
CATP: A Context-Aware Transportation Protocol for HTTP
�

Huamin Chen and Prasant Mohapatra
Department of Computer Science

University of California, Davis, CA 95616.
Email: {chenhua, prasant}@cs.ucdavis.edu.

Abstract

The rendering mechanism used in Web browsers have
a significant impact on the user behavior and delay tol-
erance of retrieval. The head-of-line blocking phenomena
prevents the browser to render partial results within the
HTTP document. This phenomena stems from two factors:
TCP’s in-order data uploading to the browsers and HTML
tag matching constraint. We propose a context-aware trans-
portation protocol (CATP) to run on top of UDP. This pro-
tocol does not transmit HTML pages in-order. Instead, it
reorganizes the pages and transmit HTML tags first before
transporting their enclosed data. Conforming browsers re-
ceive the page structures and fill them in with subsequent
data packets in whatever sequence they arrive. As a re-
sult, lost and delayed packets do not hinder rendering of
those that are logically behind but have already arrived at
the client sides. Thus the retransmission of the lost frames
can be concealed and overall user perceived performance
improved. The user-perceivable performance is quantified
in terms of silent time during which no activity is observed
at the browser display. The protocol also facilitates partial
content caching, non-interactive applications of Web ser-
vices. We validated this protocol through prototype imple-
mentation and compared the performance with TCP and in-
order delivery UDP schemes. Our protocol provides better
user-perceivable performance under various loss loss rates
and document sizes.

Keywords: HTTP, Transportation protocol, UDP, head-
of-line blocking, out-of-order rendering.

1 Introduction

Web traffic is growing at a fast pace and becoming a
dominant component of Internet traffic. Web server perfor-
mance has been a hot research topic. The widely used met-
rics to assess web server performance are server throughput

�

This research was supported in part by the National Science Founda-
tion through the grants CCR-0296070 and ANI-0296034.

and transaction latency. The server throughput measures
the number of requests or bytes serviced in a certain time
quantum. While the transaction latency refers to the time
interval between when a request sent to the server and the
response’s arrival at the end user. We argue that the two
metrics are not sufficient to assess the user perceived perfor-
mance. In [4], we justified that server throughput is not an
appropriate measurement in session-based web traffic like
e-commerce. Similarly transaction latency cannot capture
the user’s reaction as well. For instance, consider two sce-
narios of transmitting of a web page with 30 seconds la-
tency. In the first case, the end user receives new objects in
the Web page every 3 seconds and every 10 seconds in the
second case. Although the total time latency is the same,
the end user in the second case perceives a more stagnant
transmission thus worse perceived performance. Further-
more, larger silent time may lead to request abortion by the
clients. We define silent time as the time interval during
which no new data are fed to the end user. We are there-
fore motivated to investigate how to curtail the silent time to
provide better user-perceived performance in congested sit-
uations. Smaller silent time will be perceived as continual
flow of information by the user, and thus the overall latency
of the page rendering will be hidden in terms of perception.

The current web infrastructure is built on top of TCP,
which provides reliable delivery between communication
peers. Though TCP has been successful in delivering web
traffic in many environments, previous research work have
revealed the following intrinsic problems with TCP that hin-
ders further performance improvement [6]. TCP is a con-
nection oriented protocol that ensures communication relia-
bility. The participants first setup a communication channel
by a three-way handshaking process, which is lengthy for
high delay environment and short connections like HTML
page delivery. Web servers could redirect the incoming re-
quests to others because either the requested contents have
moved or due to some load balancing policies employed
to distribute load among multiple servers. The clients thus
have to setup new connections. During the process of trans-
mission, the receiver must send ACKs to notify successful

1

arrivals and update the sender’s TCP send window. Since
the processing of ACKs is interrupt driven, large numbers of
simultaneous ACKs could overwhelm the servers and erode
their resources in processing more valuable tasks. If some
data frames are lost during the transmission, the receivers
have to wait for retransmission, which will not be launched
until 3 duplicate ACKs successfully reach the sender or cer-
tain timeout event occurs. During this period, the receiver
cannot process the out-of-order frames. As a result, the end
users perceive inactivity in page rendering: a long silent
time before new contents are displayed. This phenomena is
called head-of-line (HOL) blocking.

We investigated the maximum silent time in a daily traf-
fic trace obtained from [12]. We studied several days of
the HTTP tcpdump traces on the 18Mbps trans-Pacific link.
We analyzed the difference between maximum silent time
of each connection and the corresponding inter-packet ar-
rival time. The inter-packet arrival time characterizes the
network transmission latency. So the difference tells how
other factors like packet loss and reordering contribute to
the silent time. Out of 17,158 completed HTTP connec-
tions, 2,083 were found to have such difference. The cu-
mulative distribution of the difference is plotted in Figure
1. The average value is 8.6 seconds, which is beyond the
end users’ tolerance latency of 8 to 10 seconds [9, 10, 2]. It
is also found in the trace that, silent time is independent of
the file sizes. Thus it is likely that even during download-
ing small files the end users could experience lengthy silent
time.

Silent time due to HOL blocking stems from the packet
drops in congested routing devices, packet loss in unreliable
environment like wireless network, and packet reordering.
Reloading a web page usually opens a new TCP connection
that knows nothing about the previous one and cannot reuse
the out-of-order packets that have successfully arrived. As a
result, it could only exacerbate the already strained routers.
In an inherent lossy wireless network, reload does not guar-
antee the successful reception of the entire page. Packet
reordering, as concluded in [1], which could profoundly
affect TCP performance, becomes increasingly serious in
DiffServ environment where packets belonging to the same
connection can enter different forwarding queues.

We believe that the solutions to this problem need to in-
corporate two indispensable factors. First, the receiver can
reuse the partial results so that the reload of the same page
does not require retransmission of these data. Obviously,
TCP is incapable of this functionality, since TCP allows no
sharing of data between connections. We were thus moti-
vated to use UDP as our transportation protocol. Second,
there should be minimal dependency between the packets
so the loss or delay of one packet does not affect the render-
ing of others. Using this regard, there will always be inputs
to the users’ perception thus the silent time is amortized.

0

10

20

30

40

50

60

70

80

90

100

1e-06 1e-05 0.0001 0.001 0.01 0.1 1 10 100 1000

P
er

ce
nt

ile
 (

%
)

Max silent time minus max inter-packet arrival time

Figure 1. Cumulative distribution of maximum
silent time minus maximum inter-packet ar-
rival time.

This is also an instantiation of what was suggested in [13]
to provide feedback in form of a progress indicator.

On the other hand, the constraint of tag matching in ren-
dering Web pages also contributes to the silent time. Insuf-
ficient context information, especially rendering styles, can
generate significant silent time for users using low speed
links. Early delivery of context information can resolve this
abnormality.

We believe that the average size of Web pages increases
with the wide usage of authoring and content management
tools for better presentation and management. The XML
documents that are used in data intensive applications are
expected to be even bigger. Low speed links like dial-up
will continue to be a significant means of network connec-
tions [8]. As a result, silent time due to transmission of large
Web pages on slow links will remain to be outstanding.

In this paper, we proposed a context-aware transportation
protocol (CATP) for web traffic on top of UDP. In CATP, the
HTML page contents are fragmented into several frames.
The first frame (index frame) contains HTML tags and
pointers to their enclosed data. The transmission of index
frame is protected against loss. Subsequent frames (data
frame) contains data that can be referenced by the pointers.
The content in the data frames are self-contained in syn-
tax and can be rendered for presentation without the help
of other frames thus eliminating HOL blocking. CATP also
facilitates caching, content adaptation and parallel down-
loading from multiple servers. We have implemented the
protocol in an Apache web server and evaluated its perfor-
mance. The experimental results demonstrate that the silent
time is significantly amortized using the proposed scheme
as compared to pure UDP and TCP under various link and
document characteristics.

The rest of the paper is organized in this way. Section 2
discusses the transmission problems of TCP and UDP and
presents CATP. The experimental evaluation is in Section 3
followed by the related works are discussed in Section 4. At

2

last are the concluding remarks Section 5.

2 Context-Aware Transportation Protocol

It is obvious that if the application can handle out-of-
order data, not only the silent time is amortized but also
the packet retransmission could be concealed in the render-
ing process. Since TCP only delivers in-order data streams
to applications, we chose UDP as our transportation proto-
col. In addition to TCP’s in-order delivery, another factor
that prohibits out-of-order rendering is the HTML tag. The
start and end of the well-formed HTML tags must match
to make their enclosed data meaningful. The tags are es-
sentially predicative that establish the partial order of con-
tent within the page. Because tags can be nested, the in-
terpretation of HTML files has to be sequential. Consider
a HTML paragraph, <H1>ABCD</H1> <H2>EFGH</H2>
<H1>IJKL</H1>. Assume the paragraph is fragmented
into 5 segments: <H1>ABCD, </H1><H2>, EFGH,
</H2><H1>, and IJKL</H1>. Suppose these segments are
transported on UDP and arrive out of order and the receiver
receives segment 1, 3 and 5 first, he could mistakenly think
EFGH should be rendered using style H1! In this case, in
order to accurately render EFGH, the receivers has to wait
for the arrival of the associated tags. It is conceivable that
if the tags are separated far apart, loss or delay of any data
segments that are enclosed by the tags will postpone the
rendering of the others.

We have conducted a survey of the tag distance in over
20 web sites including MSNBC, CNN, YAHOO, AMA-
ZON.COM. Tag distance refers to the size of content that
is enclosed by a HTML tag pairs. For instance, the tag dis-
tance of HTML code <small>ABCD</small> is the string
length of “ABCD” which is 4 bytes. We measured the tag
distance in terms of number of the Ethernet packet size
(~1500B). Obviously, tags with distance exceeding that size
should be split into at least 2 packets. We only consider
HTML 3.0 tags. Tags like <HTML>,<BODY>,<FRAME>
are excluded in the measurement due to their minimal im-
pact on page presentation. It is conceivable that in XML
documents where tags proliferate the rendering stagnancy
due to unmatched tags could be more serious.

We downloaded over 80,000 HTML files (including dy-
namic page outputs). The average file size of these files
is 25.5KB. The cumulative distribution of the maximal tag
distance in each file is plotted in Figure 2. Since x-axis is
in log scale, distance 0 is omitted whose cumulative value
is 55%. It is observed that, tag distance is nontrivial in the
inspected pages; nearly half of these pages have to split tag
pairs into several Ethernet frames and over 10% of them
have tag distance more than 10 packets, which implicates
that browsers could have to wait for 10 packets to com-
pletely interpret the rendering style of the enclosed content!

60

65

70

75

80

85

90

95

100

1 10 100 1000 10000

P
er

ce
nt

ile
 (

%
)

Tag distance(number of ethernet frames)

Figure 2. Cumulative distribution of tag dis-
tances.

�����������������������
�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������
�����������������������

<form>

D1

D2

D3

</form>

</P><P>

<table> </table>

Figure 3. Sample HTML page.

Furthermore, loss or delay of any single frames within this
range could leave the rest of them unrenderable.

The aggregation of tags is the skeleton or structure of the
page. Usually, when tags are stripped off, content blocks
enclosed by tag pairs are rank-less. We thus propose to sep-
arate HTML tags from their enclosed content and deliver
them in different packets. We call this scheme context-
aware transportation protocol (CATP). Our scheme is illus-
trated and compared in the following diagrams.

Figure 3 illustrates a HTML page with three data sets:
paragraph D1, table D2, and control section D3 that in-
cludes submission buttons. The tag pairs <form>, and
</form>, <table> and </table>, <p> and </p> determines
the presentation style of their enclosed data sets. Consider
the following possible transmission process illustrated in
Figures 4 and 5 that could be encountered in current TCP
protocol and in-order UDP delivery. CATP is shown in Fig-
ure 6 where pDi is the pointer to data set Di.

In Figure 4, the rendering of received data set cannot be
done until the TCP layer receives in-order data. So if frag-
ment <table>D2 is lost during transmission, the receiver’s
TCP layer will not transfer the fragment D3 to the browser.

3

Sender

<form><P>D1</P>

ACK

<table>D2

(timeout)

ACK

lost

</table>D3</form>

ACK

Receiver’s TCP buffer Receiver’s browser

<form><P>D1</P>

<form><P>D1</P>

<table>D2

<form><P>D1</P>
<table>D2

</table>D3</form>

</table>D3</form>

</table>D3</form>

<table>D2

Figure 4. TCP transmission flow.

The user has to wait for the retransmission of the lost seg-
ment. The silent time, denoted by � , in this occasion is
determined by link loss and retransmission algorithm and if
the sender uses TCP fast recovery algorithm, the silent time
� is

���������
	��
	��������������������������! #"%$'& � �)(+*
�
	����%�������������-,.�/���! #"%$'0�& �21 &
�3�4���
	'	'�654�7& � �/8 � � � �)(+*

	9	 �;:<,, & � � 8 � 	'�=5���&?> � 	��@:A,�&'& �21 &B*

where � is the packet loss probability, �DCFE G�*IH<& is the
number of lost packets, �)(is the retransmission timeout
value, and 1 is the link delay. The expected silent time is

J 	K�-&
�����L�
	 �)(�654� *M	
,N:O�
	'�=54�7&?P &

�21 &IQ

In the UDP enabled in-order delivery scheme illustrated
in Figure 5, though the application can read out-of-order
packets, it cannot correctly interpret the rendering style
without the complete context information. Thus the loss
of fragment </P><table>D2 leaves the third fragment (</ta-
ble>D3</form>) with unmatched tags. The browser does
not know whether the trailing tag </P> is in the lost packet
or in the forthcoming packets, the rendering process cannot
be done until its context information is complete. The silent
time in this case is also a function of loss rate and retrans-
mission algorithm.

In Figure 6, every transmitted packet is self-contained
and not dependent on others. The index frame that contains
HTML tags and pointers is sent first followed by the indi-
vidual data packets. Upon arrival, the data packets fill in
appropriate positions in the index frame. So the loss of any

Sender

<form><P>D1

lost

</table>D3</form>

Receiver’s browser

<form><P>D1

<form><P>D1

<form><P>D1</P>
<table>D2

</table>D3</form>

</table>D3</form>

GET D2

Receiver’s application buffer

</P><table>D2

</P><table>D2

</table>D3</form>

</P><table>D2

Figure 5. UDP transmission flow.

Sender Receiver

<form><P>pD1</P>
<table>pD2</table>
pD3</form>

<form><P>pD1</P>
<table>pD2</table>
pD3</form>

D1

<table>pD2</table>
pD3</form>

<form><P>pD1</P>

D2

<form><P>pD1</P>
<table>D2</table>

pD3</form>
GET D1

D1

lost

<form><P>D1</P>
<table>D2</table>

pD3</form>

Figure 6. Out-of-order proof transmission
flow.

packet does not affect the rendering of those that have suc-
cessfully arrived at the receiver side. Since the retransmis-
sion can be done in parallel with the transmission of other
fragments, the silent time in this case is independent of the
link loss rate and tag distance, thus the silent time due to
packet loss or delay is

�3�R�
	��������L�������������/���! �"S$'& �21 �T	?�65���& � � 8 � � �21 *

and the expected silent time is

J 	K�-&U�
1
�65�� Q

4

3 Experimental Evaluation

3.1 Implementation

CATP was implemented in Apache 1.3.22 for Linux.
The modification to original Apache distribution is small,
less than 50 lines of original code were modified to support
UDP and a new module was added to support page fragmen-
tation delivery. We also implemented a UDP HTTP client
to benchmark the performance.

The experiment was done on an emulated network envi-
ronment with various offered link speed and loss rates by
using NIST Net [11] on a Linux box with the kernel version
2.4.17. NIST Net is a Linux kernel module that emulates a
WAN environment by adding time delay in packet transmis-
sion, controlling transmission rate, and constantly dropping
packets. It is ideal to validate the effectiveness of our pro-
tocol in various conditions. Although NIST Net provides
many network conditions, what interests us most is the vari-
ation of packet loss rates which is the major cause of HOL
blocking in current Internet.

3.2 Experimental Results

Figure 7 plots the comparison of silent time of TCP, UDP
and the proposed protocol under offered bandwidth 10KB/s
to request a 10KB and a 50KB page with maximum of tag
distances of 5 and 20 frames respectively. It is assumed
there is no dependency among these data frames. For each
protocol, 100 requests were initiated for each loss rate con-
figuration and their average maximum silent time is plotted.
In the TCP tests, the benchmarking tool ab reported oper-
ation timed out under high loss environment. So we could
not collect the corresponding results under these conditions.

Figure 7 compares the impact of tag distance. It is ob-
served that the large tag distance incurs longer silent time
under all configurations. Note that TCP’s performance is
not directly affected by tag distances, but longer tag distance
usually means larger file to transfer where TCP is more sen-
sitive to loss. When the loss rate is low, TCP outperforms
both UDP and our scheme due to its aggressive utilization
of available bandwidth. But the advantage is very small.
As the loss rate increases, TCP’s silent time grows dramati-
cally whereas our context-aware scheme remains relatively
stable. Two factors are responsible for this phenomena.
First, the retransmission in TCP stymies new packets ar-
riving at the receiver thus extends the silent time. Second,
upon packet loss, the TCP’s congestion avoidance mecha-
nism cuts the congestion window in half and decreases the
transmission rate. These factors are absent in UDP which
transmits data in constant rate. Thus the performance of
UDP is better than TCP under highly lossy situations. But
as discussed earlier, pure UDP does not circumvent the un-

0.01

0.1

1

10

100

1000

0 10 20 30 40 50 60

S
ile

nt
 ti

m
e

(s
ec

on
d)

Drop rate (%)

TCP,distance 5
TCP,distance 20
UDP, distance 5
UDP,distance 20
CATP, distance 5

CATP,distance 20

Figure 7. Tag distances are 5 and 20 frames

matched tag blocking thus is still subject to HOL blocking.
Whereas the context-aware scheme is not obstructed by tags
and thus exhibit even better performance.

4 Related Works

Research on HTTP transportation protocols mainly fo-
cused on how to adapt TCP to transfer short HTTP files.
Persistent HTTP[6, 16] (P-HTTP) has been proposed to re-
duce the setup cost in TCP. TCP fast start [16] is a tech-
nique that utilizes prior connections’ information to avoid
slow start of TCP thus speed up short file downloading.
Performance of various HTTP transportation protocols was
analyzed in [7]. The authors presented analytical models
of HTTP over TCP, Asynchronized Reliable UDP Protocol
(ARDP), T-TCP, and P-TCP. The major performance met-
rics used in these work was transmission time of the whole
page. As discussed in the previous sections, this measure-
ment may not reflect the overall perception of end users.

Using UDP to transmit Web traffic has been explored in
[5, 17]. A simulation study in [5] has revealed the perfor-
mance improvement under various link conditions by us-
ing UDP to transfer Web pages. A implementation-based
study in [17] proposed a hybrid TCP/UDP protocol that
exploits the lightweightedness and caching friendliness of
UDP under low lossy links and switches to TCP otherwise.
The major concerns in these studies are how to exploit the
lightweight UDP to expedite the delivery of HTML pages
and the extended caching benefit due to UDP’s stateless-
ness. Whereas our work only utilizes UDP’s out-of-order
delivery to minimize the user perceivable silent time.

Mogul has proposed in an Internet draft [14] to elimi-
nate the HOL blocking by adding request ID in pipelined
HTTP/1.1 requests. Our scheme is applicable to both
HTTP/1.0 and 1.1, at the granularity of page fragments ver-
sus requests in the draft. Parallel downloading can relieve
the HOL blocking. But parallel connections to the same
Web server incurs more bursty network traffic. In [18], the
downloading process was conducted through multiple ge-

5

ographically separated servers. As a result, the traffic are
distributed over multiple links. To realize the scheme, how-
ever, multiple servers should be deployed in different net-
work domains.

Fragment-based dynamic page generation and caching
have been studied in [3, 15]. Dynamic content caching
based on page fragmentation was proposed in [3] that uses
a graphical representation of Web pages to exploit data de-
pendency relationship. WebGraph [15] is a component-
based server processing scheme to distinguish diverse at-
tributes of each component and take appropriate mea-
sures on them. Although this paper is also based on the
component-frame architecture, the way that a Web page
is partitioned into various component is based on the sur-
rounding tags and the content length. And the goal of this
paper is to expedite Web page transmission and rendering
whereas the other works are mainly intended to facilitate
dynamic page generation and caching.

5 Conclusion

The head-of-line blocking in the process of Web page
delivery occurs due to packet delay, loss and reordering.
TCP’s in oder data delivery to browsers and the long tag
distance in Web pages contribute to the HOL blocking prob-
lem and results in longer user perceivable silent time. We
propose a UDP-based out-of-order capable Web page trans-
mission protocol to solve the problem. This protocol splits
the structure and data in separate data frames such that the
rendering of HTML data is not constrained by their enclos-
ing tags. As a result, data blocks can be rendered imme-
diately after their arrival at the end users without having
to waiting for the complete context information. The pro-
posed scheme amortizes the silent time and facilitates par-
tial content caching and non-interactive applications. An
implementation-based experiment validated the feasibility
and demonstrated significant performance improvement un-
der various network conditions.

References

[1] J. Bennett and C. Partridge, “Packet Reordering is Not
Pathological Network Behavior,” IEEE/ACM Trans-
actions on Networking, Vol 7, No. 6, December, 1999.

[2] N. Bhatti, A. Bouch, and A. Kuchinsky, “Integrating
User-Perceived Quality into Web Server Design,” In
Proceedings of the 9th International World Wide Web
Conference, Amsterdam, Netherlands , May 2000.

[3] J. Challenger, A. Iyengar, K. Witting, C. Ferstat, and
P. Reed, “A Publishing System for Efficiently Creating
Dynamic Web Content,” IEEE INFOCOM 2000.

[4] H. Chen and P. Mohapatra, “Session-Based Overload
Control for QoS-Aware Web Servers,” IEEE INFO-
COM 2002.

[5] I. Cidon, R. Rom, A. Gupta, and C. Schuba, “Hybrid
TCP-UDP Transport for Web Traffic,”, IEEE IPCCC
1999.

[6] J. Heidemann, "Performance Interactions Between P-
HTTP and TCP Implementations," ACM Computer
Communication Review, vol. 27(2), pp. 65–73, April
1997.

[7] J. Heidemann, K. Obraczka, and J. Touch, "Modeling
the Performance of HTTP over Several Transport Pro-
tocols, " IEEE/ACM Transactions on Networking, vol.
5, no. 5, pp. 616–630, Oct. 1997.

[8] ICONOCAST newsletter for August 17, 2000,
http://www.iconocast.com/issue/20000817.html

[9] J. Nielsen, “Chapter 5, Usability Engineering.” Mor-
gan Kaufmann, 1994.

[10] J. Nielsen, “Designing Web Usability.” New Riders
Publishing; December 16, 1999.

[11] NIST NET, http://snad.ncsl.nist.gov/
itg/nistnet/.

[12] MAWI Working Group Traffic Archive, http://
tracer.csl.sony.co.jp/mawi/.

[13] B. A. Myers, “The Importance of Percent-Done
Progress Indicators for Computer-Human Interfaces.”
Proc. ACM CHI’85 Conf. (San Francisco, CA, 14-18
April), 11-17.

[14] J. Mogul, “Support for Out-of-order Re-
sponses in HTTP.” http://search.
ietf.org/internet-drafts/
draft-mogul-http-ooo-00.txt.

[15] P. Mohapatra and H. Chen, "WebGraph: A Framework
for Managing and Improving Performance of Dy-
namic Web Content," Special Issue of Proxy Servers
in the IEEE Journal of Selected Areas in Communica-
tions, 2002.

[16] V. Padmanabhan and R. Katz, "TCP Fast Start: a Tech-
nique for Speeding Up Web Transfers," IEEE Globe-
com’98 Internet MiniConference, November 1998.

[17] M. Rabinovich and H. Wang, “DHTTP: An Efficient
and Cache-Friendly Transfer Protocol for Web Traf-
fic.” IEEE INFOCOM 2001.

[18] P. Rodriguez, A. Kirpal, and E. W. Biersack, “Parallel-
Access for Mirror Sites in the Internet”, IEEE INFO-
COM 2000.

6

