
A Flow Control Framework for Improving Throughput and Energy Efficiency in
CSMA/CA based Wireless Multihop Networks

Jaya Shankar Pathmasuntharam1,2, Amitabha Das2, Prasant Mohapatra3
1Networking Department, Communications and Device Division, Institute for Infocomm Research, Singapore

2School of Computer Engineering, Nanyang Technological University, Singapore
3Department of Computer Science, University of California, Davis. Davis, CA 95616, USA

Abstract— In multihop wireless networks where a random access
MAC scheme such as CSMA/CA is used, nodes greedily compete
in a distributed manner and are unaware of the interference they
cause to other surrounding nodes. In these networks, excessive
interference at a receiver or a potential forwarding node causes
severe blocking and reduction in throughput. In addition, the
unbalanced interference experienced at a particular node can
force the node to consume more time receiving packets rather
than sending them, resulting in dropped packets due to buffer
overflow. We discuss a novel flow control framework for
regulating the transmission and improving the overall
throughput of multihop wireless networks based on CSMA/CA
MAC protocol. The framework prevents congestion, reduces
packet loss and is attractive because per-flow information at each
node is kept to a minimum. The techniques used to improve
throughput include a hop-by-hop, hybrid rate and window based
flow control scheme that paces the transmission of frames such
that competition between frames originating from the same flow
is reduced. In a general chain topology, the framework shows
that throughput and energy efficiency can be increased by factors
of 2.47 and 2.4, respectively, when a single flow is transmitted as
fast as possible along the chain. In the high fan-in chain setup,
where multiple single-hop flows are forwarded into a chain of
nodes, the energy efficiency and throughput improvement factors
can be as high as 5.14 and 5.58, respectively.

Keywords-component; Flow control, hop-by-hop, rate control,
static window, multihop wireless networks, CSMA/CA

I. INTRODUCTION
In multihop wireless networks, the media access control

(MAC) layer plays an important role in regulating the amount
of traffic that can traverse via a node. The use of a pure TDMA
approach in multihop networks requires many practical
problems such as synchronization and scheduling overhead to
be solved first. Not surprisingly, a random access method such
as CSMA/CA is still popular in ad hoc and sensor networks
due to its simplicity [10] [23]. Recent protocols such as IEEE
802.15.3 [9] and IEEE 802.15.4 [9] are focusing on a hybrid
TDMA and CSMA approach. Despite the popularity of
CSMA/CA based MAC protocols, its performance in multihop
wireless network is known to be poor [11]. In this paper, we
carefully study some of the main contributing factors of
throughput degradation in CSMA/CA based MAC protocol. In
addition, we also analyze the congestion problem, and show its
relationship to the inefficiency of the MAC scheme. Thus the
primary focus of this paper is to develop a framework for flow
control for CSMA/CA based multihop wireless networks,
which can improve the performance while conserving energy.

Flow and congestion control has been well researched in
the context of wired networks [1] [2] [3] [4]. Over the past few
years, it has been receiving wide attention in the context of
wireless ad hoc networks [5] [6] [24-28], and in sensor
networks [7] [8]. Unlike the wired access medium, the wireless
access medium, which is typified by hidden terminal problems,
broadcast transmissions, and random access methods, has

significant contributions to the congestion problem. In a typical
wireless multihop network, each node has a single transceiver,
which is used to compete with other nodes in the shared
medium to access the channel. Besides sending its own
packets, each node also serves to forward other transiting
packets. If a transceiver is captured more often by other nodes
for receiving incoming transit packets rather than being
allowed to send packets out, then congestion at that node will
occur. In the wired medium, such a phenomenon does not exist
since each link operates independently of others. Congestion,
which leads to dropped packets at the downstream nodes, is
obviously detrimental to the energy efficiency of an ad hoc or
sensor network because of the wasted energy used to forward
packets along multiple hops.

In this paper, we examine and design several techniques
that span different layers of the traditional protocol stack to
address the performance of the CSMA/CA MAC based
multihop network. These include a novel hop-by-hop, hybrid
rate and window based flow control scheme and an enhanced
CSMA/CA MAC protocol. Collectively, we term the entire
work as a flow control framework. The choice of a hop-by-hop
flow control scheme over an end-to-end scheme is
straightforward since feedback is faster resulting in shorter
response time to congestion. In addition, it is easier to design a
loss less scheme that can complement the modest energy level
of the nodes.

As a precursor to the design of the proposed framework, we
identify the factors that affect (some of which are new) the
throughput of CSMA/CA-based multihop wireless networks.
The impacts of these factors are quantified experimentally. An
enhanced CSMA/CA-based scheme is developed to mitigate
the problems identified. In proposing the flow control scheme,
we pursue a fundamentally different approach, which we refer
to as a hop-by-hop, hybrid window and rate-based flow control
scheme. As the name suggests, the rate control and window
mechanism is implemented on a per-hop basis. Previous hop-
by-hop protocols use either a rate control [1] or a window
scheme [2] but not both in combination. While previous hop-
by-hop schemes suffered from per-flow management and rate
measurement complexity [1] [2], we make certain
simplifications to the rate control and window design to make
our design feasible for multihop wireless networks. In total, the
scheme prevents congestion and reduces packet loss. While
this paper is not specifically about IEEE 802.11, most of our
experimental results and enhancements are based on the IEEE
802.11 DCF MAC protocol. However, the suggested
framework is applicable to a general CSMA/CA MAC
protocol.

II. FACTORS AFFECTING THROUGHPUT IN MULTIHOP
TRANSMISSION

In this section, we diagnose and discuss some of the issues
that affect throughput in a multihop wireless network when
CSMA/CA MAC protocol is used. The effect of exposed node

problem on throughput has been discussed in great detail in
[11]. In [12], the authors have shown via simulation that
throughput in CSMA/CA based multihop networks can be
further degraded by the “critically exposed node problem”. For
the sake of completeness, we briefly reiterate this problem and
further reveal three more reasons, which significantly cause the
overall throughput in multihop networks to degrade.

A. The critically exposed node problem
In Fig 1, when node 7 is communicating to node 8, node 4

can initiate a transmission by sending a request to send (RTS)
frame because it senses the channel as idle. However, a
receiver such as node 5, will not reply since it senses the
channel as busy. The location dependent interference causes
disparity in the carrier sensing state between the sender (node
4) and the receiver (node 5). Due to this disparity and the use
of binary exponential backoff (BEB) mechanism, node 4 will
double its contention window and retry with another RTS
frame. If node 4 continuously does not receive a response and
the maximum retry limit is reached, the data frame will be
dropped at node 4. Node 5 is termed as the “critically exposed
node”, when node 7 is transmitting. Node 4 is essentially
blocked from forwarding the packet.

Figure 1. Chain setup with flow traveling from node 1 to node 9

B. Location dependency and uneven carrier sensing
resulting in congestion
In a multihop wireless network, the location of nodes and

the direction of transmission affect the throughput of a
particular flow. We use figures 1 and 2 to illustrate the effect of
uneven carrier sensing.

Figure 2. Uneven carrier sensing due to node location

In Fig 1, data packets are transmitted from node 1 to node 9
via the intermediate nodes. Fig 1 also shows the transmission
and carrier sense ranges of node 7, when node 7 is transmitting.
The intended destination of node 7 is node 8. The timelines in
Fig 2 describe the reception of the signals at nodes 6 and 5,
respectively, when node 7 is engaged in a 4-way, RTS-CTS-
DATA-ACK handshake with node 8. The shaded frames in Fig
2 represent the carrier sense range frames received at nodes 5
and 6. When a node is within the carrier sense region but
outside the transmission range of a particular sender, the
received frame will be treated as noise. Therefore the Network
Allocation Vector (NAV) cannot be received correctly and the
node can only depend on the physical carrier sense instead of
the virtual carrier sense (NAV) to perform backoff. In the setup
shown in Fig 1, node 5 is outside the carrier sense region of
node 8. Therefore node 5 experiences longer idle time when
compared to node 6, especially during the CTS and ACK

exchanges from node 8. Due to this uneven idle sensing and
unequal termination times (denoted as T0 and T1), node 5 will
start counting down its backoff counter faster than node 6. This
causes node 5 to always capture the channel faster than node 6.
If the offered load from node 5 is high, and this phenomenon
persists, then node 6 will spend most of its time being engaged
in receiving packets rather than sending them. When this
occurs, the queue at node 6 will soon be exhausted and
congestion will prevail. The same phenomenon will occur
anywhere along the chain if the offered load is high and the
idle sensing period of the upstream node is greater than the
downstream node. In later sections, it will be apparent that, one
of the techniques that we propose for improving throughput is
designed on the basis of balancing the time spent by a node for
receiving and transmitting packets.

C. False NAV
The use of virtual carrier sense or Network Allocation

Vectors (NAV) was made popular in the IEEE 802.11 [13]
protocol and continues to be adopted in newer protocols such
as IEEE 802.15.4 [9]. Both, physical and virtual carrier-sense
functions are used to determine the state of the medium. In
[13], the standard states that if either function indicates a busy
medium, the medium shall be considered busy; otherwise it
shall be considered idle. The virtual carrier sense mechanism is
achieved by distributing reservation information announcing
the impending use of the medium. The exchange of RTS and
CTS frames prior to the actual DATA frame is one means of
distributing this medium reservation information. The RTS and
CTS frames contain a “Duration” field that defines the period
of time that the medium is to be reserved to transmit the actual
DATA frame and the returning ACK frame. All nodes within
the reception range of either sender’s RTS or receiver’s CTS
shall obey the medium reservation.

The wrong use of NAVs in CSMA/CA MAC protocols can
be detrimental to the throughput of multihop wireless
networks. We use the chain setup as shown in Fig 1 to illustrate
the problem that currently exists. Consider the situation when
node 7 is in the midst of transmitting a DATA frame to node 8,
and node 4 tries to send a RTS frame to node 5. Node 5 does
not reply with a CTS frame because it is critically exposed by
node 7. However, the RTS sent out by node 4 might be
received by node 3. In 802.11, when a sender sends a RTS
packet, it sets its NAV and informs the surrounding nodes to
backoff for the entire duration of the 4-way handshake message
sequence. As such, the channel will still remain reserved by the
sender who had initially sent the RTS packet. If the data packet
is large, the backoff period imposed by NAV can be larger than
the average backoff interval chosen by the binary backoff
algorithm at any backoff stage. In Fig 1, when node 2 tries to
communicate to node 3, even when both nodes senses an idle
channel, node 3 will not reply due to the initial NAV value sent
out by node 4. Repeated RTS retries from node 2 will result in
dropped packets at node 2 when the maximum retry limit is
reached. Effectively, this “false NAV” indication from node 4
results in a larger exclusion area and prevents certain nodes
from using the channel effectively. In some cases, this
scenario could have a domino effect, thereby, impacting
drastically on the throughput of multihop wireless networks.

D. Frozen MAC State
Under perfect collision avoidance, a returned CTS frame

should be free from collision since the RTS sender would have
reserved the channel around it. However, due to hidden
terminal problem, there is a possibility for frames such as

T0 T1

DATA RTS

CTS ACK

Node 6

Node 5

DIFS +
Wavg

1 2 4 6 53

Carrier sense range
Transmission range

7 8 9

ACKs to collide with the reception of the CTS frame. We use
Fig 1 to illustrate this problem. Assuming that in the first
instance, only nodes 4 and 5 are engaged in a 4-way handshake
and node 4 is in the midst of sending a DATA frame to node 5.
Midway through this transmission, node 7 transmits a RTS
frame to node 8. Meanwhile, when node 7 is transmitting its
RTS frame, node 5 completes the reception of the DATA
frame and sends out an ACK frame regardless of the channel
sensing state. During this period, node 8 receives the RTS
frame properly and sends out a CTS frame because it senses
the channel as idle. However, due to node 7’s proximity to
node 5, it receives the ACK frame from node 5 and the CTS
frame collides at node 7. Node 7 will cease to send the DATA
packet but the MAC state in node 8 anticipates the reception of
a DATA frame. However, it will remain frozen in this state and
will not respond to other incoming RTS frames, including
those from the original sender, until the initial DATA frame
interval has timed out. Such a scenario also causes blocking
and results in unnecessary RTS retries.

III. SEVERITY OF THE CONGESTION, FALSE NAV AND
FROZEN MAC STATE PROBLEM IN MULTIHOP NETWORKS
In this section, we quantify the impact of the causes for

performance limitations outlined in the previous section.

A. Metrics
Throughout this paper, we use a couple of measures to

evaluate the performance of the original and newly proposed
scheme: end-to-end throughput, (S), and transmission cost, (ψ).
The transmission cost, (ψ), measures the amount of bits
expended by the nodes in the system to transmit a single data
bit from the source to the destination. The proposed metric is
motivated by the metric proposed in [14]. However this
definition is modified to cater for a multihop scenario and the
overheads incurred by all the 4-way handshake frames.
Therefore, the transmission cost, ψ, which gives us some
indication of the energy wasted by the system is defined as the
ratio of all transmitted frames in the system over the data
frames received at the receiver.

B. Experiments
Using a series of experiments carried out by using NS-2

simulator, we demonstrate the problem of congestion, false
NAV and frozen MAC state in multihop transmissions. All the
simulations in this paper are based on the 802.11 Distributed
Coordination Function (DCF) protocol with transmission rate
of 1 Mbps. The transmission and carrier sense ranges are 250m
and 550m, respectively. A packet capture model which only
accepts packets that arrive within a short capture interval, tc, of
4µs and ignores other received packets even with higher power
signal is implemented into the original 802.11 DCF scheme.
Unless stated otherwise, static routing is used in all the
experiments to omit the effect of routing layer inefficiencies
and accurately study the effect of MAC protocol alone on the
performance of the multihop network. In addition, a fixed
packet length of 1500 bytes is used in all experiments.

The first experiment was carried out by using a chain setup
as shown in Fig 1. However, we reduce the number of nodes in
the chain to 6 for this experiment. The data packet is sent from
node 1 to node 6. The end-to-end throughput is recorded in Fig
3. The packet inter-arrival time at the source node, which is
labeled as node 1 in Fig 1, is varied from 1 to 0.0001 seconds.
The throughput reaches a peak of 213.1 kbps when the packet
inter-arrival time at node 1 is 0.057 seconds.

Figure 3. End-to-end throughput for chain setup

Figure 4. Number of received and dropped DATA frame for chain setup

(packet inter-arrival time = 0.005 seconds)

In Fig 3, when the optimal offered load is used, the highest
throughput at packet inter-arrival time of 0.057 seconds
confirms the maximum attainable throughput in a chain setup
as reported by [11]. However, when the packet arrival is faster
than this value, the end-to-end throughput saturates at
86.94kbps. In this scenario, when the packet inter-arrival time
drops below 0.057 seconds, congestion will persist. Figures 4
and 5 show the number of data frames received and dropped at
various nodes along the chain for two packet inter-arrival
times; 0.005 seconds and 0.057 seconds, respectively. In the
first case (Fig 4), there are many dropped data packets at nodes
3 and 2 due to buffer overflow. We also notice that data
packets are being dropped at node 1 and node 2 due to MAC
layer maximum transmission retry limit. This phenomenon is
attributed to the critically exposed interference and false NAV
indication as discussed in Sections II-A and II-C above. The
congestion phenomenon at nodes 2 and 3, which causes
dropped packets form the buffer when the offered load exceeds
a certain threshold confirms our observation, which is
discussed earlier in Section II-B.

In Fig 5, there are no dropped DATA frames since the
packets are scheduled by using an optimal packet inter-arrival
time (0.057 seconds). In such a scenario, the deviation of the
end-to-end throughput, which is 213.1 kbps, from the
maximum link throughput (1 Mbps) is attributed to the exposed
node effect and other overheads.

Fig 6 shows the transmission cost of the plain 802.11 MAC
protocol when the chain setup is used. When the packet arrival
is slower than the critical value of 0.057 seconds, the
transmission cost is optimal because only a single RTS frame is
consumed for every DATA frame. Under such cases, the

transmission cost is recorded at 5.57. When the packet arrival
is faster than the critical value, the transmission cost starts to
increase due to a variety of reason discussed in Section II
above. Under the heavy offered load cases, the difference in
transmission cost can be as high as 210% from the optimal
case.

Figure 5. Number of received and dropped DATA frame for chain setup
(packet inter-arrival time = 0.057 seconds)

Figure 6. Transmission cost for chain setup

Figure 7. Percentage of various receiver states in 6-node chain setup when
packet inter-arrival at node 1 is 0.005 sec.

Fig 7 shows the overall receiver responses when a RTS
frame is transmitted by one of the nodes in the 6-node chain
setup. The packet inter-arrival time at node 1 is set to 0.005
seconds to simulate the saturated case. The graph show that, for
55.08% of the RTS frames sent to a receiver, the receiver sees
an idle channel and responds with a CTS frame. A significantly
high percentage (23.02%) of the RTS frames sent to the

receivers are critically exposed and the receivers will not
respond with CTS frames. False NAV and frozen MAC state
amounts to about 13.18% and 7.46% of the failed CTS
responses, respectively. The remaining problems, which are
insignificant compared to the other problems, are due to direct
collision when the receiver transmits at the same instance as
the sender (1.16%) and two transmission range signals
colliding at the receiver (0.10%).

Figure 8. Grid setup and high fan-in chain setup

The above experiment only reveals the throughput and
energy performance under a single end-to-end flow scenario
with low node density. To demonstrate the throughput
performance under multiple flow scenarios, we simulated the
original 802.11 MAC in a grid topology depicted in Fig 8a
where node density and channel contention is higher. The size
of the grid is fixed at 1000m by 1000m, but we vary the
number of nodes and distance between the rows and columns
to increase the density of nodes. The flows are transmitted from
the nodes in the upper row to the lowest row and nodes from
the first column to the last column. In all three grid sizes shown
in Table I, the number of hops to reach the destination is 5 in
all end-to-end flows. In addition to the grid setup, we simulated
a high fan-in scenario as shown in Fig 8b, where many single-
hop links fan-in into a chain of nodes. The later scenario
depicts a possible scenario in sensor networks. In both setups,
we set the packet inter-arrival time of the source nodes to 0.005
seconds to simulate the condition where nodes transmit as fast
as possible.

TABLE I. PERFORMANCE RESULTS FOR GRID SETUP

Grid Size Distance
between rows

or cols

Transmission
cost (ψ)

Aggregate
Throughput

(kbps)

6 by 6 200 m 11.35 253.536
11 by 11 100 m 13.11 219.184
21 by 21 50 m 15.56 182.4

TABLE II. PERFORMANCE RESULTS FOR HIGH FAN-IN CHAIN SETUP

No of Sources Transmission cost (ψ) Aggregate Throughput
(kbps)

1 11.48 86.94
10 31.21 31.31
20 31.75 30.70
40 30.52 31.92

The results obtained in Table I are as expected since
throughput and energy efficiency degrades as the node density
and contention increases. The transmission cost is still high
considering that each flow needs to travel only 5 hops to reach
the destination. Table II records the performance evaluation of
the topology shown in Fig 8b. The end-to-end throughput drops
drastically to around 31 kbps when the number of flows going
into the chain of nodes increases. The transmission cost also
degrades by 548% compared to the ideal case (ψ = 5.57) when

(a) (b)

the number of flows is increased from 1 to 10. The experiments
above demonstrate that under heavy traffic conditions and high
fan-in situations, the throughput of wireless multihop networks
based on CSMA/CA MAC protocol can easily degrade.

In most wireless networks, the MAC protocols and flow
control schemes operate independently of each other. There
have been very few research efforts on the study of an effective
cross layer flow control design that increases the throughput of
wireless multihop networks [28]. The MAC layer is normally
isolated from the upper layers and an event such as buffer
overflow is transparent to the MAC layer. Through the
experiments above, we have examined some inherent MAC
protocol flaws that cause unnecessary packet drops. In the later
sections, we propose enhancements to the MAC protocol and
introduce a novel hop-by-hop flow control scheme to improve
the performance of the CSMA/CA based multihop wireless
network.

IV. A FLOW CONTROL FRAMEWORK

Figure 9. Flow control framework

The main objective of this flow control framework is to
maximize throughput and energy efficiency of the CSMA/CA
based multihop wireless network. The primary goal of the
techniques that we introduce in this paper is tuned towards
improving the throughput in multihop wireless networks. Since
the framework is targeted for ad hoc and sensor networks, we
adopt the techniques and algorithms that are efficient in terms
of computations and transmissions, and thereby energy
efficient. The overall flow control framework is shown in Fig 9
and consists of two major components; the enhanced
CSMA/CA MAC and the hop-by-hop flow control. The two
major components are explained in detail in the following
sections.

Fairness of flows is another objective of our framework.
We adopt a per-flow packet scheduler that tries to achieve
reasonable fairness but with low processing complexity. We
use the Distributed Round Robin (DRR) scheme to implement
the packet scheduling scheme because it has a O(1) time packet
processing complexity when compared to the other per-flow
timestamp schedulers such as SCFQ, WF2Q, etc.

V. ENHANCED CSMA/CA MAC PROTOCOL
The CSMA/CA MAC protocol block as shown in Fig 9, is

modified such that the MAC layer is aware of flow control and
buffer states. Unlike the traditional stack, our MAC layer is
designed to act as an admission control point to prevent
eventual packet drop due to buffer overflow. In this section, we
discuss the MAC enhancements that are introduced to improve
the throughput and rectify the MAC inefficiencies highlighted
in Section II. Specifically, we discuss how the false NAV
problem should be handled and discuss the additional

modification to the CSMA/CA 4-way handshake to allow
interoperation of the MAC protocol with the flow control
scheme.

A. Solving the false NAV problem
To solve the false NAV problem, we recommend that

nodes apply a selective reset on the received NAV. When a
node receives a NAV from certain nodes, it is expected to
physically sense some activity in the channel because it is
likely to be within the transmission range of either one or both
of the communicating sender-receiver nodes. To solve the false
NAV problem, we propose to modify the DCF protocol such
that nodes that are blocked with a NAV should still try to
receive transmission range packet using the normal packet
capture procedure [13]. If a valid RTS frame is received
correctly, the node should cancel its NAV and proceed with the
normal 4-way handshake. This operation is valid since the node
would not have received a valid RTS frame if there was a valid
4-way handshake ongoing in the neighborhood of the node that
received the NAV. We do not however recommend that all
nodes cancel their NAV by listening to the channel because
resetting NAV in all nodes can result in increased interference.

B. Modifications to the 4-way handshake
To ensure interoperation between the MAC layer and the

flow control module, we propose that the standard 4-way
handshake in CSMA/CA is modified to include a RTS-NAK
frame. In addition, the RTS frame is modified to carry a flow
ID field, which is explained in Section VI-A. The modified 4-
way handshake operates as follows. When a sender node sends
a RTS frame, the receiver has the option to send a RTS-NAK
frame or a CTS frame. Upon receiving the RTS, the MAC
layer consults the flow control module, to check if the packet
can be admitted into the node. The flow control examines the
flow ID to check if a packet with the same ID exists at the
receiver. If the flow violates the buffer occupancy rule, the
MAC layer will reply with a RTS-NAK frame to the sender
node. The buffer occupancy rule is violated when a packet that
belongs to the same flow exists in the receiving node or the
total buffer limit has been reached. Accordingly, there are two
different RTS-NAK types to represent these two events. The
RTS-NAK frame is designed as small as possible to reduce the
overhead incurred by this frame. 2 bits are used to represent the
different RTS-NAK types. Another 14 bits are used to carry the
flow rate information, which is explained in Section VI-D.
Using the same IEEE 802.11 standard, the RTS-NAK message
is the same size as the CTS frame. If the flow control allows
the data packet to be admitted, the 4-way handshake proceeds
as per-normal.

VI. HOP-BY-HOP HYBRID WINDOW AND RATE BASED FLOW
CONTROL

In the previous section, we described the enhancement to
the standard 4-way handshake with additional fields and a
RTS-NAK frame for the purpose of compactly carrying flow
control information. In this section we discuss the hop-by-hop
flow control scheme. We refer the readers to [15] for a
complete taxonomy on flow and congestion control techniques.
Similar to the definition used in [15], we claim that flow
control is used here as a means to solve the congestion
problem. Due to scalability and ease of deployment, end-to-end
flow control schemes such as TCP have dominated the wired
networks. Hop-by-hop flow control is normally favored over
the end-to-end control scheme since it provides faster feedback
response to congestion. However, the benefits of hop-by-hop

Flow control

Incoming
RTS

Feedback
RTS-NAK/CTS

Flow control aware CSMA/CA MAC

Packet
Scheduling

Per-flow queues

Outgoing
MAC frames

Incoming
MAC frames

Hop count to destination information from routing table

schemes normally come at the expense of additional explicit
messages to notify the upstream nodes about the congestion. In
a wireless multihop network, if special control messages are
sent over multiple hops in the reverse direction to control the
rate, it can result in self-contention, which results in a sluggish
system.

Hop-by-hop flow control schemes have not been popular in
wired networks because of its requirement to maintain per-flow
information at each node. This is understandable since the
number of flows passing through a core router in the Internet is
enormous, making the management of per-flow information
infeasible [16]. Unsurprisingly, end-to-end flow control
schemes have dominated the Internet by far. In a multihop
wireless network, the number of flows is presumably more
manageable if we implement some form of admission control
at the nodes to restrict the number of flows passing through a
node. A case for hop-by-hop flow control for wireless multihop
networks has been justified in [5]. Furthermore, depending on
how a flow is classified, we can further reduce the complexity
of per-flow information management. Since fairness is a
secondary objective in this flow control framework, we can
relax the requirement of maintaining the strict per-flow
information similar to that normally described in previous
schemes [1] [2]. We present a lightweight flow ID management
scheme that is beneficial to a computationally and energy
challenged network such as ad hoc and sensor networks.

A. Flow ID representation and management
To reap the benefits of the hop-by-hop flow control and

per-flow packet scheduling schemes, the process of flow
identification is compulsory. However, we need an efficient
method, which incurs low communication and memory
overheads to represent flows. In a typical IP system, the flow is
defined in an end-to-end manner and the address information
that identifies the flow is normally embedded in the data
packet. Hence, the entire MAC layer 4-way handshake has to
be completed before the system can identify the flow. In the
standard network stack without cross-layer consideration,
allowing the data packet to arrive at a node before inferring if a
flow has violated the buffer occupancy limit, and finally
discarding the data packet is wasteful in terms of channel
resources. For this reason, we need an efficient way to notify
the receiver of the impending data packet before actually
sending the large data packet. The IP addresses and port
numbers, which are used to define the end-to-end flow, uses a
total of 12 bytes. Encoding the 12 bytes into the MAC layer
frames is one option but this makes the MAC frame size too
large. Hence, we need a more compact flow ID representation
scheme.

There are few approaches that can be used. One could
design a special field to maintain a globally unique flow ID but
scalability of such a technique is difficult to achieve in a
multihop wireless network. The other option is to design a flow
ID scheme that is unique on a per-hop and flow direction basis.
This scheme is much more attractive than the globally unique
flow ID scheme because the same ID can be reused by the
same node on other links. However, because the total number
of flows, N, that can pass through a node in an interval can be
much greater than the total buffer size, R, we need to maintain
a reasonable amount of flow ID records. In addition, we require
a flow ID management protocol that operates between any two
nodes to assign a new ID or replace old per-hop flow IDs when
a node runs out of IDs. To cater for a system that prevents
frequent changes in per-hop flow IDs, we then require at least

log 2 N bits to represent each flow and O(N) memory records
for each per-hop link.

To reduce the memory storage problem attributed to flow
ID records and overcome the flow ID management problem,
we propose an innovative method based on hashing to
represent flow IDs. In our scheme, flow IDs are represented on
a per-hop basis. The IDs are generated by using a standard
hashing function [17] that takes the following triplets as inputs;
the unique end-to-end source and destination addresses of the
flow, and per-hop source MAC address. The per-hop MAC
address is used as one of the inputs for the purpose of reducing
hash code conflicts due to multi-path flows originating and
terminating from the same source and destination but passing
through the same intermediate node. This simple but novel
method obviates the need to have an additional flow ID
assignment protocol.

Conflicts in the hashed codes can occur in our system if the
hash code size is small. However, we argue that the system is
tolerant of conflicts since per-flow fairness is a secondary
objective in our flow control framework. In our scheme, we
maintain a table of the triplets mentioned above only for the
packets that are present in the buffer of a node at any given
instance. As such, the memory requirements for storage of per-
flow ID is then reduced to O(R), irrespective of the number of
flows passing through a node. The reduced memory
requirement of this scheme is especially attractive for a sensor
network environment.

In our experiments, we reserve a 10-bit field for the
purpose of encoding the flow ID. The number of bits is a
design parameter that has to take into consideration the
statistical probability of hashing code conflicts at any given
node in the system. The flow ID, which is compact, can then be
encoded into the RTS frame for easy identification of the flows
during the RTS-CTS phase. The benefit of this scheme is that,
the sender of the RTS frame is able to query the receiver’s
buffer occupancy state fast by using the same MAC layer
collision avoidance frames. The receiver can then positively or
negatively acknowledge the buffer occupancy state for the
impending flow with a CTS or a RTS-NAK frame,
respectively.

B. Bandwidth-Delay Product and flow control design
We propose a new hybrid hop-by-hop flow control scheme,

which utilizes a combination of static window and rate control
to regulate the flow of packets. The rate control is used on a
per-hop basis rather than just at the originating node. The
rationale of such a scheme will be further explained in this
subsection.

Before we discuss the scheme and the parameter selection
in detail, we study the bandwidth-delay product, BDP [15], of
the typical wireless multihop network. The bandwidth-delay
product or BDP is an important parameter in flow control
theory as it determines the optimal amount of packets that can
be transmitted between endpoints in an uninterrupted manner.
Most window based flow control scheme such as TCP’s AIMD
[18] and traditional sliding window protocol in effect use the
BDP to calculate the optimal window size, w, for transmission
between endpoints. Assuming the bottleneck service rate of a
node in the path is µ packets/seconds, and round trip time is
measured as RTT seconds, the bandwidth delay product is
simply given as:

 BDP = RTT × µ (1)

If the flow control scheme is not controlled properly and w
exceeds the BDP, then the number of packets buffered at a
bottleneck node becomes (w - RTT⋅µ). To reduce congestion
and buffer buildup, ideally, we want to adjust w such that w =
RTT⋅µ..

Figure 10. (a) Wired 8-hop link. (b) Spiral wireless multihop links

BDP in a wired network and wireless network has many
fundamental differences. In a wired network, each intermediate
node consists of more that one interface. Whereas, in a wireless
multihop network, each node usually uses a single half-duplex
transceiver. While the wired nodes can transmit in parallel
using adjacent links, wireless nodes have to contend spatially
to transmit a single frame. Fig 10a illustrates a typical chain
setup using wired networks whereas Fig 1 represents the chain
setup for a wireless network. In Fig 10a, packet transmission
can occur simultaneously in each wired link when packets are
forwarded from node 1 to node 9. Assuming negligible
acknowledgment packet transmission time and a fixed data
packet size, the optimal window size can be worked out as 8
packets due to the 8 hops present in the topology. Whereas, in
the wireless multihop network as shown in Fig 1, parallel
transmissions is a function of the transmission and carrier
sensing ranges of the MAC protocol. Denoting transmission
range as dtx and carrier sense range as dcs, by geometry we can
easily show that the maximum effective throughput, Schain_max,
of a straight chain is upper bounded by the following
expression:

1

max_
max_

+

⋅
=

tx

cs

link
chain

d
d

S
S

α (2)

where, α is simply a factor to account for the fixed
overheads consumed by RTS, CTS and ACK frames, and other
headers. Slink_max describes the maximum link capacity and the
ceiling function, rounds up the ratio between the carrier
sense and transmission range. In a 1 Mbps IEEE 802.11b
system, Slink_max = 1 Mbps and the ratio of dcs/dtx is typically 2.2
[19]. In a typical 11 Mbps system, the ratio of dcs/dtx is about
4.4 [19]. Using the typical 1 Mbps IEEE 802.11 ranges, it is
shown in [11] that the optimal end-to-end throughput of the
chain is governed by a factor of ¼. We simply refer to the
factor, dcs/dtx +1 from equation (2) as the link reuse factor Q.
Assuming a fixed packet size and ideal transmission
scheduling, then it is easy to see that every link in a chain setup
should be scheduled every Q slots, where each slot interval,
Tslot is defined by the minimum 4-way handshake interval
given as:

3 _slot RTS CTS DATA ACKT T T T T sifs difs ave cw= + + + + + + (3)

where, the ave_cw parameter describes the average binary
exponential backoff window slots used in the first stage of the
binary exponential backoff process and TRTS, TCTS, etc.
describes the time taken to transmit the RTS, CTS, etc. frames,
respectively. In other words, in a chain setup using a 1 Mbps

system with dcs/dtx =2.2, parallel transmissions can only be
carried out at every 4 hops away assuming that each
transmission is carried out at maximum transmission distance
and the links are in a straight line as shown in Fig 1. However,
if the links are much shorter and have arbitrary direction as
shown in Fig 10b, then the effective throughput, Schain, of the
end-to-end chain will drop below that defined in (2).

Unlike the wired case, we can show that by using equations
(1) and (2), the maximum window size, w, necessary for
optimal flow control in a multihop transmission is always
lower than the number of hops, H, when H≥2. Assuming a
negligible acknowledgement packet transmission time and
wireless propagation delay, the upper bound on the window
size, wu_bound, for a particular flow that traverses H hops, where
H≥Q can be approximated to:

1

_
_

+

=

tx

cs

optcount
boundu

d
d

H
w

 (4)

where Hcount_opt is the hop count for the end-to-end flow
assuming the chain is in a straight line and distance between
nodes are at maximum transmission distance. This result gives
us some clue on how the per-hop static window and rate
control should be implemented at each intermediate node.
Intuitively, by observing equation (4), we can conclude that it
is unnecessary to allocate a total buffer space for a particular
flow along the chain of nodes where this flow passes through,
which exceeds wu_bound. These packets will anyway cause
unnecessary backlog in the intermediate nodes and prevent
other nodes from accessing the network. In addition, the
additional packets originating from the same flow will result in
self-contention during channel access.

C. Static hop-by-hop window control
The basic hop-by-hop flow control scheme that we adopt in

this framework resembles a simple static window protocol of
typical first generation flow control scheme [15]. We however
reuse the CSMA/CA MAC protocol’s collision avoidance
frames (RTS, CTS) , RTS-NAK and ACK frame as a means to
implement the messaging protocol for the static window. In a
multihop wireless network, it is difficult to achieve the
maximum chain throughput, Schain_max, since there will be other
contending nodes that effectively reduce the throughput of the
end-to-end link. In addition, a packet that experiences frequent
blocking will have a longer average transmission period than
that given in equation (3) to send a packet successfully, due to
multiple RTS retries and long binary exponential backoff
periods.

Tuning the nodes to use the exact window size requires
constant measurement and feedback of the round trip time or
flow rate, which is too resource consuming for an ad hoc or
sensor network. For this reason and to keep the design simple,
we simply use the upper bound of the window size given by
equation (4) to design the flow control scheme.

To simplify analysis and design of the flow control scheme,
we assume that nodes transmit equal length packets and the
queue length at each node is measured in terms of packets. The
design and parameters can be easily converted for a variable
packet length system and a queue length measured in bytes.
Averaging wu_bound over the intermediate nodes, we note that
each node should only hold a fraction of the packet. However,
since the queue size is measured in packets, it is impractical to
store a fraction of the packet. Therefore, we limit the static

1 2 4 6 53 7 8 9

1 2

4 6
5

3

Carrier sense range

Transmission range

7

(a)

(b)

window size for each flow at each intermediate node to a single
packet. We then rely on the rate control part of this hybrid hop-
by-hop flow control scheme to spatially spread the packets.
Since the per-hop queue used to serve a flow is limited to a
fixed window size of one unit, we try to spread the packet
distributed on the intermediate nodes such that they are placed
at every Qth link. By controlling the rate control part properly,
we can effectively limit the equivalent flow control window
size of a flow to wu_bound along the links. The basic hop-by-hop
flow control scheme with the static single-unit window alone
will simply be referred to as the “Static H-b-H window”
scheme.

D. Rate control
To realize the spreading of the packets or the rate control

scheme, we implement a delay mechanism at each node. This
rate control scheme cannot operate independently and needs to
be supplemented with the basic static window scheme
discussed in Section VI-C above. This is necessary because the
rate control scheme requires some form of binary feedback on
congestion from the hop-by-hop static window scheme. The
operation of the rate control scheme is captured in the
algorithm described in figures 11 to 13, which is expressed
using a C-style pseudo code. For convenience, the notation and
terminology used to describe the algorithm are summarized in
Table III below.

TABLE III. NOTATIONS

d Destination node for flow f

s Source node for flow f

m
fPkt The mth packet for flow f

hops(i,j) Number of hops from node i to node j

Timer(T) Timer function with count down period of T seconds

Q System wide link reuse factor (as explained in Section VI-B)

Tslot Average 4-way handshake period to transmit a data packet as
given by equation (3)

f.record Flow record for flow f

1
_. m

prev delayf T −

Previous delay time used by the (m-1)th packet of flow f. This
is the time that must elapse for the mth packet of flow f before
it is scheduled for transmission after the (m-1)th packet has
exited the node.

m
fPkt .delay Current delay assigned to the mth packet of flow f at a certain

node in multiples of Tslot.

m
fPkt .base.delay Base delay assigned to the mth packet of flow f based on the

remainder hops to destination

Schedule(Pkt, T) A function to schedule the transmission of a packet, Pkt, after
a delay of T seconds.

Unlike previous hop-by-hop flow control schemes, our
scheme is unique because it does not necessitate the storage of
all per-flow information for packets that transit at each
intermediate node. However, we maintain flow information for
packets that are currently residing at a node and for those that
have exited a node, for a limited period. After this limited
period, the flow record is flushed from the intermediate node’s
memory. However, like most of the rate control schemes, the
historical flow rate at each node is crucial for optimally
controlling the flow and reducing congestion. To retain the rate
information of a flow and at the same time reduce the
requirement of per-flow rate information storage at each node,
we encode the flow rate on a given link, l, into the data packet

that is forwarded to the next hop. In this way, when an
upstream node tries to admit a packet originating from the
same flow on link l and a packet still exist in the downstream
node’s buffer, the last used flow rate information for link l can
be obtained from the downstream packet. The rate value is then
encoded in the RTS-NAK frame and passed back to the
upstream node. Since the rate information is coded in multiples
of Tslot, the number of bits required to represent the rate can be
compactly encoded in the RTS-NAK frame. The rate
information can then be used to schedule the transmission of
the data packet from the upstream node to the downstream
node.

Receive(m
fPkt) at node i

{
1 /* initialize basic packet delay */
2 if (f.record ≡ False){
3 if (hops(i,d) ≥ Q)
4 m

fPkt .base.delay ← (Q-1)×Tslot;

5 else
6 m

fPkt .base.delay ← (hops(i,d)-1)×Tslot;

7 }
8 if (f.record ≡ False) {
9 Encode m

fPkt with m
fPkt .base.delay

10 m
fPkt .delay ← m

fPkt .base.delay;

11 Schedule(m
fPkt ,0);

12 }

13 else if (f.record ≡ True and Timer(
1
_. m

prev delayf T −
) not expired) {

14 Encode m
fPkt with

1
_. m

prev delayf T −

15 m
fPkt .delay ←

1
_. m

prev delayf T −
;

16 Schedule(m
fPkt , remainder of Timer(

1
_. m

prev delayf T −
));

17 }
} /* End of Receive */

Figure 11. Receive function

Fig 11 describes the receiving function of the algorithm. A
node, which receives a transit packet, first checks if a flow
record for flow f, f.record, exists. The f.record basically stores
the time that must elapse, 1

_. m
prev delayf T − , in between the

transmission of packets (m-1) and m of flow f, along a link l.
The f.record only exist at a node for a limited period given by

1
_. m

prev delayf T − , after the (m-1)th packet has left the node. If a
record does not exist, it then proceeds to schedule the packet
for transmission immediately. Before transmitting, the delay in
multiples of Tslot that corresponds to the rate in which flow f
passes through link l is encoded into the data packet. In lines 3
to 6, the number of hops to the destination is checked to
compute the base delay that should be used. The delaying
technique that we design gives the receiver node and other
contending nodes along the downstream path ample time to
forward packets that belong to the same flow. Considering this,
it is intuitive to schedule the packets for every Qth slot when
there is Q number of links ahead. However, when the
remaining hop count from node i to destination node, d, given
by hops(i, d) is lower than Q, or an end-to-end flow has fewer
than Q hops, then we need to regulate the rate control such that
these flows are not unnecessarily penalized. For this reason, we
apply the following delay rule at every intermediate node by
considering the remainder hop-count to destination.

(5)

(1)
.

((,) 1)
slot

slot

Q T
base delay

hops i d T
− ⋅

= − ⋅

if hops(i,d) ≥ Q
if hops(i,d) < Q

In (5), base.delay denotes the base delay to be imposed for
a flow at any given node. In Fig 9, the number of hops to
destination is obtained from the routing layer. In lines 13 to 16
of Fig 11, the node waits for the timer, Timer(1

_. m
prev delayf T −), to

expire if f.record exists before scheduling the packet for
transmission. If f.record exists, the current delay period, which
is stored in f.record, is encoded into the data packet before
transmission.

The Schedule function in Fig 11 invokes the Transmit
function shown in Fig 12. When an upstream node receives a
RTS-NAK frame from a downstream node indicating that a
packet of the same flow ID is still present at the downstream
node, the upstream node will extract the delay information
encoded in the RTS-NAK. This is described in line 2 of Fig 12.
The upstream node will then select the highest delay value
between the last used delay, m

fPkt .delay, and the delay

information encoded in the RTS-NAK and additively increases
the delay interval by a single Tslot. Notice that the last used
delay value can be higher than the delay value encoded in the
RTS-NAK due to multiple RTS-NAK replies for the same data
packet. The upstream node will then restart the delay timer for
transmitting the packet again.

Transmit(m
fPkt) at node i

{
1 if (received a RTS-NAK) {
2 Extract 1−m

fPkt .delay from RTS-NAK frame

3 if (m
fPkt .delay > 1−m

fPkt .delay)

4 m
fPkt .delay ← m

fPkt .delay + Tslot;

5 else
 m

fPkt .delay ← 1−m
fPkt .delay + Tslot;

6 Encode m
fPkt with m

fPkt .delay

7 Schedule(m
fPkt , Timer(m

fPkt .delay));

8 }
9 else if (received an ACK) {

10 _. m
prev delayf T ← m

fPkt .delay;

11 _. m
prev delayf T = max[_. m

prev delayf T -Tslot, m
fPkt .base.delay];

12 f.record ← Store(_. m
prev delayf T);

13 Start Timer(_. m
prev delayf T);

14 }
}/* End of Transmit */

Figure 12. Transmit function

Cleanup () at node i
{

1 if(Timer(_. m
prev delayf T) ≡ 0 and 1+m

fPkt ≡ 0)

2 f.record = False;

} /* End of Transmit */

Figure 13. Cleanup function

If an upstream node receives an ACK frame as a result of
successfully transmitting the mth data packet, the upstream
node will then setup the delay timer for the (m+1)th data
packet. Lines 9 to 14 of Fig 12 describe this procedure. The
upstream node will decrement the last used delay by Tslot if the
delay period used is greater than the base delay given by
equation (5) and store it in f.record. Else, the upstream node
will simply use the base delay given by equation (5) and store
this in f.record. The node will then set a timer based on the
selected delay for the same flow f. Note that immediately after
receiving the ACK, the upstream node will not have a packet

with the same flow ID because the window size is a single unit
but any packet that is received eventually will have to adhere to
this delay. If the upstream node does not receive a packet of the
same flow ID within this delay period, then this flow
information is removed from the memory. This operation is
described in Fig 13. This operation reduces the memory storage
complexity associated with storage of per-flow information.
The reason for decrementing the delay by a single slot in line
11 of Fig 12 is to test if the sending rate can be increased. Line
11 also limits the rate to the achievable upper bound derived
from equations (2) and (4).

In this paper, we have not suggested any special method to
solve the critically exposed node problem; therefore some
flows will still experience excessive blocking under normal
circumstances due to unfavorable location of nodes. Some of
the packets will also be dropped after experiencing the
maximum retry limit. The simple additive delay increase
method mentioned above will regulate the flows passing
through such links but it does not penalize them. As a result of
this, the flow control framework proposed in this paper still
experiences dropped packet due to critically exposed
interference. To reduce the lost packets due to such
interference, one could possibly modify the packet scheduler
described in Section IV to a weighted scheme that penalizes
such flows.

In contrast to our per-hop rate control scheme, one could
design a source node rate control mechanism [6] to regulate the
flows in the same manner as described above but a rate control
mechanism on a per-hop basis is more beneficial than a single
rate control mechanism at the source. The reason for this is
because a source rate control can only regulate the flow at the
starting point of the flow. Contention and bottlenecks in the
downstream nodes will quickly cause the packets to be
clumped together at each node along the downstream path,
further resulting in self-contention and reduced throughput.

VII. SIMULATION RESULTS

TABLE IV. SUMMARY OF SCHEMES

Schemes Remarks

NAV repair The selective NAV repair scheme proposed in Section
V-A

Rate Control The hop-by-hop rate control as described in Section VI-
D

Static H-b-H Window A static per-flow window of size 1 at each node

No Congestion Control
or Original 802.11 MAC

The original stack with plain 802.11 DCF and FIFO
queuing

To demonstrate the effectiveness of our approach, we used
NS-2 simulator to obtain simulation results. We modified the
IEEE 802.11 DCF protocol to include the enhancements to the
4-way handshake and the solution to the false NAV problem.
In addition, we developed additional clear channel assessment
modes (CCA) to handle the proper carrier sensing states, which
is absent in NS-2. All the performance results obtained in this
paper are based on CCA-2 [13] mode. We also implemented
our flow control scheme and the MAC layer enhancements in a
modular fashion such that different modules can be combined
in different combinations to form different strategies. The
various modular schemes that form the various strategies are
summarized in Table IV. In addition, the metrics that were
described in Section III are use to evaluate the performance of
the various strategies. All simulations were carried out by using
a fixed data packet size of 1500 bytes.

We evaluate the various strategies by using four distinct
topologies. The first is a simple chain setup as shown in Fig 1,
but with a single flow originating from node 1 and terminating
at node 6. This simple setup has also been shown in Section III
to suffer from congestion. In the second setup, we examine a
directed 5-chain links fan-in situation as shown in Fig 14,
where several flows traveling along different chain of nodes for
some distance converge into a single chain of nodes. In Fig 14,
the nodes denoted as S are the sources whereas the node
denoted as D is the destination node. Next, we show the
performance of the high fan-in single-hop links that converge
into a single chain as shown in Fig 8b. Finally, we evaluate the
performance of our scheme under the grid setup with multiple
cross flows, which is shown in Fig 8a and described in Section
III-B.

Figure 14. directed 5-chain links fan-in

Figure 15. Throughput perfornance – chain setup

Fig 15 shows the throughput performance of the various
flow control strategies when the single-flow chain setup is
used. When packet arrival is slow, the behavior of all the
schemes is the same. However, when packet arrival is faster,
there are significant differences in the throughput
performances. Fig 15 shows that the combination of the static
window and rate control is sufficient to ensure that the
throughput is optimal and tallies with equation (2). In this
particular setup, using the rate control and static window
negates the effect of false NAV; therefore the addition of NAV
repair does not show any improvement. When all three
schemes are used in combination, the throughput exceeds the
“No Congestion Control” scheme by a factor of 2.47. When the
static window is used alone, the throughput performance is
increased by a factor of 1.77. Additional improvement to
throughput is noticed when NAV repair is used with the hop-
by-hop static window alone.

Fig 16 shows the transmission cost obtained by using the
chain setup. The use of the three schemes in combination keeps
the energy efficiency to the optimal value of 5.57. This

corresponds to the transmission that occurs along 5 hops of the
chain setup. In the “No Congestion Control” scheme, the
transmission cost can exceed the optimal value by a factor of
2.4. This shows that significant amount of energy can be
wasted when the flow is pumped into the chain as fast as
possible and no congestion control is used. Fig 16 also shows
that, significant saving of energy is possible even if the plain
static window is used alone.

Figure 16. Transmission cost – chain setup

Figure 17. Throughput performance – directed 5 chain links fan-in

Figure 18. Transmission cost – directed 5-chain links fan-in

The throughput performance and transmission cost of the
directed 5 chain links fan-in setup (as shown in Fig 14) is
shown in figures 17 and 18. It is interesting to note that, in this
setup, when the NAV repair is used with the plain 802.11

D

S
S S

S

S

∠ = 22.5°

200 m

MAC, the throughput performance during faster packet arrival
actually degrades when compared to the original 802.11 MAC.
This occurs because the NAV repair employed at a node
actually has the effect of improving the MAC layer service
time used for receiving incoming frames. NAV repair also
reduces the number of packets that are dropped at a sender due
to maximum retry limit because receivers are not blocked due
to false NAV. However this improvement in receiving time is
achieved at the expense of reducing the service time available
for transmitting frames. Therefore when NAV repair is used
without flow control, more packets can be sent by the source
but are later dropped due to buffer overflow at certain nodes.
The simulation traces for the 5 chain links fan-in setup used in
Fig 14 confirm this observation. During faster packet arrival,
the total packet dropped due to buffer overflow and maximum
retry limit for the original MAC with NAV repair only,
exceeds the original MAC by 17.6%. However, the packet drop
due to buffer overflow alone, for the original MAC with NAV
repair, exceeds the original MAC by 30%. The dropped
packets due to buffer overflow for this particular setup occur
mainly at the 2nd and 3rd node of each end-to-end flow. As a
result of reduced service time for transmitting, fewer packets
are successfully transmitted to the final destination.

When the NAV repair is used in combination with rate
control and static window, it actually contributes to throughput
improvements. Consistent with the chain setup, throughput and
energy improvement can be significantly improved by just
using the static window alone. However, the combination of
the NAV repair, static window and rate control yields the best
performance.

TABLE V. PERFORMANCE OF FLOW CONTROL FRAMEWORK USING GRID
SETUP

 No Congestion Control Static Window + NAV repair
+ Rate control

Grid Size ψ Throughput (kbps) ψ Throughput (kbps)

6 by 6 11.35 253.536 6.61 400.97
11 by 11 13.11 219.184 7.94 324.67
21 by 21 15.56 182.4 9.28 270.56

TABLE VI. PERFORMANCE OF FLOW CONTROL FRAMEWORK USING
HIGH FAN-IN CHAIN SETUP

No Congestion Control Static Window + NAV repair +
Rate control

No. of
Sources

ψ Throughput (kbps) ψ Throughput (kbps)

1 11.48 86.94 5.57 214. 01
10 31.21 31.31 6.07 174.89
20 31.75 30.70 6.13 172.67
40 30.52 31.92 6.26 170.24

Table V shows the performance improvement of the
complete flow control scheme when the grid setup as shown in
Fig 8a is used and when sources transmit as fast as possible.
The performance improvement for throughput and transmission
cost is not as high when compared to the other two setups
described previously but still shows significant improvement.
Table VI shows the improvement when the high fan-in chain
setup as shown in Fig 8b is used. The results collected in Table
VI are based on sources transmitting as fast as possible. Using
the complete flow control framework, tremendous
improvement in throughput and energy efficiency can be
obtained when the number of sources is high. When the
number of sources in the high fan-in chain setup is 10, the
energy efficiency and throughput improves by factors of 5.14
and 5.58, respectively, when the complete flow control
framework is used.

VIII. RELATED WORKS
Flow control in wired networks have been proposed and

studied for several decades with end-to-end flow/congestion
control schemes dominating the earlier designs [18] [21] [22].
Some of these designs have been adopted into the infamous
TCP protocol suite [18]. Due to low complexity in design,
scalability and ease of deployment, end-to-end flow control
schemes such as TCP have dominated the wired networks.
However, as pointed out in [20] [24-28], end-to-end flow
control such as TCP fails to support high utilization of
bandwidth in multihop wireless networks. The authors in [27]
have specifically investigated the effects of mobility and
further proposed an explicit link failure notification (ELFN) to
help TCP differentiate between congestion and link failure
losses. The authors in [26] have also closely studied the
interactions between TCP and the underlying MAC protocol
such as 802.11.

Hop-by-hop flow control started to emerge in the early 90’s
[1] [2] [4]. Hop-by-hop flow is usually favored because it
provides faster feedback response to congestion. However, the
benefits of hop-by-hop schemes normally come at the expense
of additional explicit notification messages [1] [6] to notify the
upstream nodes about the congestion and maintenance of per-
flow information at each node [1] [2] [6]. Recently, hop-by-
hop flow control schemes have been suggested for use in ad
hoc networks [5] [6] and sensor networks [7] [8]. Hop-by-hop
schemes typically use either a rate control or a dynamic
window to implement the flow control. The scheme proposed
by [1] is a rate-based flow control implemented on a per-hop
basis. Nodes typically measure the rate and buffer occupancy
of flows passing though it and explicitly passes this
information to upstream nodes. Each node is responsible for
throttling the flows at the onset of congestion. In [6] [5], the
schemes defer as the explicit feedback is sent to the main
source to control the source rate. These schemes can suffer
from scalability issues because of the expensive resources
required to maintain per-flow information and compute the
actual rate of the flows. The scheme proposed by [2], which is
known as the credit-based flow control is a typical dynamic
window scheme implemented on a per-hop basis. A
downstream receiver monitors queue lengths of each flow and
determines the number of packets or “credit” an upstream
sender can transmit on a link. The sender transmits only as
many packets as allowed by the credit. The scheme essentially
monitors the outgoing links, determines the link round trip
times and allocates the buffer evenly to flows passing through
the node. Periodic feedback is required to indicate the available
credits to the upstream nodes. Similar to [1], this scheme
requires per-flow management and dedicated buffers, which is
not scalable in ad hoc or sensor networks. In addition, the
schemes proposed in [1] [2] [6] do not promote spatial
spreading of packets belonging to the same flow, which could
result in self-contention and reduced throughput at the MAC
layer.

The schemes proposed in [7] [8] are examples of recent
efforts in designing lightweight flow control schemes specially
targeted for sensor networks. This scheme monitors the buffer
occupancy level and uses a binary value to indicate congestion.
The binary congestion value, which is coded in the data frame,
is then broadcasted to upstream (child) node to stop the
transmission of frames. The upstream (child) node, which hears
this binary congestion value, will similarly broadcast this value
upstream till it reaches the source. In addition to this simple
hop-by-hop flow control, the scheme in [7] implements a per-
hop rate control which controls the rate of upstream nodes. The

sending rate is computed based on actively listening and
computing the rate of the transit packets forwarded by the
downstream nodes. In total, the scheme resembles a rate-based,
hop-by-hop flow control scheme. The disadvantage of this
technique is that if per-flow management is not considered,
then the congestion bit is essentially propagated to all source
nodes, which are serviced by the congested parent node. This
could restrict some of the upstream nodes from forwarding
packets in other directions if other path exists. The scheme in
[8] on the other hand implements a hop-by-hop flow control
scheme with source rate control. In [8], congestion is detected
by listening to the channel activity. Similar to [7], the
congestion is signaled to the upstream nodes. Similar to [7],
this scheme is suitable for sensor networks where most data
originate from source and mostly travel in a single direction
towards a sink.

In contrast to the schemes described in [7] [8], our flow
control scheme is targeted towards a more general multihop
wireless network which typically have flows moving is
arbitrary directions. As such, the distinction of flows is still
required. The hop-by-hop flow control scheme that we describe
in this paper differs significantly from other hop-by-hop
schemes mentioned above. In our scheme, we introduce a
hybrid per-hop static window and rate control scheme to
dynamically adjust the flow rate.

IX. CONCLUSION
In this paper, we have carefully studied the CSMA/CA

MAC protocol based on 802.11 DCF to identify some of the
main problems that cause congestion and degradation in
throughput and energy efficiency. We have categorically
identified the major problems such as “False NAV” and
“Frozen MAC State” and proposed a solution to the “False
NAV” problem. This paper also presents a unique hybrid hop-
by-hop flow control scheme, which uses per-hop static window
and rate control to regulate congestion in multihop wireless
networks. We proposed a flow control framework by coupling
the hop-by-hop hybrid flow control and the false NAV
enhancement. The hop-by-hop flow control scheme leverages
on the CSMA/CA based MAC protocol by utilizing the MAC
frames used for collision avoidance. The flow control scheme
itself is a zero loss scheme since buffer occupancy is always
monitored and fed back to the upstream nodes using the MAC
layer’s collision avoidance frames. Unlike the traditional hop-
by-hop flow control scheme proposed previously which suffers
from per-flow maintenance of all flows passing through a
node; our scheme is designed to reduce per-flow maintenance.
We introduce a novel technique for storage and sharing of flow
rate information. We encode the rate information of a link used
by a particular packet into the packet and pass it to the
downstream node. This rate information can then be extracted
for eventual use by the upstream node. In addition to this, we
introduce a novel technique for flow ID representation based
on hashing. This simple but novel method eliminates the need
for a complex flow ID assignment protocol and a large flow ID
field to represent flows. The flow control scheme proposed in
this paper has several benefits when compared to an end-to-end
window scheme such as TCP or a pure rate control hop-by-hop
scheme. While the number of packets pumped into the system
by a source can be the same in all these schemes, we use a per-
hop rate control scheme in combination with a static single
packet window that tries to spatially distribute the packets
along the links to avoid self contention among flows
originating from the same source. In TCP, clumping of packets
belonging to the same flow can occur, resulting in congestion

and buffer overflow. Our flow control framework demonstrates
that throughput and energy efficiency can be improved
tremendously in simple topologies and topologies that
demonstrate high congestion.

REFERENCES
[1] P. P. Mishra and H. Kanakia, “A hop by hop rate based congestion

control scheme,” in ACM SIGCOMM, August 1992.
[2] H. T. Kung, T. Blackwell, and A. Chapman, “Credit-based flow control

for ATM networks: Credit update protocol, adaptive credit allocation
and statistical multiplexing,” in ACM SIGCOMM, 1994.

[3] D. Katabi, M. Handley, and C. Rohrs, “Internet Congestion Control for
Future High Bandwidth-Delay Product Environments,” in ACM
SIGCOMM, 2002.

[4] C. Ozveren, R. Simcoe, G. Varghese: "Reliable and Efficient Hop-by-
Hop Flow Control ", IEEE JSAC, vol. 13, no. 4, May 1995, pp. 642-650.

[5] Y. Yi, S. Shakkottai, “Hop-by-hop Congestion Control over a Wireless
Multi-hop Network”, in IEEE INFOCOM, 2004.

[6] K. Chen, K. Nahrstedt, N. Vaidya, “The Utility of Explicit Rate-Based
Flow Control in Mobile Ad Hoc Networks,” in IEEE WCNC, 2004.

[7] B. Hull, K. Jamieson, H. Balakrishnan,”Mitigating Congestion in
Wireless Sensor Networks", in ACM SenSys, 2004,

[8] C. Y. Wan, S. Eisenman, A. Campbell, “CODA: Congestion Detection
and Avoidance in Sensor Networks”, in ACM Sensys, 2003.

[9] http://www.ieee802.org/15/
[10] W. Ye, J. Heidemann, and D. Estrin, “An energy-efficient MAC

protocol for wireless sensor networks,” in IEEE INFOCOM, 2002.
[11] J. Li, C. Blake, D. S. De Couto, H. I. Lee, and R. Morris, “Capacity of

ad hoc wireless networks,” in ACM MOBICOM, 2001.
[12] J. Pathmasuntharam, A. Das, A. K. Gupta, “Channel Assignment for

Nullifying the Critically Exposed Node Problem in Ad Hoc Wireless
Network”, in IEEE SECON, 2004.

[13] IEEE Std 802.11b. Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) Specifications: Higher-Speed Physical Layer
Extension in the 2.4 GHz Band, IEEE, 1999.

[14] J. Zhao, R. Govindan, “Understanding Packet Delivery Performance in
Dense Wireless Sensor Networks,” in ACM Sensys, 2003.

[15] S. Keshav, An Engineering Approach to Computer Networking.
Reading, MA: Addison Wesley, 1998.

[16] R. Jain, “Congestion control and traffic management in ATM networks:
recent advances and a survey,” ATM Forum Contribution 95-0177,
1995.

[17] R. Jain, “A Comparison of Hashing Schemes for Address Lookup in
Computer Networks” , Tech. Rpt.-593, DEC, February 1989.

[18] V. Jacobson, “Congestion Avoidance and Control”, in ACM SIGCOMM,
1988.

[19] B. Awerbuch, D. Holmer, H. Rubens, “High Throughput Route
Selection in Multi-rate Ad Hoc Wireless Networks”, IFIP WONS, 2004.

[20] S. Xu, T. Saadawi “Does the IEEE 802.11 MAC Protocol work well in
multihop wireless ad hoc networks?,” in IEEE Comms Magazine, 2001.

[21] D. Mitra, J.B. Seery, “Dynamic adaptive windows for high speed data
networks: Theory and simulations”, in ACM SIGCOMM, 1990.

[22] K. K. Ramakrishnan and R. Jain, “A Binary Feedback Scheme for
Congestion Avoidance in Computer Networks”, in ACM Trans. on
Comp. Sys. Vol. 8, no. 2, pp 158-181, May 1990.

[23] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, K. Pister, “System
architecture directions for network sensors,” in ASPLOS-IX, 2000.

[24] H. Balakrishnan, V. Padmanabhan, and R. H. Katz, "The effects of
asymmetry on TCP performance," in ACM/IEEE MOBICOM, 1997.

[25] J. Liu and S. Singh, “ATCP: TCP for mobile ad hoc networks”, in Proc.
of IEEE JSAC, 19(7):1300–1315, 2001.

[26] Z. Fu, P. Zerfos, H. Luo, S. Lu, L. Zhang, and M. Gerla, “The Impact of
Multihop Wireless Channel on TCP Throughput and Loss”, in IEEE
INFOCOM, 2003.

[27] G. Holland and N. Vaidya ,“Analysis of TCP performance over mobile
ad hoc networks.” in ACM MOBICOM, 1999.

[28] X. Yu, "Improving TCP Performance over Mobile Ad Hoc Networks by
Exploiting Cross-Layer Information Awareness," in ACM MOBICOM,
2004.

