanism.

There are two main types of cache coherency techniques: Time To Live (TTL) based techniques and
Invalidation Report (IR) based schemes. In the first type, the server associates a TTL parameter with
each data item to be cached. Once the TTL value has expired, the item is no longer valid and the client
must check with the server to see if the item has been modified. In the second technique, the server
broadcasts IRs to the clients. These reports indicate which data items have been modified during a
specified period of time. Clients use the IRs to update their caches.

Although both TTL and IR based schemes can be used for maintaining cached data at the client,
TTL based techniques are not ideal for wireless environments. In TTL based schemes, once the TTL of
a data item has expired, clients must query the server to determine if the item has been modified. As the
number of clients grows, the wireless uplink is likely to become the bottleneck. For IR based schemes,

the wireless link bandwidth is not a limiting factor because any client can listen to the IRs. In addition,
schemes that use the TTL technique utilize the uplink channel more frequently than schemes that use the
IR technique. Due to the fact that the uplink channel consumes more power than the downlink channel,
TTL based caching schemes tend use more power than IR based caching schemes. As a result, IR based
caching schemes are more suitable for wireless networks.

One of the key issues of IR based techniques arises due to the intermittent disconnectedness of the
clients. Because connecting to the network uses power and because power is a limited resource, wireless
devices may connect to the network only when necessary. During periods when the device is disconnected,
the rest of the network cannot communicate with it. Since the IRs broadcast during these periods are
missed, the client’s cache may become invalid. This means that upon reconnection, the client will have
to purge its cache if it missed an IR when it was disconnected.

Many previously proposed IR methods [1, 5, 6, 4, 8, 3, 2, 9, 7] have addressed this disconnection issue.
Many of these methods are variations of the Broadcasting Timestamp (TS) method proposed in [1].
In this paper, we propose a Peer Enhanced Cache (PEC) invalidation method. This cache invalidation
method utilizes the ad-hoc mode of operation, which is now available with most new generation wireless
interfaces. PEC exploits the peer-to-peer capabilities that are possible with ad-hoc mode by having MSs
store IRs on behalf of other MSs. If an MS misses an IR due to disconnection, it can easily retrieve
the missed IRs from its peers. Since PEC is orthogonal to other cache invalidation methods, it can
be used in conjunction with any cache invalidation scheme. We demonstrate the effectiveness of PEC
through a mathematical model in which we derive the throughput and hit rate of PEC when it is used
in combination with the Amnesic Terminal (AT) scheme [1]. Our results show that enhancing AT with
PEC significantly improves both the throughput and the hit rate.

The remainder of the paper is organized as follows. Section 2 gives the terminology used throughout
the paper, and Section 3 reviews related work. In Section 4, we present PEC, which is the proposed cache
invalidation method. In Section 5, we present a mathematical analysis of PEC. We conclude the paper
in Section 6 with a discussion of future work.

2 Terminology

The terms client and MS (mobile station) are used interchangeably. These terms refer to the physical
wireless device. The terms BS (base station) and server are also used interchangeably. The reason for this
usage will be explained further in Section 4.1. We also use assume that going to sleep and disconnecting
are equivalent as well as waking up and reconnecting.

3 Related Work

3.1 Broadcasting Timestamp (TS)

40 50 60 70 8020 3010
TIME

0

IR0 IR1 IR2 IR3 IR4 IR5 IR6 IR7 IR8

Figure 1. An example of the TS scheme with L=10 seconds and w=20 seconds.

Like other studies, we use the TS scheme as the underlying framework [1]. In this scheme, the server
broadcasts IRs every L time units. Each IR indicates the items that have been modified during a specified
window of time w, where w is some multiple of L. For example, assume L is 10 seconds and w is 20 seconds.
From Figure 1, we can see that IR3, which is broadcast at time 30 seconds, will indicate the data items
that have been modified between times 10 seconds and 30 seconds. Therefore, if a client disconnects at
time 12 seconds and reconnects at time 25 seconds, the client will be able to update its cache using IR3.

However, if the client is disconnected for longer than w time units (20 seconds in this example), the client
will have to purge its cache.

Note that the bigger the w, the longer the client can disconnect without having to purge its cache.
However, increasing w also increases the size of the IR. Therefore, when determining the value of w, one
must consider how much update history is necessary in each IR as well as consider the bandwidth usage
of the IRs.

One important feature of the TS scheme is that MSs wait to answer queries until the next IR is
broadcast. Queries generated between broadcasts are queued until the next IR is received. This is done
so that data items that became invalid during the IR interval are not retrieved from the cache and used
to answer the queries. Therefore, if the IR interval can be decreased, the query latency will also decrease.

4 Peer Enhanced Caching (PEC)

4.1 Reference Architecture

We assume that the Base Stations (BS) act as servers that broadcast IRs. We define the base station
coverage area (BSCA) to be the area that the BS services. In addition, each MS defines a peer coverage
area (PCA), which includes all MSs within a certain radius. Thus, MS1 is a peer of MS2 if MS1 is in
MS2’s PCA. We also assume that each MS has two logical interfaces. One interface is used for peer-to-peer
communication, and the other is used for communicating with the BS.

4.2 Algorithm

In our algorithm, we assume that each MS stores IRs when they are awake. If an MS, which was
disconnected from the network, reconnects, it will be able to retrieve the IRs it needs to update its cache
from its peers. Upon reconnecting to the network, an MS will check if it can use the next IR from the
BS to update its cache. If it can, then it will use it. If it cannot, then the MS will send a broadcast to
its PCA to check if any MS has the IRs that it needs to update its cache. If no MS in the PCA has the
needed IRs, the MS will purge its cache. We also assume that before disconnecting from the network,
each MS will listen to the next IR and then wait for a short time δ to respond to peer requests for
invalidation reports.

5 Analysis

5.1 Model

In this section we develop a simple model to quantify the benefits of PEC. This model builds upon earlier
work reported in [1]. We assume that the underlying cache invalidation scheme used is the Amnesic
Terminals (AT) presented in [1]. The AT scheme is similar to the TS scheme discussed in Section 3.1.
Recall that in the TS scheme, the server broadcasts IRs every L time units, and each IR indicates the
data items that have been modified during a specified window of time, w. The AT scheme is the same
as the TS scheme with w always equal to 1. This means that there is no overlap in the information
contained in each IR. As a result, if an MS goes to sleep at all, it will have to purge its cache.

The goal of our analysis is to measure the benefit of the peer-to-peer interaction of PEC. More
specifically, we will compare the throughput and hit rate of the AT scheme to the throughput and hit
rate of the PEC scheme when the AT scheme is used as the underlying cache invalidation method. We
denote this combination of the PEC and AT schemes as PECAT . For the analysis, we consider a tagged
MS, denoted by MSt.

The parameters of the model are as follows. There are M MSs in the BSCA; this does not include
MSt. The database consists of n items. The bandwidth of the wireless channel is W , and the length of
the IR interval is L. In ad-hoc mode, each MS has a range of r. We assume that the range of the BS is
R. The number of bits per uplink query is bq, and the number of bits per query answer is ba.

The models for the query-update pattern and sleep-wake pattern are the same models that were used
in [1]. Each MS queries a subset of the database with high locality. This subset is known as the hot spot
and each item in the subset is queried at rate λ. Updates to to each data item are negative exponentially
distributed with mean rate µ updates per second. The sleep-wake pattern is modeled by assuming that
in each interval, an MS has a probability s of sleeping and 1− s of being awake. The behavior of an MS
in an interval is independent of the behavior in the previous interval.

For the mobility model, we assume that in each interval, MSs are randomly and uniformly distributed.
Therefore, in every interval, an MS can be anywhere in the BSCA. Just as in the sleep-wake pattern, we
assume that the behavior in each interval is independent of behavior in the previous interval.

It is important to note that the models used in our analysis are approximations. However, we use the
same models to analyze both the AT and the PECAT schemes. Furthermore, many of the approximations
made in the models put PECAT at a greater disadvantage than it would be if other correlated models
were used. As a result, the PECAT scheme may perform better under other correlated models. For
instance, the sleep-wake model used in our analysis assumes that the behavior of an MS in each interval
is independent of the behavior of an MS in other intervals. This is often not the case. PEC may perform
significantly better with a sleep-wake model that does not make this assumption.

In addition to the above parameters, we use the notation in Table 1, which was taken from [1]. The
table shows the symbol, the probability that the symbol represents, and the corresponding event.

Table 1. Summary of notation.

Symbol Probability Event

j0 e−λL No queries in an interval given unit is wake in an interval
q0 (1 − s)e−λL Awake and no queries in an interval
p0 s + q0 No queries in an interval
1 − p0 (1 − s)(1 − e−λL) 1 or more queries in an interval
u0 e−µL No updates during an interval
1 − u0 1 − e−µL 1 or more updates during an interval

5.2 Throughput

Generic Throughput Equation. To calculate the throughput T , we expand on the throughput anal-
ysis presented in [1]. First, we will derive the generic throughput equation, which was given in [1]. This
equation will then be used to derive the throughput for both the AT and PECAT schemes.

In order to derive the generic throughput equation, we assume that each node has an available
bandwidth of LW . The bandwidth available for queries that were cache misses is LW − Bc − BP2P ,
where Bc is the bandwidth used to broadcast the IR and BP2P is the bandwidth used for communication
between peers. The throughput T is the number of queries per interval processed by MSt. T (1 − h)
gives the number of queries per interval that were cache misses, where h is the hit rate. Each cache miss
requires bq + ba bits; therefore the bandwidth needed to handle all cache misses is T (1 − h)(bq + ba).
Since this quantity must equal LW − Bc − BP2P , we obtain the following expression for T ;

T =
LW − Bc − BP2P

(1 − h)(bq + ba)
. (1)

An expression for Bc is shown in Equation 2 which is the same as that derived in [1]. The term
n(1 − u0) is the mean number of data items that were modified since the last IR was broadcast. The
log(n) term is the size of the timestamps that will be used in the IR.

Bc = n(1 − u0)log(n) (2)

Throughput for the AT Scheme. While BP2P = 0 for the AT scheme, the throughput TAT for the
AT scheme is given by

TAT =
LW − Bc

(1 − hAT)(bq + ba)
(3)

where hAT is the hit rate for the AT scheme and is derived in the next section.

Throughput for the PECAT Scheme. In order to calculate the throughput, TPECAT , we need to
calculate BP2P . To compute BP2P , we consider 2 cases. If we let the current interval be interval l, then in
the first case, MSt was asleep in interval l−1, which is the previous interval, and was awake in interval l.
In this case, MSt just woke up and therefore will broadcast a peer request to all MSs in its PCA in order
to retrieve the IRs it missed while it was asleep. We denote the bandwidth used for peer communication
for this case as BP2P1 . In the second case, MSt is awake in interval l − 1, which again is the previous
interval, and may be either awake or asleep in interval l. In either case, MSt will respond to requests
that it receives from its peers. We denote the bandwidth used in this case as BP2P2 .

CASE 1: Calculating BP2P1 . As stated above, BP2P1 is the bandwidth used when MSt sends a peer
request to all MSs in its PCA. Let the peer broadcast issued by MSt use breq bits, and let the number
of MSs in MS′

ts PCA that respond to the request be Nres1 . In addition, we let the size of each response
be bres. For this case, MSt was asleep in interval l − 1 and awake in interval l. Therefore, we need to
compute the probability that MSt woke up which is s(1 − s) and as a result we obtain

BP2P1 = s(1 − s)(breq + Nres1bres). (4)

Since breq is fixed, we need to compute Nres1 and bres.
In our model, we assume that MSs are either awake or asleep for an entire interval. We also assume

that before disconnecting from the network, an MS will listen to the next IR and then wait some small
time δ to answer any peer requests for invalidation reports. Therefore, Nres1 is equal to the number of
MSs in the tagged MS’s PCA that were awake in interval l − 1.

In order to calculate Nres1 , we define W to be a random variable representing the number of MSs in
the BSCA that were awake in interval l− 1. Since the probability of an MS going to sleep in any interval
is independent of the previous interval, W has a binomial distribution. Therefore, the expected value of
the number of MSs in the BSCA that were awake in interval l − 1 is given by

E[W] =
M∑

j=0

jP (W = j) =
M∑

j=0

(
M

j

)
j(1 − s)jsM−j

= M(1 − s).

Only a fraction of the M(1− s) MSs in the BSCA that were awake in interval l − 1, will be in MS′
ts

PCA. If we approximate the PCA to be a sphere of radius r and the BSCA as a sphere of radius R, then
the number of MSs in MS′

ts PCA is proportional to r2/R2 since the MSs in the BSCA are randomly
and uniformly distributed in each interval. Therefore,

Nres1 =
r2

R2
M(1 − s). (5)

In order to compute bres, we first note that each response is made up of some number of invalidation
reports. Therefore bres = CBc, where C is the number of IRs in each peer response. Let MSp be MS′

ts
peer, and let C represent the number of intervals that MSp was awake during the period that MSt was
asleep. If we let X be a random variable representing the number of consecutive intervals that MSt was
asleep, then

E[X] =
∞∑

j=0

jP (X = j) =
∞∑

j=0

j(1 − s)sj

=
s

1 − s
.

If Y is a random variable that denotes the number of intervals MSp was awake while MSt was asleep,
then

E[Y] =
E[X]∑
j=0

jP (Y = j)

=
E[X]∑
j=0

j

(
E[X]

j

)
(1 − s)jsE[X]−j

= E[X](1 − s) = s.

Thus, C = s and bres = sBc and we obtain

BP2P1 = s(1 − s)(breq +
r2

R2
M(1 − s)sBc). (6)

CASE 2: Calculating BP2P2 . In the second case, MSt is awake in interval l − 1, and will respond to
requests it receives from its peers. Let Nreq2 be the number of requests that MSt receives, and let Nres2

be the number requests that MSt responds to. Since the probability that MSt is awake in interval l − 1
is (1 − s), the bandwidth, BP2P2 , for this case is given by

BP2P2 = (1 − s)(Nreq2breq + Nres2bres). (7)

Note that breq and bres are the same as they were for the calculation of BP2P1 . Also, because we assume
that MSt will respond to all requests, Nres2 = Nreq2. Therefore, we only need to compute Nreq2 in order
to derive BP2P2 .

Since Nreq2 is the number of peer requests that MSt receives, it is equal to the number of MSs in
MS′

ts PCA that just woke up. In order to compute this value, we define a random variable Z that
denotes the number of MS’s in the BSCA that just woke up. Since Z has a binomial distribution with
psuccess = s(1 − s), we obtain

E[Z] =
M∑

j=0

jP (Z = j)

=
M∑

j=0

j

(
M

j

)
(s(1 − s))j(1 − s(1 − s))M−j

= Ms(1 − s).

E[Z] gives the number of MSs in the BSCA that just woke up; however, Nreq2 is the number of MSs
in MS′

ts PCA that just woke up. Using the same reasoning that was used to derive Nres1 , we get
Nreq2 = r2

R2 E[Z] = r2

R2 Ms(1 − s) which leads to

BP2P2 =
r2

R2
Ms(1 − s)2(breq + sBc) (8)

and

BP2P = BP2P1 + BP2P2

= s(1 − s)breq +
r2

R2
Ms(1 − s)2(breq + 2sBc) (9)

Finally, the throughput of the PECAT is given by

TPECAT =
LW − Bc − (s(1 − s)breq + r2

R2 Ms(1 − s)2(breq + 2sBc))
(1 − hPECAT)(bq + ba)

(10)

The hit rates hAT and hPECAT are derived in the next section.

5.3 Hit Rate

In order to calculate the hit rate, we assume that MSt has made at least two queries, which occurred i
intervals apart from each other. From Figure 2, we can see that if an update occurred during any of the i
intervals, there would be a cache miss. Furthermore, because MSt generated a query in the ith interval,
it must have been awake in that interval. This means that there are i − 1 intervals in which MSt may
have any sleep pattern. There are two cases that would ensure that the second query is a hit. In the first
case, we assume that MSt does not sleep during any of the i−1 intervals. We will show that the hit rate
in this case is simply the hit rate achieved with the AT scheme, which is denoted hAT . For the second
case, MSt may have any arbitrary sleep pattern during the i − 1 intervals, except for the pattern when
MSt is awake for the entire i − 1 intervals. This pattern is handled in the first case. We denote the hit
rate for this case as hP2P .

Query_k

interval iinterval i−1

Query_k+1

TIME

 i intervals

interval 1 interval 2

Figure 2. MSt generates 2 queries that are i intervals apart.

CASE 1: Calculating hAT . In the first case, MSt does not sleep during any of the i− 1 intervals. In
this case, no peer requests are ever sent and therefore, the hit rate is simply equal to the hit rate for the
AT scheme. The hit rate for the AT scheme, hAT , was derived in [1] and is given by

hAT = (1 − p0)
∞∑

i=1

qi−1
0 ui

0

=
(1 − p0)u0

1 − q0u0
(11)

The first term 1− p0 refers to the probability of MSt generating a query in interval i. The term qi−1
0 in

the sum is the probability of not generating any queries during the i − 1 intervals between the queries,
and the ui

0 term is the probability of not having any updates during the i intervals. In order to calculate
hAT , we sum over all possible values of i.

CASE 2: Calculating hP2P . In the second case, MSt may have any arbitrary sleep pattern during
the i − 1 intervals, except for being awake the entire i − 1 intervals. This pattern was handled in the
first case. Therefore, the probability of this case gives us the hit rate achieved when MSt went to sleep
at least once during the i − 1 intervals. We call this hit rate hP2P because MSt must send at least 1
peer request in order to validate its cache. We assume that N is the number of MSs in MS′

ts PCA, not
including MSt. Using the same reasoning from Section 5.2, N = r2/R2M and thus the hit rate is given
by

hP2P = (1 − p0)
∞∑

i=1

ui
0(1 − sN)i−1(pi−1

0 − qi−1
0)

= (1 − p0)u0(
1

1 − (1 − sN)u0p0
− 1

1 − (1 − sN)u0q0
) (12)

In the above equation, the first term 1 − p0 is the same as before; it refers to the probability of MSt

generating a query in interval i. The term ui
0 in the sum is the probability of not having any updates

during the i intervals. The term (1 − sN)i−1 in the sum is the probability that for each of the i − 1
intervals, there was at least 1 MS awake. This term allows us to support any sleep pattern that MSt may
have during the i−1 intervals. If at least 1 MS in MSt’s PCA is awake in each of the i−1 intervals, then
MSt will always be able to retrieve the needed IRs when it wakes up. To see this, assume that there is
only 1 MS awake in MSt’s PCA for each of the i − 1 intervals. The MS that is awake in interval i − k
will be able to pass along the IR for that interval to the MS that is awake in interval i− k +1. Similarly,
the MS awake in interval i − k + 1 will be able to pass along the IRs from interval i − k and interval
i− k + 1 to the MS awake in interval i− k + 2. Note that (1− sN)i−1 gives the probability that at least
1 MS is awake. To see this first note that the sN gives the probability that all MSs in MSt’s PCA are
asleep in an interval. Therefore, 1− sN yields the probability that at least 1 MS is awake in an interval.
In order to have at least 1 MS awake for i−1 intervals, we must raise this probability to the i−1 power.

The last term in Equation 12 is the sum of pi−1
0 − qi−1

0 . This term gives the probability that MSt

went to sleep at least once in the i − 1 intervals and did not generate any queries in the i − 1 intervals.
The first term pi−1

0 is the probability that there were no queries in the i − 1 intervals. We subtract qi−1
0

to remove the event when MSt is awake the entire i − 1 intervals because this was already handled in
the first case. We must sum over all possible values of i in order to calculate hP2P .

The hit rate for the PECAT scheme, denoted hPECAT , is simply hAT + hP2P . So we get

hPECAT = hAT + hP2P

= (1 − p0)u0(
1

1 − q0u0
+

1
1 − (1 − sN)u0p0

− 1
1 − (1 − sN)u0q0

)

(13)

5.4 Results

To numerically compare the AT and PECAT schemes, we considered the following system parameters.
The length of the IR interval, L, is 10 seconds, and the bandwidth of the wireless channel, W , is 1 Mbps.
The query rate, λ, is 0.1 queries per second, and for the data update rate, µ, we considered two values
0.0001 and 0.01 updates per second. There are 100 items in the database and 50 nodes (not including
MSt) in the BSCA. Also, ba = 1024 bytes, bq = 512 bytes, and breq = 512 bytes. The range of the BS is
R = 200 meters and the range, r, of the MSs is 40, 50, or 60 meters.

Figures 3 and 4 show TPECAT normalized to TAT . From the graphs, we can see that the throughput for
the PECAT scheme can have up to a 100 percent improvement over the AT scheme. This improvement
is due to the fact that MSs do not have to purge their caches as much as in the AT scheme. As a result,
MSs answer data requests using their caches, which is much more efficient than sending uplink requests
to the server. As we increase s, the improvement of the proposed scheme over the AT scheme increases
up to a certain value of s, beyond which there is a sharp decrease in the throughput improvement.

Figures 5 and 6 give hPECAT normalized to hAT . We can see from the figures that the hit rate for
the PECAT scheme can be greater than two times the hit rate for the AT scheme. As s increases, the
improvement of hPEC over hAT increases because more MSs are sleeping. As a result, there are more
MSs that can benefit by retrieving IRs from other MSs. However, beyond a certain value of s, which is
around 0.6, the improvement in hPECAT decreases. This is due to the fact that an MS is less likely to
be able to retrieve IRs from the other MSs in its PCA because they are either asleep or were asleep and
therefore do not have the IRs the MS needs.

In addition to s having an impact on the performance improvement, the range of an MS also influences
this improvement. As the range of the MSs increase, both TPECAT ’s and hPECAT ’s improvement over
TAT and hAT , respectively, also increases. This is due to the fact that as r increases, the number of MSs
in a given PCA also increases; therefore, the likelihood that an MS will be able to retrieve the IRs it
needs also increases. Another interesting parameter is the data update rate, µ. From the figures, we can
see that as µ increases, the benefit of PEC decreases. The reason is that as data is being updated more
frequently, the chances of a cache miss increase. When an MS goes to sleep, there is a greater chance
that the data in its cache will be updated. However, PEC is beneficial only if an MS goes to sleep. If
an MS does not sleep, then TPECAT = TAT and hPECAT = hAT . The improvement of TPECAT and
hPECAT does not decreases because an MS is unable to validate its cache; it decreases because the data
was updated while an MS was asleep.

Figure 3. TPECAT normalized to TAT with µ =
0.0001 (The asymptotic value of TPECAT = 1.)

Figure 4. TPECAT normalized to TAT with µ = 0.01
(The asymptotic value of TPECAT = 1.)

Figure 5. hPECAT normalized to hAT with µ =
0.0001

Figure 6. hPECAT normalized to hAT with µ = 0.01

6 Conclusion

In this paper we proposed a new cache invalidation scheme which exploits peer-to-peer interaction among
mobile nodes. In the new scheme, referred to as Peer Enhanced Caching (PEC), mobile stations (MSs)
store invalidation reports and can forward them to peers when they reconnect to the network when they
wake up from sleep. We have shown that PEC can greatly improve the cache hit rate when it is used
in combination with other cache invalidation methods. In particular, we showed that PEC can provide
more than a two-fold increase in the hit rate and up to 100 times improvement in the throughput over
the Amnesic Terminal scheme. Future work includes extending the analysis to compare the hit rate and
throughput of PEC when it is used in conjunction with the TS scheme discussed in Section 3.1. In
addition to a mathematical model, a thorough investigation of PEC via simulation will be used to verify
the results of the model and evaluate the performance improvements under realistic mobility models.

References

1. D. Barbará and T. Imieliński. Sleepers and workaholics: caching strategies in mobile environments. MO-
BIDATA: An Interactive journal of mobile computing, 1(1):1–12, 1994.

2. J. Cai and K. Tan. Energy-efficient selective cache invalidation. Wireless Networks, 5(6):489–502, 1999.
3. G. Cao. Proactive power-aware cache management for mobile computing systems. IEEE Transactions on

Computers, 51(6):608–621, 2002.
4. Q. Hu and D. K. Lee. Cache algorithms based on adaptive invalidation reports for mobile environments.

Cluster Computing, 1(1), 1998.
5. J. Jing, A. Elmargarmid, S. Helal, and R. Alonso. Bit-sequences: An adaptive cache invalidation method in

mobile client/server environments. ACM/Baltzer Mobile Networks and Applications, 2(2), 1997.
6. A. Kahol, R. Khurana, S. Gupta, and P. Srimani. An efficient cache maintenance scheme for mobile environ-

ment. In International Conference on Distributed Computing Systems, 2000.
7. A. Kahol, S. Khurana, S. Gupta, and P. Srimani. A strategy to manage cache consistency in a distributed

mobile wireless environment, 2000.
8. K. Tan. Organization of invalidation reports for energy-efficient cache invalidation in mobile environments.

Mobile Networks and Applications, 6(3):279–290, 2001.
9. K. Tan, J. Cai, and B. Ooi. An evaluation of cache invalidation strategies in wireless environments. IEEE

Transactions on Parallel and Distributed Systems, 12(8):789–807, 2001.

