
Using Service Brokers for Accessing Backend Servers for Web Applications
�

Huamin Chen and Prasant Mohapatra
Department of Computer Science

University of California, Davis, CA 95616.
Email: {chenhua, prasant}@cs.ucdavis.edu.

Abstract

Web service infrastrutures usually are comprised of
front-end Web servers that accept requests and process
them, and backend servers that manage data and services.
Current Web servers use various API sets to access back-
end services. This model does not support service differ-
entiation, overload control, caching of contents generated
by backend servers. We have proposed a framework for us-
ing service brokers to facilitate these features. Service bro-
kers are software agents that are the access points to back-
end services in Web servers. Unlike the current API-based
scheme where accesses to backend services are through
stateless and isolated APIs, in service broker framework,
they are undertaken by passing messages to service brokers
who gather all the requests and intelligently process them.
We have prototyped this framework and validated its func-
tion in providing request clustering and service differentia-
tion in accessing backend services. In addition, the perfor-
mance in terms of the processing time is enhanced by this
approach.

Keywords: HTTP, Web services, service broker, service
differentiation, overload control, dynamic content caching.

1 Introduction

Web servers have established their presence and usage in
a variety of environment. More and more servers are being
deployed for complex service environments, which also in-
volve a variety of auxiliary servers. The platform indepen-
dence and universal accessibility of Web servers have been
leveraged to access other services like database, mail, and
directories. Web services like Microsoft .NET initiatives
push such practice even further by facilitating more services
accessibility through Web interfaces. It is conceivable that
future Web servers will involve even more heterogeneous

�

This research was supported in part by the National Science Founda-
tion through the grants CCR-0296070 and ANI-0296034.

auxiliary service providers (hereafter, referred to as back-
end servers) to serve various tasks. Most large Web servers
include a set of front-end servers that receive the requests
from the clients. The requests are served by accessing a set
of backend servers, which provide database, directory ser-
vices, secure transactions, and other services. A schematic
diagram of a typical Web server environment is shown in
Figure 1. It shows two applications running on a front-end
Web server that has access to the backend servers.

Database API

LDAP API

Database API

LDAP API

A

Dynamic
application

Dynamic
application

B

Database

LDAP

Mail access API

Mail

Mail access API

Front−end Web server Backend servers

Figure 1. API paradigm.

Backend servers can be categorized as tightly coupled
or loosely coupled based on their connectivity and own-
ership with the initiating Web servers. Tightly coupled
servers, like database and directory servers, are closely con-
nected, usually in the same LAN, to the Web servers and be-
long to the same administrative authority. Tightly coupled
servers are usually reliable and of high capacity. Loosely
coupled servers represent Web servers belonging to other
owners, which are not under control of the request initiat-
ing front-end servers. Web syndicates like My.Yahoo! and
My.Netscape belong to loosely coupled Web servers. In ac-
cessing their services, the requests and response traffic must
traverse WAN networks, which may incur higher latency
and jitters than LANs. In more security-sensitive appli-
cations, authentication must proceed before further trans-
actions. Since the loosely coupled servers are shared re-
sources, service guarantee becomes an outstanding prob-
lem. We envision that in the future such services would be
contract-based such that the service availability is honored
only when the incoming traffic are within the contracted

specifications. Loosely coupled services present a business
model that has been existing in the current society. For in-
stance, a travel agency has no sole control over airliners’
ticketing services. Rather it contacts multiple airlines and
selects the best deals for the customers.

The connectivity distinction between the two categories
exposes different performance concerns. For tightly cou-
pled services, the major performance issue is how to engi-
neer the capacity to satisfy the front-end Web servers’ re-
quests. The in-equivalence of the computational complex-
ity and different levels of replicability between the front-end
Web and backend servers make backend servers the likely
performance bottleneck. For instance, a search operation
involves traversal of database tables with many compari-
son operations, which only results in a few lines of output
that are rendered in HTML pages. Moreover, many compa-
nies use centralized backend servers to serve multiple front-
end Web servers to reduce the investment on the expensive
backend servers. Thus the priority in this environment is
how to prevent and control overload at the backend servers.
Similar concerns were expressed in [12]. In the loosely
coupled environment, the volatile network conditions and
the contract constraints demands efficient access schemes
to ensure service availability and reliability.

In this paper we introduce a new concept and propose
using service brokers to access backend services. Service
brokers are software agents that act as access points to back-
end services in Web servers. Unlike the current API-based
scheme where accesses to backend services are through
stateless and isolated APIs, in the proposed scheme, back-
end services are accessed by passing messages to service
brokers who gather all the requests and intelligently pro-
cess them. In the tightly coupled environment, the service
brokers can selectively drop some requests to reduce back-
end servers’ load while facilitating service discrimination
and QoS provision. In the loosely coupled environment,
the brokers intelligently cluster the requests, cache the re-
sponses and prefetch the next possible queries in idle pe-
riods. We have prototyped this scheme and validated the
feasibility in the testbed. We found that by properly clus-
tering the backend server accesses, service brokers can sig-
nificantly reduce the response time. In the service differ-
entiation experiments, we demonstrate notable scalability
improvement through fidelity variations. The experimental
results depict a significant performance benefit through the
usage of service brokers for backend services.

The rest of the paper is organized in this way. Section
2 discusses the current API-based framework and its draw-
backs. Section 3 introduces the service broker model and its
advantages in various aspects. Section 4 presents the an im-
plementation of the service broker model and its ability in
request clustering and service differentiation. It is observed
that by varying response fidelity in different QoS levels,

service brokers can improve responsiveness and scalability.
The related works were presented in Section 5 followed by
the concluding remarks in Section 6.

2 API-Based Backend Service Access

Currently dynamic Web applications are in forms of CGI
executables that run in separate processes or use scripting
languages like PHP and ASP which usually run in Web
server processes. They access backend servers (Database,
LDAP, mail or even other Web servers) through specific
APIs like socket, ODBC or modules like COM. The APIs
reside inside the application process space and share no
information among different processes. The paradigm
adopted in the contemporary Web servers is illustrated in
Figure 1. In this paradigm, applications A and B need to
access database, mail and directory servers. They use the
respective API sets to accomplish the tasks: in order to ac-
cess database server, a connection needs to be established
before any queries are initiated which are followed by the
connection tear-down; similar procedures are applied in ac-
cessing the directory server. Since A and B are in different
process space, their use of API sets is independent and they
do not share anything. Thus even though A and B may ac-
cess database or directory service simultaneously, they each
need to establish a connection before using any services.

The drawbacks of this paradigm are:

� QoS is not guaranteed: Accesses to backend service
are served on the FCFS basis. Unless QoS specifica-
tions propagate through all backend servers, there is
no guarantee that they can be honored. Currently most
of the backend servers like database servers, directory
servers, and file servers do not provide QoS support.
It is also likely that heterogeneous backend servers
may have different QoS notations. For example, the
file servers may cluster requests whose accesses are
in adjacent disk layout. Database servers may cluster
queries that access the same table. Thus this archi-
tecture may not be able to enforce QoS specifications
throughout the entire systems and is also subject to the
priority inversion problem1.

� Hot spot unawareness: Although overload control
in Web servers has received increasing attention re-
cently, there has been limited research work on back-
end servers’ overload control. In fact, backend servers
are more likely to be overloaded due to its less repli-
cability (it is usually very expensive to maintain repli-
cated backend servers.). When the traffic to the same
backend server is beyond its capacity, a hot spot is

1A low priority request could get service earlier than a high priority
request.

2

generated and this backend sever is likely to become
bottleneck of the entire request handling process. Hot
spots generated in backend servers are at most known
to those who are using the service. Other processes are
unaware of the overload due to the independence of
the request handling processes. Thus overload could
spread to other processes. The increased number of
processes that are trapped in hot spots could impose se-
rious threat to the overall server performance in some
server architectures. For example, in Apache Web
server, each request is handled by a dedicated server
process. In order to process incoming requests, more
child processes must be forked if others are busy. Thus
processes trapped in accessing overloaded backend re-
sources essentially exacerbate the overall performance.

� Accesses are isolated, and thus not optimized globally:
Most of API libraries for backend server accesses do
not share states or results among individual instances.
Each application send requests and launch I/O opera-
tions separately even for identical operations. For in-
stance, a database access involves connection estab-
lishment and tear-down, query command transmission,
and result retrieval. Two API-based applications need
to traverse these steps individually. But the connection
establishment and tear-down could be shared.

3 Service Broker Paradigm

Motivated by the shortcomings of the contemporary
model of backend accesses, we propose a service broker
model in which instead of using APIs to access backend
servers, Web servers pass requests onto intermediate dedi-
cated processes (referred as service brokers). The schematic
architecture is illustrated in Figure 2. In this architecture,
dynamic applications A and B do to have to invoke APIs
to access backend services. They only pass messages to in-
dividual service brokers in some formats that contain their
QoS specification and queries. Service brokers receive, sort
and rewrite these messages according to their QoS levels
and carry out the real query across connections. These con-
nections can be established in advance to reduce the setup
overhead, which is especially beneficial to loosely coupled
environment. Upon receiving replies from backend servers,
service brokers send the results to the dynamic applications
and make a local copy, if possible, to serve similar requests.
When hot spot occurs, the brokers can take appropriate ac-
tions globally across all the requests. In short, service bro-
kers depart from current decentralized backend server ac-
cess to a moderated control model.

As illustrated in Figure 3, service brokers are indepen-
dent of the Web application logic and are built on top of
the API sets. It is per service based. Though schematically

Database

LDAP

Dynamic
application

B

Dynamic

application

A

Database

LDAP

broker

broker

broker

Mail
Mail

Front−end Web server
Backend

servers

Figure 2. Service broker framework.

similar to COM and Enterprise Java Bean, service brokers
have more meaningful attributes.

API/COM/EJB

DB
broker

LDAP
broker

.....
Web
broker

Web application logic

Figure 3. Service broker Layer

At the first glance, this new proposal appears to incur ex-
tra overhead for inter-process communication between ser-
vice brokers and web processes. However, to access back-
end services, such overhead is insignificant. For a database
access, database connection and tear-down, which are re-
quired in API model for each access, would be more ex-
pensive than inter-process communication. In the proposed
approach, DB brokers maintain persistent connection thus
saving the cost of connection setup.

The service broker framework has the following advan-
tages:

� Accesses can be clustered and optimized: Multiple
query clustering and optimization [10] has been stud-
ied in database systems. Service brokers can provide
similar optimization among requests in absence of the
backend server support. For instance, two separate ac-
cesses to a remote Web server to get page 1.html and
2.html can be combined using MGET command [7]
as “MGET URI:1.html URI:2.html” at the broker and
the results are appropriately split and sent to the re-
quest initiators. It appears that channel multiplexing
may increase the workload at service brokers, which
usually reside in the front-end Web servers. However,
the transfer of computing load from backend servers to
the front-end Web servers is viable since the front-end
Web servers are easily replicable. Moreover, the same
connection to backend servers can be multiplexed. In
contrast to using independent connections to access
backend servers in the API model, a single connec-
tion between the service broker and the backend server

3

can be multiplexed to serve multiple applications and
thus reduce the connection overhead while processing
queries in bulk.

� QoS awareness: Service brokers are able to con-
sistently honor the QoS priorities without propagat-
ing QoS specification to backend servers. QoS rules
are fed into all the service brokers. Based on these
rules, service brokers reshuffle the queued requests and
schedule according to their priorities. When traffic
intensity of QoS classes exceed their limits, their re-
quests are dropped and other classes are not affected.
Therefore lower priority requests give way to higher
priority classes, thus avoiding the priority inversion
problem. We demonstrate this functionality in Section
4.

� Backend server overload control: Unlike API-based
architecture where each backend service access is un-
related, service brokers process all the requests and
thus are aware of the states of the associated backend
servers. Service brokers can notify request schedulers
about the onset of hot spots or respond to the requests
with lower fidelity results which would indicate that
the system is busy. In some cases, it enables the use of
cached results from the previous queries.

� Caching of query results: Since service brokers receive
all the query results from the same backend servers,
they can cache some of the results to serve similar re-
quests. For example, consider an online Web site that
provides movie schedules. All the schedule informa-
tion is stored in a database. In the peak time, there
would be a lots of requests for the same movie sched-
ule. If the results are not cached, the database has to
process the same query repeatedly and will contribute
to the response delay. In contrast, service brokers can
be configured to cache the popular query results and
promptly return them to the front-end Web servers.
This approach reduces the number of requests to the
backend servers and reduces the response time. This
feature is especially beneficial in loosely coupled en-
vironment where accesses to backend service need to
traverse high latency networks.

� Prefetching: Service brokers enable forecasting of the
next possible queries and prefetching the necessary in-
formation. For instance, a news provider website pe-
riodically updates the online headlines. Service bro-
kers can be synchronized to prefetch them when the
server load is not high. So the requests for the news can
be served immediately without accessing the backend
servers.

� Multitasking: Requests that consist of independent
heterogeneous tasks can send simultaneous messages

to service brokers which run in parallel to speed
up processing. For example, a web syndicate like
My.Yahoo composes contents from different and inde-
pendent providers. Thus the page generator can send
requests in parallel to service brokers that are associ-
ated with individual providers. The content retrievals
can be overlapped to reduce the overall response time.

� Load balancing: Load balancing have been widely
used to improve front-end Web servers’ performance
[6, 5]. The basic idea is to select a candidate server and
distribute the workload across multiple servers. Simi-
lar idea is also applicable to backend service accesses.
In the API-based architecture, since no state informa-
tion is shared in individual accesses, it can only work
in a speculative manner. The service brokers can track
the traffic and monitor their workload and accurately
distribute the workload among the backend servers to
achieve a balanced load.

� Amortized context switching: Accesses to backend
servers are done in bulk at service brokers to reduce
the number of context switchings. The service brokers
can reside separately from the Web servers to facilitate
the overall system optimization.

4 Experimental Evaluation

We have prototyped the service broker framework to
demonstrate its feasibility and ability in service differentia-
tion. The testbed configurations and results are discussed in
this section.

4.1 Testbed Configuration

The prototype of the service broker scheme in the boa
web server [4]. Boa is an open sourced, light-weighted, and
efficient Web server. Similar implementation can be done
on other Web servers. The objective of this experiment is
to demonstrate the service broker’s capabilities for service
differentiation and the performance benefits.

As illustrated in Figure 4, in the testbed, there were 3
service brokers (brokers 1, 2 and 3), each connected to a
Web server as backend server (backend server 1, 2 and 3,
all ran Apache Web servers.). The brokers and the front-
end Web server exchange request and response messages
through lightweight UDP. The brokers communicate with
the backend servers in HTTP. All the front and backend
servers and brokers ran on Redhat Linux 7.2. The client
side used WebStone 2.5 [11] on 4 Sun UltraSparc worksta-
tions. Three workstations A, B, and C were designated as
Web clients with QoS levels 1, 2 and 3, respectively.

4

The backend services provided by each backend servers
are CGI requests with bounded processing time. The pro-
cessing time of each of the services is 1, 2 and 3 seconds at
the backend servers 1, 2 and 3, respectively. The QoS spec-
ification used in the testbed is just a binary mode of forward
or drop: QoS level

�
means that the request is forwarded

to the backend servers if the number of the outstanding re-
quests is �������	��
 � ���� of the threshold. For instance, a re-
quest with QoS level 2 is allowed to send query to the corre-
sponding backend server only when the number of outstand-
ing requests is below ���� of the threshold. The thresholds
at each broker were set to be 20, i.e. at most 20 requests are
allowed to be outstanding in each of the backend servers.
The thresholds of queues ensure bounded queueing time.
The maximum number of server processes in each of the
backend end Web servers is set to be 5, therefore only 5
requests can be processed simultaneously in each of these
servers and the rests are queued. If a request was dropped
at the broker, a short message was sent to the front-end Web
server immediately. Therefore, longer the processing time
a request undergoes, higher the fidelity it receives.

Web server

Backend

Backend

Webclient A Webclient B Webclient C

Webmaster

HTTP
HTTP

HTTP

UDP

HTTP

HTTP

HTTP

server 1

server 2

server 3
Backend

Broker 3

Broker 2

Broker 1

UDP UDP

Figure 4. Service differentiation testbed con-
figuration.

4.2 Experimental Results

We set up an experiment to demonstrate the QoS assur-
ance provided by service brokers. The backend servers were
assured to be QoS-unaware. A normal Web request consists
of 3 stages which take approximately 6 seconds to com-
plete. In the service broker scheme, if a request’s QoS level
does not meet the current load status, a low fidelity response
is replied immediately. Thus the longer is the processing
time of a request, the higher is the fidelity of service it re-
ceives.

The experiments were conducted for both API-based ac-
cesses and service broker-based configurations. Figure 5

presents the results reported by WebStone. It is observed
that in API-based accesses, the average processing time is
linear with respect to the number of requests. In the service
broker model, the processing time first rises when the num-
ber of clients is small so service brokers can admit most of
the requests to access backend servers. When the number
of clients increases, more and more requests in lower prior-
ity classes are dropped at the service brokers and they are
informed promptly without any backend service, so the pro-
cessing time declines. Lower priority requests are dropped
to give way to process requests in higher priority classes.
Thus the fidelity of each QoS class is differentiated. In this
regard, the priority inversion abnormality is avoided.

0

10

20

30

40

50

60

10 20 30 40 50 60 70

P
ro

ce
ss

in
g

tim
e

(s
ec

on
d)

Number of clients

API based
Service Broker

Figure 5. Processing time of API and service
broker based settings.

Figure 6 depicts the average processing time of each QoS
class under various load. The requests with higher QoS
level experienced longer processing time, which means that
the fidelity of the response is higher. For each curve, an
increase in processing time is observed followed by a de-
cline when the number of clients reaches a certain point.
The reasons behind this phenomena are: when the num-
ber of clients was low (from 10 to 20), only a few requests
were queued in service brokers, thus the increase of requests
could be accommodated; after some points, the traffic in-
tensity exceeded the capacity and some lower prioritized
requests were responded by service brokers with lower fi-
delity messages without being forwarded to the backend
servers. High priority requests still enjoy high fidelity ser-
vice but the increase in traffic intensity contributes to the
queueing time. When the number of clients exceeded 50,
more requests from the high QoS classes were dropped at
the service brokers and thus their average processing time
declined as well.

5 Related Works

The related work can be categorized into component-
based systems and Web server clustering.

5

0

10

20

30

40

50

60

10 20 30 40 50 60 70

P
ro

ce
ss

in
g

tim
e

(s
ec

on
d)

Number of clients

QoS 1
QoS 2
QoS 3

API

Figure 6. Average processing time for each
QoS level.

Pupeteer [8] is a component-based system for mobile de-
vices. It shares the concepts of service brokers. In Pupeteer,
network activity of mobile applications is governed by a
common middleware which determines bandwidth alloca-
tion, content caching, and content transcoding. While the
service broker framework applies to different system envi-
ronment: interaction between front-end Web and backend
servers. In addition to the aspects addressed in Pupeteer,
more issues that are particular to Web services can be solved
in this framework.

Most of the studies on multiple servers environment
in Web research are focused on how to improve perfor-
mance through load balancing techniques. SWEB [1] in-
vestigated how to use DNS to implement load balancing
and corresponding support in operating systems. Cluster
Reserves [3] proposed a technique to provide resource iso-
lation among different classes. Locality-aware request dis-
patching algorithms were proposed in [9, 12] to enable re-
quests with related URL to be sent to the same server to
achieve locality. Our work is complementary to these front-
end Web server research.

6 Conclusions

Web servers have been used widely for applications that
need to access backend services. The current API-based ac-
cess schemes are not well suited for various reasons. We
proposed a service broker framework that facilitate perfor-
mance improvement and QoS provisioning. In the service
broker framework, every backend service access is carried
out by middleware agents that reside between front-end
Web servers and backend servers. Service brokers can clus-
ter and optimize queries and cache the results according to
a set of pre-defined rules. We have prototyped the frame-
work to demonstrate their feasibility and evaluate their ca-
pacity to provide service differentiation. Experimental re-
sults demonstrated that service brokers can effectively use

QoS specifications and provide scalable performance and
service differentiation.

References

[1] D. Andresen, T. Yang, V. Holmedahl, and O.H. Ibarra,
“SWEB: Toward a Scalable World Wide Web Server
on Multicomputers,” In Proceedings of the 10th In-
ternational Parallel Processing Symposium, Honolulu,
Hawaii, USA , April 1996.

[2] Apache HTTP Server Project, http://www.apache.org

[3] M. Aron, P. Druschel, and W. Zwaenepoel, “Cluster
Reserves: A Mechanism for Resource Management
in Cluster-Based Network Servers,” In Proceedings
of the ACM SIGMETRICS 2000 Conference, Santa
Clara, California , June 2000. ACM.

[4] Boa Web server, http://www.boa.org.

[5] H. Bryhni, E. Klovning, and O. Kure, “A Compari-
son of Load Balancing Techniques for Scalable Web
Servers,” IEEE Network, pages 58–64, July/August
2000.

[6] V. Cardellini, M. Colajanni, and P. S. Yu, “Load Bal-
ancing on Web-server Systems,” IEEE Internet Com-
puting, 3(3):28–39, May/June 1999.

[7] J. Franks, “An MGET proposal for HTTP,”
October 1994. WWW-talk mailing list.
http://www.webhistory.org/www.lists/www-
talk.1994q4/0479.html

[8] E. D. Lara, D. Wallach, and W. Zwaenepoel, “Pup-
peteer: Component-based Adaptation for Mobile
Computing,” in Proceedings of the 3rd Usenix Sym-
posium on Internet Technologies and Systems, March
2001.

[9] V. S. Pai, M. Aron, G. Banga, M. Svendsen, P. Dr-
uschel, W. Zwaenepoel, and E. Nahum, “Locality-
Aware Content Distribution in Cluster-Based Network
Servers," Proc. of the Conf. on Architectural Support
for Programming Languages and Operating Systems,
San Jose, CA Oct. 1998.

[10] T. Sellis, "Multiple Query Optimization", ACM Trans-
actions on Database Systems, vol.13, no.1, pp.23-52,
1988.

[11] WebStone, http://www.mindcraft.com/webstone/

[12] X. Zhang, M. Barrientos, J. Chen, and M. Seltzer,
“HACC: An Architecture for Cluster-Based Web
Servers,” in Proceedings of the Third USENIX Win-
dows NT Symposium. July 1999.

6

