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Abstract

Wormhole routing has emerged as the most widely used switching technique in massively
parallel computers. We present here a detailed survey of various techniques for enhancing the
performance and reliability of the wormhole routing schemes in directly connected networks. We
start with an overview of the direct network topologies and a comparison of various switching
techniques. Next, the characteristics of wormhole routing mechanism are described in detail
along with the theory behind deadlock-free routing. The performance of routing algorithms
depends on the selection of path between the source and the destination, the network traffic,
and the router design. The routing algorithms are implemented in the router chips. We out-
line the router characteristics and describe the functionality of various elements of the router.
Depending on the usage of paths between the source and the destination, the routing algo-
rithms are classified as deterministic, fully adaptive, and partially adaptive. We discuss several
representative algorithms for all these categories. The algorithms within each category vary
in terms of resource requirements and performance under various traffic conditions. The main
difference among various adaptive routing schemes is the technique used to avoid deadlocks. We
also discuss a few algorithms based on deadlock recovery techniques. Along with performance,
fault-tolerance is essential for message routing in multicomputers, and we thus discuss several
fault-tolerant wormhole routing algorithms along with their fault-handling capabilities. These
routing schemes enable a message to reach its destination even in the presence of faults in the
network. The implementation details of wormhole routing algorithms in contemporary commer-
cial systems are also discussed. We conclude by itemizing several future directions and open
issues.



Contents
1 Introduction
2 Direct Network Topologies

3 Wormbhole Switching
3.1 Switching Techniques . . . . . . . . . .. .
3.2 Virtual Channels . . . . . . . . . . e
3.3 Router Characteristics . . . . . . . . . . . . . e

4 Wormhole Routing Characteristics
4.1 Classifications . . . . . . . . L e
4.2 Deadlock-Free-Routing Theory . . . .. . . . . .. .. ... o

4.3 Performance Evaluation . . .. .. .. ... . o
5 Deterministic Wormhole Routing

6 Adaptive Wormhole Routing
6.1 Fully Adaptive Algorithms . . . . . . . . . .. oo
6.2 Partially Adaptive Algorithms . . . . . . . ... . L o
6.3 Deadlock Recovery in Fully Adaptive Algorithms . . . . ... ... ... ... .. ..

7 Fault-Tolerant Wormhole Routing
8 Wormbhole Routing in Commercial Systems

9 Conclusions and Open Issues

12
12
12
15

16

17
18
24
27

29

33

39



1 Introduction

Large-scale parallel computers are potential candidates for providing very high computational
power. These systems are usually organized as an ensemble of nodes, each with its own processor,
local memory, and other supporting devices. The nodes are interconnected using a variety of topolo-
gies that can be classified into two broad categories: direct and indirect. In direct networks, each
node has a point-to-point or direct connection to some of the other nodes, called neighboring nodes;
examples of direct network topologies include hypercube, mesh, and tree. In indirect networks, the
nodes are connected to other nodes or a shared memory through one or more switching elements.
Examples of indirect networks include crossbar, bus, and multistage interconnection networks.

Direct networks have emerged as a popular architecture for massively parallel computers be-
cause of their scalability. The total communication bandwidth, memory bandwidth, and processing
capability of the system increases with the number of nodes. Examples of experimental and com-
mercial systems based on direct interconnection network include Intel’s iPSC, Touchstone Delta [37]
and Paragon [38], Ncube-2/3 [53], Cray T3D [41, 64], MIT J-Machine [56], and Stanford DASH [47].
The nodes of a direct-network-based multicomputer communicate by passing messages through an
interconnection network. Neighboring nodes send messages to one another directly while nodes that
are not connected directly communicate with each other by passing messages through intermediate
nodes. Support hardware is essential to handle the transmission of messages between nodes. In
most systems, a router is associated with each node to handle communication-related tasks. Ded-
icated routers are also used to allow overlapping of computation and communication within each
node.

Figure 1 shows the architecture of a generic node consisting of a processor, a local memory,
a router, interconnects, and other functional units such as I/O devices. The router has internal
channels that connect it to the processor, local memory, or other functional units. The input
internal channels are used to absorb messages destined for the host processor. The output internal
channels are used by the host processor to send outgoing messages to remote nodes. Some systems
use multiple internal channels to avoid communication bottlenecks between the local processor
or memory and the router. The multiple internal channels can have either all-port or k-port
architecture. In the all-port architecture, every external channel has a corresponding internal
channel, thus allowing the node to send and receive on all external channels simultaneously. A k-
port architecture has k internal channels, where £ is less than the total number of external channels.
The internal channels in a k-port router are multiplexed by the external channels, which are used
for messages in transit. Usually a crossbar switch is used in the router to connect the input external
channels to the output external channels. The control unit is responsible for flow control of the
messages traversing the router.

In direct-network-based multicomputers, a task is allocated to a group of nodes that commu-
nicate for successful execution of the task. The speed of execution depends on the processor as

well as on the communication performance. The latency incurred by a message traversing from
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Figure 1: Node architecture in a multicomputer system.

a source node to a destination node affects the overall performance of the multicomputer system.
Because of the interprocessor interactions, the communication latency also affects the granularity
of parallelism that can be exploited from the system. Thus it is essential to devise techniques that
reduce the communication latency incurred in direct networks.

The communication latency is the most important performance metric in direct networks. It
comprises start-up latency, network latency, and the blocking time [55]. The start-up latency is
the time required for the system to handle the message at the source and destination nodes and
depends primarily on the design of the interface between the local processors and routers. Network
latency, defined as the time spent by a message in the network, is computed as the time between the
instant when the message head is injected into the network by the source and the instant when the
message tail is absorbed by the destination node. Both start-up and network latencies are fixed for
a given network. The blocking time of a message is the time spent waiting for a channel currently
being used by another message. Thus the blocking time depends on the resource contentions that
a message encounters in its path. Blocking time cannot be determined statically, as it depends on
the network traffic distribution and the path taken by a message.

The communication latency of direct networks depends on several factors including switching,
routing, flow control, and topology. Several switching techniques have been proposed for direct
networks. Wormhole switching has emerged as a popular technique and has been used in both
commercial and experimental systems. Wormhole switching can be employed in both direct and
indirect networks. It is widely used in contemporary multicomputers because of its low latency and
requirement of small buffers at the nodes. Theories have been developed for designing cost-effective,
efficient, deadlock-free and livelock-free wormhole routing algorithms. Based on these theories,
several deterministic and adaptive routing algorithms have been proposed in the literature. In this
paper, we survey different techniques of wormhole routing along with the theory behind the design

of deadlock-free algorithms. Complementary techniques for deadlock recovery are also described.



We also review fault-tolerant wormhole routing schemes that can route messages in the presence of
faults. Details of wormhole routing schemes implemented in several commercial systems are also
included.

A preliminary survey on wormhole routing was given by Ni and McKinley [55]. Since then,
several advances have been made in wormhole-routed networks. Furthermore, the present report is
more comprehensive and discusses several issues not covered by the earlier survey report, such as
fault-tolerant routing, deadlock recovery techniques, router designs, and implementation in com-
mercial systems. Topics not discussed in this survey include collective communication and routing
in indirect networks. Collective communication could itself be a subject of a survey; indeed, one
such work is by McKinley et al. [52]. We focus primarily on direct network topologies such as
meshes and k-ary n-cubes because of their widespread adoption in commercial systems. However,
we also discuss the implementation of wormhole routing in some recent commercial systems (CM-5
and IBM SP1/SP2) that are based on indirect networks.

The rest of the survey is organized as follows. The properties of direct network topologies
are outlined in Section 2. Section 3 discusses various switching techniques along with wormhole
switching, which forms the basis of wormhole routing. Virtual channels, flow control mechanisms,
and router characteristics are also described in this section. The classification of wormhole routing
algorithms and deadlock-free routing theory are presented in Section 4. Section 5 discusses various
deterministic wormhole routing algorithms, followed by a discussion of adaptive routing algorithms
in Section 6 and of fault-tolerant routing algorithms in Section 7. In Section 8, we discuss the imple-
mentation of wormhole routing algorithms in commercial parallel computers, and give concluding

remarks and a discussion of open issues in Section 9.

2 Direct Network Topologies

The topology of a network defines how the nodes are interconnected and is generally modeled as a
graph in which the vertices represent the nodes and the edges denote the channels. Multidimensional
meshes and k-ary m-cubes, the basic topologies used in most parallel computers, are defined as
follows [55].

Definition 1: An n-dimensional mesh is an interconnection structure that has kg X by X ... X
k,_1 nodes, where k; denotes the number of nodes in the ith dimension. Each node in the mesh
is identified by an m-coordinate vector (zg,z1,...,2,-1), where 0 < z; < k; — 1. Two nodes
(zo,21,...,2n—1) and (Yo,¥1,...,Yn—1) are connected if and only if there exists an ¢ such that
z; =y, £1,and z; = y; for all j # 7. Thus the number of neighbors of a node ranges from n to
2n, depending on its location in the mesh.

Definition 2: A k-ary n-cube is defined as an interconnection structure of n dimensions having
k nodes in each dimension. Each node in the k-ary n-cube is identified by an n-coordinate vector
(zo, 21, ..., Tp-1), where 0 < z; < k — 1. Two nodes (zg,z1,...,2,-1) and (Yo, Y1, ..., Yn—1) are

connected if and only if there exists an ¢ such that z; = (y; £ 1) mod k, and z; = y; for all



j # 1. There are wraparound channels in the k-ary n-cubes (specified by the use of modulus in the
definition), which are not present in n-dimensional meshes. If k=2, then every node has n neighbors,
one in each dimension. If £ > 2, then every node has 2n neighbors, two in each dimension.

The hypercube and torus are two other popular topologies for direct networks. Hypercubes are
special cases of an n-dimensional mesh in which k; = 2, for all 7, 0 <7 < n — 1; they can be termed
2-ary n-cubes. A k-ary m-cube is called a torus when n=2. Figure 2 shows a three-dimensional
(3D) hypercube and a two-dimensional (2D) mesh. A torus can be constructed by connecting the

corresponding end nodes of the 2D mesh with wraparound connections.

(a) Three dimensional hypercube. (b) Two-dimensional mesh (8x8).

Figure 2: Topology of a hypercube and a mesh.

Several issues are associated with the mesh, torus, and hypercube topologies. The mesh is an
asymmetrical topology in which the node degree depends on its location. Interprocessor commu-
nication performance depends on the location of source and destination. The channels near the
center of the mesh experience higher traffic density than those on the periphery. The torus and
hypercube are symmetrical topologies in which the degree of a node is the same irrespective of its
location in the network. Thus, unlike the mesh, all the nodes in tori and hypercubes are identical
in connectivity. The network diameter of a mesh is greater than that of the torus, which in turn
has a greater diameter than the hypercube for the same number of nodes.

The bisection width of a network is defined as the number of channels that must be removed to
partition the network into two equal subnetworks. The bisection width has a significant effect on the
interprocessor communication performance [17]. The bisection width (BW) of a 2" x 2™ 2D mesh,
2" x 2" 2D torus, and a 2n-cube hypercube are BW,,csn = 27, BWigrus = 2711, BWhypercube =
227=1 respectively. The bisection density, which is the product of the bisection width and the
channel width, can be used as a measure of the network cost [55]. For the same cost, the 2D mesh
can support wider channels than the 2D torus, which in turn can support wider channels than the
hypercube [55]. Thus the channel bandwidth of the three topologies can be expressed as: mesh >
torus > hypercube.

In general, low-dimensional meshes are preferred because they have low, fixed-node degrees
and fixed length channel wires, which make them more scalable than high-dimensional meshes and

k-ary n-cubes. Low-dimensional meshes also have higher channel bandwidth per bisection density



and have lower contention and blocking latencies, which results in lower communication latencies
and higher hot-spot throughput [17]. Furthermore, two or three topological dimensions are easier
to implement in the three physical dimensions. On the other hand, high-dimensional meshes and
k-ary n-cubes have lower diameters, which shortens the path lengths. High-dimensional topologies
also have more paths between pairs of nodes, which permits more adaptivity and fault tolerance.

A class of shuffle networks known as de Bruijn (dB) graphs have become popular recently. They
are suitable for large network and can be defined for any number of nodes, including prime numbers
[61]. For a specific node degree, dB networks, in most cases, have the smallest diameter compared
to the contemporary network topologies. Formally, a unidirectional dB network can be defined as
follows [61].
Definition 3: An r-radix unidirectional de Bruijn digraph dBD(r,r™) has the total number of
nodes N = r™ and the address of a node X is represented as (Z,,—1,%m—2,...,Zg) Where z; €
{0,1,...,(r—= 1)} for 0 < ¢ < m — 1. Its neighboring nodes are (z,,_2,%Zm_3,...,@), where a =
0,1,...,7—1.

Several other topologies based on Caley graphs have been also proposed [5]. However, here we
focus primarily on k-ary n-cubes and multidimensional meshes. Wormhole routing techniques for

dB networks and other topologies based on the Caley graphs are reported in [11, 57].

3 Wormbhole Switching

Nodes in a direct network communicate by passing messages from one node to another. A
message may be divided into one or more equal or variable-size packets. A packet is the smallest
unit of information that contains routing and sequencing information. In this section, we discuss

various switching techniques used or proposed for multicomputer systems.

3.1 Switching Techniques

In most multicomputer systems, a message enters the network from a source node and is switched
or routed towards its destination through a series of intermediate nodes. Four types of switching
techniques are usually used for this purpose: circuit switching, packet switching, virtual cut-through
switching, and wormhole switching.

In circuit switching, a dedicated path is established between the source and the destination
before data transfer initiates. Once the data transfer is initiated, the message is never blocked.
As the channels creating the path are reserved exclusively, buffering of data is not required. On
the other hand, establishing the path requires significant overhead: during the data-transmission
phase, all channels are reserved for the entire duration of message transfer. Circuit switching thus
degrades performance and is no longer used in commercial multicomputer systems.

In packet switching, a message is divided into packets that are independently routed towards

its destination. The destination address is encoded in the header of each packet. The entire packet
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Figure 3: Message format and routing in wormhole switching.

is stored at every intermediate node and then forwarded to the next node in its path. The main
advantage of packet switching is that the channel resource is occupied only when a packet is actually
transferred. Each packet contains the routing information and alternative paths can be selected
upon encountering network congestion or faulty nodes. The major drawback of packet switching is
that, since the packet is stored entirely at each intermediate node, the time to transmit a packet
from source to destination is directly proportional to the number of hops in the path. Furthermore,
at each intermediate node, we need buffer space to hold at least one packet.

In order to reduce the time to store the packets at each node, Kermani and Kleinrock introduced
a technique called virtual cut-through [40] in which, while routing toward its destination, a message
is stored at an intermediate node only if the next channel required is occupied by another packet.
Now, the distance between the source and destination has little effect on communication latency.
In an extreme case, when a message encounters blocking at all the intermediate nodes, the virtual
cut-through technique reduces to packet switching. The disadvantage of the virtual cut-through
technique is its implementation cost: each node must provide sufficient buffer space for all the
messages passing through it, and because multiple messages may be blocked at any node, a very
large buffer space is required at each node. This implementation constraint limits the use of virtual
cut-through technique.

Wormhole switching is a variant of the virtual cut-through technique that avoids the need for
large buffer spaces. In wormhole switching, a packet is transmitted between the nodes in units of
flits, the smallest units of a message on which flow control can be performed. The header flit(s)
of a message contains all the necessary routing information and all the other flits contain the data
elements. The flits of the message are transmitted through the network in a pipelined fashion.
Since only the header flit(s) has the routing information, all the trailing flits follow the header
flit(s) contiguously. Flits of two different messages cannot be interleaved at any intermediate node.
Successive flits in a packet are pipelined asynchronously in hardware using a handshaking protocol.
When the header flit is blocked, then all the trailing flits occupy the buffers at the intermediate
nodes. The general format of a message and the units of packets and flits are shown in Figure
3(a). Figure 3(b) shows the routing mechanism using wormhole switching, where the header flit H
contains the destination address and the data flits D follow H contiguously in a pipelined fashion.

The main advantage of wormhole switching derives from the pipelined message flow since trans-

mission latency is insensitive to the distance between the source and destination. Moreover, since



the message moves flit by flit across the network, each node needs to store only one flit. Some
implementations, however, require storage of multiple flits at each node to improve routing perfor-
mance. The reduction of buffer requirements at each node has a major effect on the cost and size
of multicomputer systems.

The main disadvantage of wormhole switching comes from the fact that only the header flit has
the routing information. If the header flit cannot advance in the network due to resource contention,
all the trailing flits are also blocked along the path and these blocked messages can block other
messages. This chained blocking can also lead to deadlock where messages wait for each other in
a cycle and hence no message can advance any further. Prevention of deadlock is one of the main
issues in wormhole switching, and is usually accomplished by a suitable choice of routing function
that selectively prohibits messages from taking all the available paths, thus preventing cycles in the

network. Selection of a routing algorithm is thus a major issue in wormhole-switched networks.

3.2 Virtual Channels

The primary problem associated with wormhole routing is the blocking of messages. A message
may be blocked behind another message destined for a node in a different direction. In Figure
4(a), message B whose destination is in the east direction, is blocked behind message A, which is
blocked while traveling in the south direction. This type of blocking reduces network performance
drastically and can also lead to deadlock. Virtual channels can be used in wormhole-switched
networks to prevent deadlock and reduce the effects of chained blocking [16]. A virtual channel is a
logical abstraction of a physical channel. All the virtual channels associated with a physical channel
have individual flit buffers and are time-multiplexed for message transmission using the physical
channel. Virtual channels dissociate the buffers associated with the channels from the actual
physical channels. Figure 4(b) shows two virtual channels associated with a physical channel in
one direction. Even if message A is blocked by some other message down the path, message B can
move forward using the other virtual channel. Virtual channels reduce the effect of blocking and are
used widely in multicomputer systems to improve performance as well as to design deadlock-free
routing algorithms.

Virtual channels are implemented with a single flit or multiple flits along with an appropriate
flow-control protocol. The flow-control protocol of a network determines how resources (buffers
and channel bandwidth) are allocated and how message collisions are resolved. A message collision
occurs when a packet cannot proceed because the buffer it needs is held by another message. The
flow control strategy allocates buffer and channel bandwidth to flits. Because flits have no routing
or sequencing information, the allocation must be done in a manner that keeps the flits associated

with a particular message together.
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Figure 4: Performance improvement using virtual channels: (a) Packet B is blocked behind packet
A while all physical channels remain idle, (b) Virtual channels provide an additional buffer, allowing
packet B to pass the blocked packet A.

3.3 Router Characteristics

As wormbhole routing is implemented in hardware, the design and characteristics of the router
unit are significant in determining routing algorithm performance. A detailed study of various
design issues related to the routers is reported in Chien [14]. The primary functions of wormhole
routers include switching, routing, flow control, multiplexing physical and virtual channels, inter-
chip signaling and clock recovery. Figure 5 depicts various components of a generic wormhole router

[14]. The essential components of a wormhole router and their functionality are described below.
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Figure 5: Block diagram of a wormhole router.

Crossbar: Crossbar switches enable the switching of router inputs to outputs. Single or multiple
crossbar switches are used, based on cost-performance trade-offs. The size of the crossbar may be
proportional to the number of inputs and outputs.

Routing Arbitration (RA) Logic: This logic unit does arbitration for the router outputs. It

chooses the path and connects and disconnects the input to an appropriate output based on the
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routing algorithm and network status. The complexity and latency incurred in the routing arbi-
tration logic are proportional to the degree of freedom (number of possible choices) of the routing
algorithm.

Address Decoder (AD): This unit checks the message header and generates the set of possible
routes based on the routing algorithm. AD also computes and updates the header information.

Flow Control (FC) Units: These units are implemented using control logic and buffers and
perform the flow control between the routers. The buffers hold the flits while flow-control signals
are being exchanged between the routers. The buffers are also used for holding the flits if a message
is blocked.

Virtual Channel (VC) Controllers: Virtual channel controllers are implemented in those routers
that support virtual-channel flow control. These controllers multiplex the physical channels to
provide a set of independent virtual channels that enables the flow of different messages. The
complexity and latency of the controllers increase with the number of virtual channels due to
increased buffering and arbitration requirements.

Messages flow through the routers as follows. Messages arriving at the router inputs encounter
the address decoder, which checks the message header and generates a set of possible outputs for
the message. The routing arbitration logic tries to match all the inputs to the output channels
based on the output sets generated by the address decoder. If a suitable match is not found for a
message then it is blocked. Once an appropriate output has been selected, the switch connection
is made for the entire message. The connection is terminated following the last flit.

The performance of wormhole routers can be characterized by two attributes: internal router
latency and bandwidth. Internal router latency, defined as the time to create a valid path through
the router, has contributions from the following factors: address decoding, arbitration, updated
header selection, crossbar switching, and virtual channel control delay. The selection policies used
at the routers also have a significant impact on network routing performance. Several input and
output selection policies have been compared by Glass and Ni [33]. A router’s channel bandwidth
depends on the size of the flow-control unit (flit) and the time required for a flow-control operation.
Though higher bandwidth can be achieved by increasing the flit size, such a choice increases router
complexity by introducing separate logical and physical signaling rates, requiring additional buffer-
ing, slowing backpressure, and increasing routing latency. The internal flow-control latency limits
the flit flow rate in the network channels. Flits are units of resource multiplexing, so flow-control
latency determines the network’s ability to share internal connections and external channels among
different packets. The unit of multiplexing directly affects the responsiveness of the network. In
addition, flow-control speed determines the amount of buffering needed. The flow-control delay in-
cludes the latency of flow-control units, the crossbar switch delay, and the virtual channel controller

delay.
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4 Wormhole Routing Characteristics

The insensitivity to distance, pipelined flow of messages, and small buffer requirements are some
of the main advantages of the wormhole routing scheme. Its primary disadvantage is coupled with
the pipelined flow of messages that introduces blockings that can lead to deadlock. In this section,
we present the classification of wormhole routing schemes and then formalize the theory behind
deadlock-free routing algorithms. We also survey the performance parameters used to evaluate

wormhole routing schemes.

4.1 Classifications

Routing algorithms can be classified with respect to several characteristics. They can be clas-
sified as source routing or distributed routing according to the location of routing decisions. In
source routing, the entire path for message routing is decided at the source node before the message
is sent. Each message carries the complete routing information in its header, thus increasing the
overall message size. In distributed routing, the routing decisions are made at the intermediate
nodes through which the message traverses. Upon receiving a packet, each router decides whether
to deliver it to the local processor or forward it to a neighboring router. The routing algorithm
helps in deciding which neighbor the packet should be sent to.

Routing can be also classified as deterministic or adaptive based on the path selection process.
In deterministic routing, the path is determined by the current and destination addresses. Deter-
ministic routing, also called oblivious routing, provides only one path from a source to a destination.
Adaptive routing, on the other hand, provides multiple paths from the source to destination, and
the path taken by a particular message depends on network conditions and the routing algorithm.

The routing algorithm can be minimal or nonminimal. In minimal routing, the message is
routed through one of the shortest paths between the source and the destination. The message
traverses closer to its destination after every hop. In nonminimal routing a message can take any
path between the source-destination pair, and thus might take a longer path because of congestion
or faults in the minimal paths. While designing nonminimal routing algorithms, care should be
taken to avoid livelock situations where a message continues to be routed through the network but

never reaches its destination.

4.2 Deadlock-Free-Routing Theory

Deadlock occurs when a set of messages is blocked forever in the network. In such a situation,
the packets are holding certain resources and requesting other resources held by other messages
involved in the deadlock configuration. Figure 6 shows deadlock in a two-dimensional mesh. Four
messages are being routed from sources S1, S2, S3, and S4 to destinations D1, D2, D3, and D4,
respectively. All messages are thus waiting for a channel that will never be available, resulting in

a deadlock.
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Figure 6: A deadlock situation involving four messages.

Recovery and avoidance are two ways to handle the deadlock problems associated with wormhole
routing. Deadlock recovery requires deadlock detection ability as well as preemption of messages.
Deadlock detection mechanisms increase the complexity of interprocessor communications, and
preemption of messages increases the latency. Thus, most routing algorithms are designed to
avoid the possibility of deadlock configurations. Before we discuss the theory behind deadlock-free
routing, some terminology is needed. We employ the terms and definitions introduced by Duato
[24].

Definition 4: A routing function R: N x N — p(C'), where p(C) is the power set of C', supplies
a set of alternative output channels to send a message from the current node n. to the destination
node ng. If size of p(C') is always 1, the function R is deterministic, otherwise it is an adaptive
routing function. For a given interconnection network, R is connected iff, for any pair of nodes z,
y € N, it is possible to establish a path P(z,y) C p(C) between them using channels supplied by
R.

Definition 5: A routing subfunction Ry for a given routing function R is a routing function that
supplies a subset of channels supplied by R. Thus R restricts the routing options supplied by R.
The set of all the channels supplied by Ry is Cy = Uy yenRi(z,y).

Definition 6: Given an interconnection network, a routing function R, a routing subfunction Ry
and a pair of channels ¢;,c; € C, there is a direct dependency from ¢; to c; iff ¢; can be used
immediately after ¢; by messages destined for some node z.

Definition 7: Given an interconnection network, a routing function R, a routing subfunction Ry
and a pair of channels ¢; and ¢; supplied by R; for some destinations, there is an indirect dependency
from ¢; to c; iff it is possible to establish a path from s; to d; for messages destined for some node
z. ¢; and ¢; are the first and last channels in that path and the only ones supplied by R;. Thus,
c; can be used after ¢; by some messages. As ¢; and ¢; are not adjacent, some other channels not

supplied by R; are used between them.
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Definition 8: A channel dependency graph D for a given interconnection network I and routing
function R is a directed graph, D = G(C, F). The vertices of D are the channels of /. The arcs of
D are the pairs of channels (¢;, ¢;) such that there is a direct dependency from ¢; to ¢;.
Definition 9: An extended channel dependency graph Dg for a given interconnection network I and
routing subfunction Ry of routing function R is a directed graph, Dy = G(C4, Eg). The vertices
of Dg are the channels supplied by the routing function Ry for some destinations. The arcs of Dg
are the pairs of channels (¢;, ¢;) such that there exists a direct, indirect, direct cross-dependency or
indirect cross-dependency from ¢; to c;.

The following assumptions are also required to derive necessary and sufficient conditions for

deadlock freedom [19][25]:

1. A node can generate messages destined for any other node.
2. A message arriving at its destination node is eventually consumed.

3. A node can generate messages of arbitrary length. Messages are generally longer than a single

flit.

4. An available queue may arbitrate among messages that request that queue, but may not

choose among waiting messages.

5. Once a queue accepts the first flit of a message, it must accept the remainder of the message

before accepting any flits from another message.

6. A queue cannot contain flits belonging to different messages. After accepting a tail flit, a

queue must be emptied before accepting another header flit.

7. In deterministic routing, a route taken by a message is determined by its destination only.
For adaptive routing, the route taken by a message depends on its destination and the status

of the output channels.

Dally and Seitz have proposed the following necessary and sufficient conditions for deadlock-free
deterministic routing [19].

Theorem 1: A deterministic routing algorithm for an interconnection network [ is deadlock-free
iff there are no cycles in the channel-dependency graph D.

Although Theorem 1 is also a sufficient condition for deadlock-free adaptive routing, it is not a
necessary condition. In adaptive routing, even if there are cycles in the channel-dependency graph,
the routing can be deadlock-free if there exists at least one escape path with no cyclic dependency.
The necessary and sufficient conditions for deadlock-free adaptive routing proposed by Duato [24]
can be stated as follows.

Theorem 2: A coherent, connected and adaptive routing algorithm R for an interconnection

network I is deadlock free iff there exists a routing subfunction R; that is connected and has
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no cycles in its extended channel dependency graph Dg. The proof of Theorem 2 and related
definitions are discussed in detail in [24].

We analyze an example to illustrate the terminology defined in this section and the application
of Duato’s theorem [24]. Consider a unidirectional ring with four nodes nz, 0 < ¢ < 3 (Figure 7a).
There are two channels in each direction except north. Let CAz, 0 < 7 < 3, and CH¢, 0 <7 < 2
be the outgoing channels from node n¢. The routing algorithm R can be stated as follows: If the
current node nz is equal to the destination node nj, consume the message. Otherwise, use either
CAi, Vj # ¢ or CHe, Vj > 4. Thus CA7 channels can be used to forward messages to all the
destinations, but CHz? channels can be only used if the destination is higher than the current node.

Consider a routing subfunction R; that is equal to R, except that CAQ cannot be used and
CA1, CA2 can be used only to forward messages to destinations lower than the current node. The
routing subfunction R; is connected because messages at node ni destined for a higher node will
be forwarded through CH: and messages destined for a lower node will be sent across CAz. Figure
7(b) shows the extended channel-dependency graph for Ry. As there are no cycles in the graph,

we can conclude that R is deadlock-free.

CHO
no nl
CAO
CH1
CA3 CAl CH1
CA2 \ —= direct dependency
3 5 \\\ - - = indirect dependency
n n
CH2 CH2 .

@ (b)
Figure 7: (a) Network for the example, (b) its extended channel-dependency graph.

Alternative theoretical formulations of necessary and sufficient conditions for deadlock-free

adaptive routing are proposed by Lin, McKinley, and Ni [49] and Schwiebert and Jayasimha [63].

4.3 Performance Evaluation

Routing algorithms are evaluated primarily by measures of average message latency and average
system throughput. The hardware requirements in terms of the buffer size required per node and
the number of virtual channels per physical channel are also used in comparing routing algorithms.

Message latency is the time between generation of its header flits and arrival of the tail flit
at its destination. Throughput is measured as the average number of packets that finish routing
per unit time. Both these parameters depend on the communication pattern, i.e. the distribution
of source-destination pairs, which is largely application-dependent. Usually a few predetermined

patterns are used to evaluate algorithm performance. The most commonly used communication
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patterns are uniform, hotspot, transpose or center reflection, and local. With uniform distribution,
a source node sends messages to all other nodes with equal probability. In hotspot distribution,
the probability that a message is sent to some nodes (called hotspot nodes) is higher than to
other nodes. In the center reflection or transpose pattern, messages are directed to the diagonally
opposite nodes. In the local traffic pattern, a message is sent only to the nodes within a certain
neighboring region; this pattern reflects normal application behavior in which there is a large degree
of locality in the internode communication. The overall performance of the algorithm under these
varied patterns usually reflects its behavior for any given application.

Routing algorithms are also compared on the basis of their flit buffer and virtual channel
requirements . Intuitively, algorithms that use more virtual channels should give better results, but
detailed analysis has shown that the overhead associated with the virtual channels is usually very
high and that the actual performance may even degrade [8].

Most performance studies on wormhole routing have resorted to simulation and measurements.
Development of analytical models for performance evaluation is difficult because of the multiple
and simultaneous resource possessions as well as the chained blockings during pipelined routing.
However, approximate analytical models based on simplifying assumptions can give reasonable
performance estimates [2, 4, 17, 23, 42, 43].

5 Deterministic Wormhole Routing

In deterministic routing, the path from source to destination is determined by the current
node address and the destination node address: for the same source-destination pair, all packets
follow the same path. Deadlocks are avoided in deterministic routing by ordering the channels a
message needs to traverse. Messages traverse the channels either in ascending or in descending
order, avoiding cycles in the channel dependency graph.

Dimension-order routing [19] is a deterministic routing scheme in which the path selected tra-
verses network dimensions in sequence. The network dimensions are arranged in a predetermined
monotonic order. A message traverses channels in the lowest or the highest dimension with non-
zero displacement until that dimension displacement reduces to zero; then it traverses in the next
dimension, continuing until it reaches its destination. As the messages never traverse in reverse
direction of the dimension ordering, cycles cannot form and deadlock-free routing is guaranteed.

Dimension order routing in hypercubes, also called e-cube routing, is minimal in nature. The
nodes of an n-cube are represented by n-bit binary addresses. The destination address for a message
is encoded in its header. When a node receives a message, the destination address is bit-XORed with
the current node address. If the result of the XOR operation is zero, the message is absorbed by the
processor in the current node; otherwise, the message is forwarded in the dimension corresponding
to the rightmost (or leftmost if using reverse ordering) 1 in the result. For example, a message
originating from source node 0010 in a 4-cube to destination node 1101 traverses the nodes in the
sequence 0010 — 0011 — 0001 — 0101 — 1101.
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Figure 8: Dimension order routing in a 2D mesh.

Dimension-order routing in two-dimensional meshes is called XY routing, which is minimal in
nature. The two dimensions of a mesh are labeled as X and Y. A message is first routed in the
X direction completely and then in the Y direction. Figure 8 clearly indicates that cycles cannot
be formed with XY routing, and hence it is deadlock-free. Examples of routing paths between two
source-destination pairs are also shown in Figure 8. In multidimensional meshes, similarly routing
is completed in one dimension before proceeding to the next dimension. All the dimensions are
ordered and the routing is done through a predetermined sequence of dimensions till the message
reaches its destination.

Dimension-order routing in k-ary n-cubes is not minimal in nature. Because of the wraparound
connections, messages may get involved in deadlocks while routing through the shortest paths. In
fact, messages being routed along the same dimension (a single dimension forms a ring) may be
involved in a deadlock due to cyclic dependency. However, nonminimal deadlock-free deterministic
routing algorithms can be developed for k-ary n-cubes by restricting the use of certain edges so as
to prevent the formation of cycles [19]. Minimal deadlock-free dimension-order routing can also be
implemented in k-ary n-cubes using virtual channels [19].

Dimension-order routing generally distributes the shortest paths throughout the network. It is
thus well-suited for uniform traffic distribution. For asymmetrical workloads, some channels are
more overloaded than others. As the algorithm restricts message routing to a fixed path, it cannot

exploit possible multiple paths between source-destination pairs during congestion or faults.

6 Adaptive Wormhole Routing

Deterministic algorithms provide one and only one path between any source-destination pair.
To avoid network congestion and enhance fault tolerance, it is preferred that the routing algo-

rithm provide alternative paths to the message. Algorithms that adapt to the network and traffic
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conditions are called adaptive routing algorithms and are classified as fully or partially adaptive
depending on whether they allow all possible paths between the source and destination or only a
subset of them. Although messages can take nonminimal adaptive paths [45], we discuss here only

minimal adaptive routing.

6.1 Fully Adaptive Algorithms

Fully adaptive algorithms let a message use all possible physical paths between source and
destination. Deadlock is usually avoided in the fully adaptive routing schemes by using virtual
channels (VCs). Here we classify fully adaptive routing algorithms on the basis of the number of
VCs required per physical channel (PC) for a k-ary n-cube network. Schemes that employ more
than two VCs per PC include [50] and [18], the routing algorithms reported in [12, 25, 66, 68] use
exactly two VCs per PC, and algorithms using fewer than two VCs are reported in [32, 36, 62].

Algorithms requiring more than two VCs per PC:

Linder and Harden have extended the concept of virtual channels to virtual interconnection
networks [50] in order to develop fully adaptive and fault-tolerant routing algorithms. A virtual
interconnection network has two components. First, the virtual topology is defined by identifying
the virtual nodes and channels of the network and specifying which nodes are the sources and
destinations of each channel. Second, the edges of the channel-dependency graph are listed to
specify the connections available to the routing functions. The scheme uses a separate virtual
interconnection network for each of the possible turns a message might make, and the number
of virtual channels required depends on the total number of virtual networks. Message routing
within a virtual network is deadlock-free and messages are routed through the virtual networks
in a predefined order. The authors have examined three k-ary m-cube topologies: unidirectional,
torus-connected bidirectional, and mesh-connected bidirectional.

In a unidirectional k-ary n-cube, the virtual nodes in the virtual interconnection network are
identified by their level. To eliminate deadlock due to wraparound connections, the physical net-
works are split into multiple levels. A flit travels on a new level each time it crosses a wraparound
connection. In torus-connected bidirectional k-ary m-cubes, levels are also used to break the cycles
formed by the wraparound connections. Because of the bidirectional nature of the physical net-
work, additional cycles due to multidimensional loops can be formed. To break these cycles, the
bidirectional networks are split into several virtual networks similar to the unidirectional networks.
The deadlock avoidance mechanism in mesh-connected bidirectional networks is similar to that for
torus-connected bidirectional k-ary m-cubes, but no levels are required in mesh-connected systems
because of the absence of wraparound connections. The disadvantage of the algorithms proposed
by Linder and Harden is that they require a large number of virtual channels: in general, the
algorithm requires 277! subnetworks with n 4 1 levels per subnetwork for a k-ary n-cube network.

Dally and Aoki have proposed an adaptive routing scheme based on the concept of dimension
reversal [18]. A message is allocated to virtual channels using a count of dimension reversals (DR).

All messages start with a DR of zero. Each time a message goes to a lower dimension, the DR of a

18



message is incremented. Two allocation algorithms, static and dynamic, were proposed. The static
algorithm separates the virtual channels into classes numbered zero to r, where r is the maximum
number of dimension reversals permitted. Messages with DR < r are allowed to route freely only
in a virtual channel of class DR. If a message has DR= r, it must be routed in dimension order
in the virtual channels of class r. The dynamic algorithm routes messages in any direction with
no limit on the number of dimension reversals. The virtual channels are divided into two classes,
adaptive and deterministic. Messages are routed first on the adaptive channels. A message with a
higher DR cannot wait for a channel labeled with a lower DR; if all channels with equal or lower
DR are occupied, a message must change to the deterministic channels and is not allowed to use
the adaptive channels again.

The hop-based adaptive routing scheme recently proposed by Boppana and Chalasani [11] shows
that the approach taken by Dally and Aoki is a special case of the hop-based schemes. Boppana
and Chalasani have developed new wormhole routing algorithms based on store-and-forward (SAF)
hop schemes that can be employed for a variety of network topologies that include k-ary n-cubes,
multidimensional meshes, dB networks, and Caley graphs. In hop-based schemes, the class of a
message at any time depends on the hops it has taken up to that point. A hop-based adaptive
routing scheme called negative-hop (NHOP) is based on the NHOP SAF algorithm [35]. In the
NHOP SAF algorithm, the network is partitioned into several subsets such that none of the subsets
contains two adjacent nodes. All subsets are labeled and the nodes in the subsets are marked or
colored with the label number. A hop is considered negative if it is from a node with a higher label
to anode with a lower label; otherwise, it is non-negative. A message occupies buffers corresponding
to its label number. The algorithm can be modified for wormhole routed k-ary n-cubes as follows
[11]:

Algorithm NHOP

Initialize: current-class = 0; current-host = source of the message;

If (current-host # destination) then {

1. If label of current-host is 0 or is identical to the previous-host, then increment current-class
by 1.

2. Select any neighboring node that is a shortest path to destination as next-host.

3. Reserve the virtual channel of class current-class.

4. If the virtual channel is available, change current-host to previous-host, next-host to current-
host, and route the message; otherwise go to 2.

} Else consume the message.

Figure 9 shows the NHOP routing for a message from (2,2) to (0,0) in a 4x4 mesh using
four virtual channels. The second and fourth hops are negative hops, and the message class is
incremented after the second hop.

The number of virtual channels needed for a k-ary n-cube network with the NHOP wormhole
routing algorithm is 14 |n[k/2]] [11]. Boppana and Chalasani [11] also analyze buffered wormhole
routing and describe its implementation in IBM SP1 and SP2.
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Figure 9: NHOP routing in a 4x4 mesh [11].

Gravano et al. have proposed a fully adaptive minimal routing algorithm called *-Channels [36]
that needs only five virtual channels per bidirectional link for n-dimensional torus networks. The
*-Channel algorithm involves two subnetworks, one composed of star channels and one of nonstar
channels. The star channels are used for dimension-order oblivious routing. The nonstar channels
are used when taking any of the turns that are not allowed by the oblivious routing scheme. The
star channels implement a complete oblivious subnetwork that acts as a “release valve” or “drain”
for the subnetwork built from the non-star channels. Figure 10 shows the paths available in a
2D torus between the nodes (1,0) and (4,2) and between the nodes (6,3) and (1,6) with the *-
Channel algorithm. The links have different types of virtual channels associated with them. The
star channels with prefix i,4,1 are used for dimension-order routing; channels with prefix i,4-,0 are

used in correcting the dimension and making a wraparound along the X-dimension.
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Figure 10: Message routing using the *-Channel algorithm in a 2D torus.

Gravano et al. [36] have also proposed an algorithm called 4-classes for bidirectional torus

networks. The algorithm divides all source-destination pairs into four classes and creates a virtual
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network for each class using all minimal paths in the network. It requires eight virtual channels
per bidirectional physical link and the routing scheme is as follows.

Consider a two-dimensional torus with dimensions X and Y, and a message with source node
(z,y) and destination node (z’,y’). A minimal path from (z,y) to (2’,3’) is built in such a way
that the message must travel through at most |k/2] links along dimension X and through at most
|k/2] along the dimension Y. The correct orientation along each dimension must be chosen to find
such minimal paths. If k£ is odd, there is only one possible orientation of each dimension for the
minimal paths. If k is even and a message is k/2 steps away from its destination along dimension
X, then either orientation along the X dimension can be taken in order to follow minimal paths
toward the message destination. This choice is independent of the dimensions. Therefore, the set
of minimal paths between any pair of nodes is determined by a correct choice of the direction in

which to change each of the dimensions.

Algorithms requiring exactly two VCs per PC:

Duato has developed a theoretical background for deadlock-free adaptive routing algorithms for
wormhole networks [25] and has proposed fully adaptive routing algorithms that split a physical
channel into virtual channels. At least two virtual channels are required to support adaptivity.
The technique increases the number of valid alternative paths for a message without increasing
the number of physical channels. Duato gives the following systematic methodology for designing

deadlock-free adaptive routing algorithms.

1. Define a deadlock-free minimal-path-connected deterministic or adaptive routing function R

for the network.

2. Split each physical channel into a set of additional virtual channels. Define a new routing
function R that can use any of the new channels belonging to a minimal path or the channels

supplied by R;.

3. Verify that the extended channel dependency graph for Ry is acyclic. If it is, then the routing

algorithm is valid. Otherwise, it must be discarded and the steps are repeated.

Using his proposed methodology, Duato has developed a fully adaptive routing algorithm for
hypercube computers [25]; the methodology can be also applied to other topologies including meshes
and k-ary m-cubes [27]. The steps involved in the design process are explained as follows. In the
first step, the conventional static routing algorithm for binary n-cube (e-cube) is used. Messages
are forwarded using the channels in decreasing order of dimensions. Thus the routing function is
connected and is deadlock-free. In the second step, each physical channel ¢; is split into k& virtual
channels, namely, a;1,a; 2, -, a; k1, b;. Let Cy be the set of b channels. The new routing function
defined in step 2 can be stated as follows: Route over any useful dimensions using any of the a
channels. If all of them are busy, route over the highest useful dimension using the corresponding

b channel (A useful dimension is one that sends a message closer to its destination).
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Su and Shin have proposed an adaptive routing algorithm for mesh networks that also uses
two virtual channels per physical channel [66]. They propose three protocols (3P) defining the
relationship between messages and channel resources: request-then-hold, request-then-wait, and
request-then-relinquish. Their fully adaptive routing scheme is based on the logical division of the
set of virtual channels into two sets — waiting channels (fully adaptive channels) and non-waiting
channels (deterministic channels). At each intermediate step, the packet is first routed in any
direction that it can take to progress toward the destination using the fully adaptive channels. If
no such channels are available, it waits for the deterministic channel. The approach is guaranteed
deadlock-free as it always provides an escape path from the cycles in the form of deterministic
channel routing, which allow deadlock-free routing.

Boura and Das have proposed a wormhole routing technique called mesh_route algorithm simi-
lar to the 3P algorithm for n-dimensional meshes [12]. This algorithm also divides the set of virtual
channels into waiting channels and non-waiting channels. A packet is first routed along any dimen-
sion using a free non-waiting channel. If no non-waiting channel is available, the packet is routed
on the lowest positive dimension using the waiting channels. The mesh_route algorithm is efficient
in using a greater proportion of virtual channels than the 3P routing scheme.

Upadhyay et al. [68] show that, in addition to adaptivity, the traffic distribution created by
the algorithm also plays an important role in the performance of the routing algorithm. Uneven
traffic distribution leads to early network saturation. They propose a new algorithm called PFNF
(Positive-First, Negative-First) for two-dimensional meshes [68] that uses two virtual channels
per physical channel. The physical interconnection network is logically divided into two virtual
networks, V N; and V V3, such that the two virtual channels associated with the same physical
channel are in different virtual networks. Routing is done positive-first in one virtual layer and
negative-first in the other. The PFNF algorithm is not only more adaptive than the 3P and

mesh_route algorithms but also creates a balanced traffic distribution in the network.

Algorithms requiring fewer than two VCs per PC:

Ni and McKinley propose fully adaptive routing algorithms that require two virtual channels
per physical channel along only one of the dimensions, typically taken as the y dimension [55].
These double-y routing algorithms are implemented in double-y routers. A typical double-y router
structure is shown in Figure 11(a) and the turns allowed by double-y routing are shown in Figure
11(b). Glass and Ni modify these algorithms by eliminating the unnecessary restrictions [32] and
propose a new algorithm, called mazimally adaptive double-y (mad-y), which makes better use of
the virtual channels and improves adaptiveness. The turns allowed by the mad-y algorithm are
shown in Figure 11(c). The mad-y algorithm is deadlock-free and provides better performance than
the double-y routing algorithms [32].

Schwiebert and Jayasimha propose an optimal fully adaptive routing algorithm, opt-y [62], that
extends the mad-y algorithm. The mad-y algorithm requires an acyclic channel dependency graph,
but the opt-y routing algorithm removes this restriction to allow cycles in the channel-dependency

graph. The router structure for the opt-y algorithm is the same as in Figure 11(a), and the
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Figure 11: A router in a double-y network and the associated routing algorithms.
Dashed lines indicate prohibited turns.

turns describing the opt-y algorithm are shown in Figure 12. Restricted turns are those that allow
routing only under certain constraints as defined below. The authors show that the opt-y algorithm
is deadlock-free and optimal with respect to the number of virtual channels per router and number
of routing restrictions on the virtual channels. The optimally fully adaptive routing algorithm can

be generalized to n-dimensional meshes by using the following steps.

e Assign a channel to both directions of each dimension.

e Number the dimensions in some order and add a second virtual channel to both directions of

all dimensions except the first.
e Allow a message to route along the second virtual channel at any time.

e For each dimension except the last, select one of the two directions as the chosen direction for
that dimension. Prohibit a message from routing on the first virtual channel of any direction

until it has completed routing in the chosen direction of all the lower dimensions.

e Allow a message to make a 0-degree turn between the two virtual channels of a direction only

after the message has completed routing in the chosen direction of all lower dimensions.

The flexibility provided by adaptive routing improves performance for non-uniform workloads,
but greater complexity is required to support the additional routing flexibility while assuring

deadlock freedom. The increase in hardware complexity can significantly reduce router speed,
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Figure 12: Optimally fully adaptive routing turns.
Dashed lines indicate restricted turns, dotted lines indicate prohibited turns.

thereby decreasing overall network performance. A comparison of various adaptive wormhole rout-
ing schemes reveals that adaptivity does not necessarily improve network performance in low-
dimensional networks [10, 69], but does improve performance of high-dimensional networks such as

hypercubes [25] and for non-uniform traffic patterns [51].

6.2 Partially Adaptive Algorithms

Several approaches based on limited adaptivity have been proposed to reduce the cost of adap-
tive routing. These partially adaptive algorithms allow routing freedom to be traded for router
speed while assuring deadlock freedom. Partially adaptive algorithms use only a subset of the
physical channels between source and destination.

A seminal work in partially adaptive wormhole routing is the turn model proposed by Glass
and Ni [31]. The turn model defines a set of partially adaptive routing algorithms based on finding
all the possible turns a message might make and then forbidding some minimum number of turns
so as to avoid cyclic dependency. East-First, North-Last, Positive-First, Negative-I'irst are some
partially adaptive routing algorithms based on the turn model. The steps for designing routing

algorithms using the turn model are:

1. Partition the channels into sets according to the directions in which they route messages. If
each node has v channels in a topological direction, treat these channels as being in v distinct
virtual directions and divide them into v distinct sets accordingly. Put any wraparound

channels in a separate set to be incorporated during step 5.

2. Identify the possible turns from one virtual direction to another, omitting 0-degree and 180-
degree turns. (A 0-degree turn is possible only when there are multiple channels in a topolog-
ical direction. It represents a transition from one set of channels to another, where the two

sets are in the same topological directions but different virtual directions.)

3. Identify the cycles that the turns can form. Generally, identifying the simplest cycles in each
plane of the topology is adequate.
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4. Prohibit a minimum number of turns so that at least one turn is prohibited in each cycle. The
turns must be chosen carefully in order to break every possible cycle, including very complex
cycles. A useful approach is to first break the cycles in each plane and then check whether

doing so allows more complex cycles.

5. Incorporate as many turns as possible involving the set of wraparound channels, without
reintroducing cycles. At least one turn involving each wraparound channel can always be

incorporated.

6. Incorporate as many 0-degree and 180-degree turns as possible, without reintroducing cycles.

Routing algorithms that route packets along the set of channels identified in Step 1 and use
only the turns from one set to another allowed by Steps 4, 5, and 6 are deadlock free, livelock free,
and highly adaptive.

We now explain the basic concept of the turn model for 2D meshes. Call the directions -x, +x,
-y, and +y west, east, south, and north, respectively. Eight possible turns can be made, shown as
the abstract cycles in Figure 13(a). The xy routing prevents deadlock by preventing four turns,
as shown in Figure 13(b). However, deadlock can be avoided by prohibiting two turns, one from
each abstract cycle. This relaxation allows partial adaptiveness and is the crux of turn model.
Prohibiting any two turns will not prevent deadlock. Of the 16 different ways to prohibit two
turns, 12 prevent deadlock and three are unique if symmetry is taken into account. These three
types corresponds to three routing algorithms - west-first, north-last, and negative-first. The turns
allowed in these algorithms are illustrated in Figures 14 (a), (b), and (c), and examples of the
west-first and north-last algorithms are shown in Figures 15 (a) and (b). These algorithms can also

be extended for deadlock free routing in n-dimensional meshes [31].

@ (b)

Figure 13: Abstract cycles, and cycles in xy routing algorithm.

Another efficient partially adaptive routing algorithm, the planar adaptive algorithm, was pro-
posed by Chien and Kim for n-dimensional meshes and torus [15]. Instead of providing adaptivity
in all dimensions, it restricts adaptivity to two dimensions at a time. As the message progresses
toward its destination, it passes through a series of adaptive two-dimensional planes; eventually the
packet completes routing in all dimensions and is delivered to the destination. The adaptive rout-
ing planes in three and four dimensions are illustrated in Figure 16. Within each adaptive plane,
messages may use any channel leading toward their destination. Because of the restricted routing

freedom, the possibility of interdimensional resource cycles is reduced, so that fewer resources are
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(c) Thesix turns allowed (solid lines) by the negative-first algorithm.

Figure 14: Turns allowed in the three routing algorithms.

needed to avoid deadlock. It is shown in [15] that only three virtual channels per physical channel
are required to avoid deadlock using planar adaptive routing in a k-ary n-cube with no wraparound
paths.

Planar adaptive routing has two phases: high-level routing corresponds to routing between the
adaptive planes and the low-level routing corresponds to routing within the adaptive planes. Let A;
represent the adaptive plane between dimension d; and d;41. In the high-level routing, the message
is routed successively in adaptive planes. Routing in adaptive plane A; reduces the distance in d;
to zero. After routing in all of the adaptive planes, the message would reach its destination. In
the last dimension there cannot be any adaptivity left for a minimal router, so the packet is routed
deterministically to its destination. In low level routing, the scheme is adaptive, as multiple paths
can be chosen within each adaptive plane. In each adaptive plane the packet completes its routing
in at least one dimension: in plane A;, the d;1; distance is reduced to zero first, then the routing
continues in d; exclusively until the d; distance is reduced to zero.

Boura and Das have proposed another model for partially adaptive algorithms for n-dimensional
meshes, the direction restriction model [13], that is based on dividing a system into two unidirec-
tional networks, e.g., positive and negative. The message is transmitted in two phases. In the first
phase, the message is routed adaptively to an intermediate node using one unidirectional network;
in the second phase, it is routed adaptively to its destination using the other unidirectional network.
This model thus defines a class of partially adaptive routing algorithms for n-dimensional meshes.
There are 277! different pairs of complementary networks in an n-dimensional mesh. Depending
upon selection of these unidirectional networks, Boura and Das show that 2" different algorithms

are possible for an n-dimension mesh without requiring any virtual channels.
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Figure 15: Examples of west-first and north-last algorithms [31].
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Figure 16: Adaptive routing planes.

6.3 Deadlock Recovery in Fully Adaptive Algorithms

Almost all the deadlock-prevention mechanisms discussed so far use additional resources or
implementations to prevent the formation of cycles and thereby avoid deadlock. However, studies
have shown that potential deadlock situations are rare in multicomputer systems [6, 44, 58, 59]
and it may not be cost-effective to dedicate resources to handle rare events. Deadlock recovery
is an alternative to deadlock avoidance or prevention. Using this concept, the messages can be
routed fully adaptively, allowing the formation of cycles. A detection mechanism identifies potential
deadlock configurations; once deadlock is detected, a recovery scheme breaks the deadlocked cycle.
In this section, we review the deadlock recovery mechanisms proposed so far in the literature.

Reeves et al. have proposed an adaptive routing scheme for hypercube systems that uses an
abort-and-retry mechanism for recovering from deadlock and reducing traffic congestion [59]. They
model a protocol that aborts a message whenever it is blocked beyond a threshold number of
cycles. The message is then reintroduced into the network after a random number of cycles. It is
shown that the abort-and retry mechanism improves performance under a broad range of traffic
conditions.

Kim, Liu, and Chien [44] report an adaptive routing framework called compressionless routing

(CR) that supports adaptive and fault-tolerant routing for a wide variety of network topologies
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without using any virtual channels. A feature of wormhole routing that provides feedback in the
form of flow control is exploited in the proposed mechanism. The basic idea of CR is to use
fine-grain flow control and backpressure of wormhole routing to communicate routing status and
error conditions to the network interfaces. The network interface uses the information to provide
deadlock recovery and end-to-end fault tolerance. Thus if the message is long enough, the sender
can determine if the message header has reached its destination; if the message is not long enough,
the sender pads it to ensure that the header reaches the destination before the last flit is injected
by the source. Figure 17 illustrates message routing in a CR network. While routing, if a message
is blocked at a node for an interval larger than a preset time-out, it is aborted by the source and
resent later.

(A) Before the header arrives at the destination:

(B) On header arrival: (message length > distance)

(message length < distance)

s [ [ J—4-4] B i

(C) After the header arrived at the destination: (message length > distance)

‘message |length < distance)

(
SININ R B R p—
I Header Flit I Data Flit H Pad

Figure 17: Message routing and padding in CR networks.

The performance of CR depends on the time-out interval. Simulation results also indicate
that the CR torus networks (with a single channel) give comparable or better performance than
dimension-ordered networks (with two virtual channels) under uniform traffic. CR with two virtual
channels significantly outperforms dimension-ordered networks.

Anjan and Pinkston propose a deadlock-recovery strategy called disha that provides a framework
for supporting deadlock-free fully adaptive wormhole routing [6]. The routing is done without any
virtual channels or turn restrictions. However, virtual channels can be used to increase throughput
and reduce deadlock frequency. Recovery from deadlock is achieved through a single additional flit
buffer at each node. This “deadlock buffer” is a special input buffer central to each router used only
in potential deadlock situations; it is a shared resource that can be accessed from all neighboring
nodes. The deadlock buffers form a deadlock-free lane during recovery. When a deadlock cycle is
formed, one of the messages in the cycle is switched to the deadlock-free lane and routed minimally
along the path until it reaches its destination and is eventually consumed. Thus the cycle breaks

and all the other messages proceed. Two versions of disha have been proposed. The first allows
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only sequential deadlock recovery [6]: access to deadlock buffers is controlled by a circulating token.
The second version allows concurrent deadlock recovery [7]: it requires no token and is based on an
extension of the theory of deadlock avoidance described in Section 4.2. Deadlocks can be detected
by a time-dependent selection function or by a counter associated with each input channel [26].
A time-out interval determines the maximum time a message can be blocked at a router. After
this interval, the message is considered “deadlocked.” The selection of a proper time-out interval
is important for optimum performance. The counter counts the number of cycles since the header
arrived. When the header waits for longer than some threshold, it is assumed to be deadlocked.
Simulation results indicate that disha provides better performance than the deadlock-avoidance

schemes [6].

7 Fault-Tolerant Wormhole Routing

With the trend toward large-scale parallel systems, fault tolerance becomes important in routing
algorithms. Ideally the algorithm should be able to route a message to its destination as long as
the source and the destination nodes are connected. However, this is not always possible due to
the routing constraints for avoiding deadlocks. This section summarizes some of the fault-tolerance
algorithms presented in the literature.

The planar adaptive routing discussed in Section 6.2 can be modified to support fault tolerance
[15]. As the algorithm does not allow backtracking, a message may get “trapped” in a concave
faulty region. This problem is solved by marking some operational nodes as faulty in order to
convert the concave faulty regions to convex. Then the planar adaptive routing can be used to
route messages to all the nodes that are connected. The basic idea is to use the adaptivity to
circumvent any faulty channels. Consider a plane A; in dimensions d; and d;+1. The high-level

routing remains the same as described in Section 6.2. The low-level steps are:

1. If not blocked by a fault, route as in the fault-free case.
2. If blocked by a fault in dimension d;;, route in d;.
3. If blocked by a fault in d;, route in d;y1.

4. If blocked by a fault in d; and the d;4q distance has already been reduced to zero, then
misroute. If we were routing in d;+q, continue to route in the same direction. If we were
routing in d;, pick an arbitrary d;4; direction and begin misrouting. At the first opportunity,
route in d; toward the destination. Continue to route in d; only until it is possible to correct

d;+1. At that point, route in d; 41 to distance zero in this dimension, then revert to step 1.

5. We cannot be blocked in d;11 and have reduced the d; distance to zero. If this were the case,

we would have proceeded to the next adaptive plane.
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The CR scheme described in Section 6.2 above can be also extended to handle faults in wormhole
routed networks [44]. The basic idea in fault-tolerant CR is to use the retransmission mechanism to
tolerate transient faults and to use unrestricted routing flexibility to circumvent permanent network
faults. When a transient fault is detected, the detecting router sends kill signals in both forward
and backward directions along the message path. The source node retransmits the same message
after receiving the kill signal. When a message encounters a permanent fault, it circumvents the
faults using alternative paths. To ensure reliable message transfer, each message holds its path
until the last data flit reaches the destination.

Glass and Ni have proposed an extension of the negative-first algorithm to make it fault-tolerant
[34]. The negative-first algorithm provides full adaptivity to the message at all times except when
it is routing in the negative edge of the mesh or in the last dimension. The fault-tolerant extension
of this algorithm is targeted at removing these few cases of non-adaptiveness. Their approach is
based on the following restrictions: (a) avoid routing a packet to the negative edge of the mesh
as long as possible; (b) route a message around a faulty node on a negative edge of the mesh; (c)
route a message farther negative if the destination node is in the negative direction of the source;
(d) avoid routing a message in the positive direction from the destination as long as possible. With
these restrictions, if a node ever finds it impossible to route a message further, it discards the packet
and possibly returns an acknowledgment of the error to the sender. An example of a few paths
allowed by this fault-tolerant routing algorithm is illustrated in Figure 18. The main advantage of
this scheme is that it needs no virtual channels for fault tolerance: it is a simple modification of

the negative-first algorithm that enables it to tolerate n — 1 faults in an n-dimensional mesh.
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Figure 18: Sample paths allowed by the fault-tolerant routing in a two-dimensional mesh.

Hadas and Brant propose an origin-based fault-tolerant routing scheme for mesh-connected
systems [48]. In origin-based routing, one of the nodes is considered the origin and the other nodes
are represented with coordinates with respect to this origin. The coordinates for the source node
s and the destination node t are (zs,ys) and (z¢,y;), respectively. The channels of the network are
partitioned into an I N subnetwork and QUT subnetwork: the IN subnetwork contains all channels
directed toward the origin and the OUT subnetwork contains all channels directed away from the

origin. The following definitions are helpful for explaining the origin-based routing [48]:
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Definition 10: The outboz for a destination node ¢ with coordinates (x4, y:), (z¢, y¢ > 0) is the set
of all nodes n with coordinates (z,, y,) such that 0 < z,, < z; and 0 < y,, < y;.
Definition 11: A node v is safe with respect to destination node ¢ if

1. Node v is in the outbox for t.

2. For any pattern of faults in which v and t are non-faulty, there exists a fault-free path in the
OUT subnetwork from v to t.

Definition 12: The diagonal band for destination node ¢ is the set of all nodes v satisfying the
following properties:

1. Node v is in the outbox for t.

2. If (24, y:) and (z,,y,) are the coordinates of ¢t and v, respectively, then z; — z, = ys — ¥, + €,
where e € {-1,0,1}.

The origin-based fault-tolerant routing scheme has three phases. In the first phase, a message
is routed adaptively using the IN subnetwork while the header flit is not in the outbox for its
destination node t. When the header flit enters the outbox, the second phase starts. While the
header flit is not at a safe node, the distance to the nearest safe node in each direction is computed
and compared with the distance to the nearest fault in that direction. If the safe node is closer
than the fault, the message is routed to the safe node; otherwise, message routing continues in the
IN subnetwork. The message enters the third phase of routing when it arrives at a safe node wv.
If v has a safe non-faulty neighbor, the header flit is forwarded to that node. Otherwise, since v
must be on the edge of a faulty region, v advances along the edge of the faulty region towards ¢
and turns towards the diagonal band when it reaches the corner of the faulty square. Thus, the
message returns to a safe node as the nodes on the diagonal band for ¢ are safe with respect to .
Origin-based fault-tolerant routing is deadlock-free as well as livelock-free [48]. Figure 19 shows an

example of origin-based fault-tolerant routing algorithm.
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Figure 19: Sample origin-based fault-tolerant routing in a mesh.

Boppana and Chalasani have enhanced the e-cube algorithm for fault tolerant routing in mesh

networks [9]. Their algorithm the f-cube algorithm, is based on the concept of fault rings and fault

31



chains, which are formed using fault-free nodes and links around each faulty region. The fault-free
nodes form either rings (f-rings) or chains (f-chains) in a faulty network, as shown in Figure 20.
Messages are routed around the f-rings and f-chains following dimension-ordered routing. They
have shown that if fault rings do not overlap, i.e., if the links in the fault rings are pair-wise
disjoint, two virtual channels per physical channels are sufficient to make e-cube algorithm tolerant
of any number of faulty blocks. For cases where fault rings overlap, three to four virtual channels are
required. Boppana and Chalasani have further extended their algorithms for adaptive fault-tolerant

routing using four additional virtual channels [9].

Figure 20: Examples of f-cube and f-rings in a mesh. Unshaded nodes are faulty nodes, solid bold
lines are f-rings, and dotted bold lines represent a f-chain.

Gaughan and Yalamanchili have proposed a family of fault-tolerant routing protocols for direct
multiprocessor networks [30]. Their scheme is based on pipelined circuit switching (PCS), which
is a variant of the wormhole routing mechanism. In PCS, data flits do not immediately follow the
header flits into the network. After the header reaches the destination, an acknowledgment is sent
to the source and then the data flits are transmitted as in wormhole routing. By relaxing some of
the routing constraints imposed by wormhole routing, PCS makes possible routing behavior that
cannot otherwise be realized. For example, rather than blocking on busy channels, the header may
“backtrack,” release previously reserved channels on the path and attempt an alternative path to
the destination. Thus, using PCS, the authors have developed fault-tolerant routing algorithms
— misrouting backtracking with m misroutes (MB-m). Results indicate that this methodology
provides performance approaching that of wormhole routing unless messages are very short, while
realizing resilence to static faults that is difficult to achieve with wormhole routing.

A new flow-control mechanism called scouting has been proposed by Duato et al. for improving
fault tolerance [29]. In Scouting, a probe is sent to reserve the path. The probe is allowed to
backtrack, as in PCS. Instead of waiting for an acknowledgment however, data flits follow the
header at a distance that can be dynamically adjusted from 0 (as in wormhole routing) in fault-free
regions of the network to a value equal to the diameter of the network when the message is crossing
a region with faults. A detailed performance analysis with respect to the dynamically adjustable

distance is reported in [21].
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Duato has also developed necessary and sufficient conditions for deadlock avoidance in fault-
tolerant routing algorithms [28]. by analyzing the channel redundancy as well as the network
redundancy and defining redundancy levels. Network redundancy level is the maximum number of
channels that can fail in the worst case such that the resulting routing algorithm remains connected
and deadlock-free. Using these analyses, Duato proposed necessary and sufficient conditions for a
routing algorithm to achieve a given redundancy level [28]. The same work also studies the effect
of faults in physical channels on virtual channels and node failures.

Varavithya et al. study combining virtual cut-through with wormhole routing to achieve fault
tolerance [71] by extending the PENF algorithm [68] to handle faults without using any additional
virtual channels. Upon encountering a faulty node, a message uses alternative paths provided by
the routing function unless it is in the last dimension. In the final dimension, when a message
is blocked by faulty nodes, it is completely stored at one of the adjacent nodes from which it is
subsequently retransmitted. It is shown that under normal circumstances, this approach results in
much better performance, with the added advantage that it does not need any additional hardware
specifically for fault tolerance. A similar scheme was also proposed independently by Suh et al.
[67].

The Reliable Router (RR) reported by Dally et al. is an excellent router design that addresses
a practical implementation of fault-tolerant routing algorithms [20]. It is designed to run at 100
MHz and reaches a useful link bandwidth of 3.2 Gbit/sec. RR uses adaptive routing coupled with
link-level retransmission and a unique-token protocol to increase both performance and reliability.
The RR can tolerate a single node or link failure anywhere in the network without interruption of

service.

8 Wormbhole Routing in Commercial Systems

In this section, we describe the implementation of wormhole routing schemes in commercial
parallel computers. The algorithms, hardware requirements, flow control, and other implementation
details of wormhole routing in nCUBE-2, CM-5, Cray T3D, Intel Paragon and IBM SP1/SP2 are

reported next.

Wormhole Routing in nCUBE-2

The nCUBE-2 parallel computer series supports a hypercube configuration of up to 8192 nodes
in 13 dimensions [53]. Interprocessor communication is handled through a network communication
unit (NCU), which includes 14 DMA ports that support the hypercube interconnection scheme.
The DMA ports include 13 bidirectional interprocessor communication ports (26 unidirectional
channels) for communicating with processors that are part of the local hypercube and one bidirec-
tional system interconnect 1/O port, consisting of two unidirectional channels, for communicating
with remote or other systems.

The NCU architecture has three layers: the interconnect layer, the routing layer, and the

message layer. The interconnect layer provides the hardware to establish physical communication
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links: 28 independent serial DMA channels provide 14 full-duplex 1/O ports, allowing systems to
be designed with up to a 13-dimensional hypercube. The variable communication speed of 1/0
ports allows matching of the port speed to the signal propagation time of the interconnect. The
routing layer provides the arbitration and switching logic for creating, maintaining, and removing
communication paths between processors in the network. The wormhole switching technique routes
messages between the nodes. The routing layer assumes that each processor has a unique processor
ID and that the IDs of two processors connected to each other through port & vary only in the kth
bit. The software establishes a communication path by sending an address packet over a channel.
The hardware passes the address from node to node. Each processor compares the destination node
address with its own ID and sends the address packet out through the port number corresponding
to the bit position of the first difference, starting at bit n+1, where n is the number of port on which
the message was received. Thus, while using the hardware default routing, messages are always
sent out on a port with a number higher than the port on which the message was received. An
established routing path blocks all messages that try to use the same channels until the hardware
clears the path with an end-of-transmission (EOT) packet. The nCUBE uses the dimension-order
e-cube routing algorithm to route messages from one node to another; as has been shown above,
this algorithm enables deadlock-free message transfers.

The message layer provides for reliable and efficient point-to-point data transfer between the
nodes. The NCU can buffer up to two packets on each incoming channel and requests another

packet as soon as it has space for it, until an EOT packet arrives.

Wormhole Routing in CM-5

The basic topology of the CM-5 data network is a 4-ary fat tree in which each internal node is
made up of several router chips [46]. The fat-tree topology provides adaptable bandwidth between
the nodes. Each router chip is connected to four child chips and either two or four parent chips;
each connection provides a link to another chip with a raw bandwidth of 20 megabytes/second in
each direction. Flow control is provided on every link.

Message routing in the CM-5 data network uses an adaptive wormhole routing mechanism. The
network design provides many alternative paths from a source to the destination. As a message
goes up the tree, it may have several choices for taking a parent connection. A pseudorandom
selection process selects a link that is not occupied by other messages. After the message attains
the height of the least common ancestor of the source and destination processors, it takes the single
available path of links from that chip to its destination. The random selection at each level balances
network load and avoids congestion. On average, each processor can provide data into and out of
the network at a rate in excess of four megabytes/second; higher bandwidths are achievable for
localized communication patterns. Network latency ranges between three and seven microseconds,
depending on the size of the machine.

The data router chip has an eight-bit-wide bidirectional link (four bits in each direction) to each
of its four child chips lower in the fat tree, and four 8-bit-wide bidirectional links to its parent chips

higher in the fat tree. The chip can be viewed as a crossbar connecting the eight input ports to the
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Figure 21: Architecture of the Cray T3D router.

eight output ports. When a message is blocked from its desired output port, it is buffered. Flow
control information is passed in the reverse direction of message traffic to prevent buffer overflow.
When multiple messages compete for the same output port, the arbitration is fair and prevents any
link from being starved.

The data network in CM-5 has a contract with the processors that guarantees delivery of all
messages. The contract promises to accept and deliver all messages injected into the network by the
processors as long as the processors promise eventually to eject all messages from the network when
they are delivered to them. The data network is acyclic from inputs to outputs, which precludes
deadlock if the contract is obeyed. Each processor has two outgoing and two incoming FIFOs in
its interface to the data network: a left port and a right port. The topology of the network is such
that all links reachable from the left port are unreachable from the right port and vice versa. Thus,
the data network is really two independent, interleaved networks. Requests can be sent on the left
side of the network, and responses returned on the right side. If a processor cannot send a response
on the right side and its constant-size buffer is full, it stops receiving on the left side. Since any
processor requesting data has a place to put it, however, the processors can satisfy the contract on
the right side and the responses will eventually clear out. A processor can eventually accept every
request that arrives on the left side, and thus satisfy the contract on the left side. Consequently,

deadlock cannot occur.

Wormhole Routing in Cray T3D

Cray T3D is a distributed shared-memory system in which the nodes are interconnected through
a bidirectional, 3D torus network [41]. The network links are 24 bits wide (16 data, 8 control) and
are clocked at 150 MHz. The latency per hop in the absence of contention is two clock cycles. The
network ports have the same capacity as the internode links, and are shared by two PEs at each
node. The T3D network uses a deterministic, dimension-order, e-cube wormhole routing scheme.
The router is physically partitioned into three ECL gate arrays, one for each dimension (see Figure
21). Packets route in the X direction first, the Y direction next, then the Z direction. The flits are
usually of 8 16-bit phits or less. Packet sizes range from 3 to 26 phits, and carry header information

plus zero, one, or four 64-bit data words. Virtual channel buffers are one flit deep.
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Each physical channel is associated with four virtual channels, two of which are used for request
traffic and the other two for response traffic. For clarity, only two virtual channels are shown in
Figure 21. Deadlocks are avoided by a combination of the following three factors: (a) separate
virtual networks for requests and responses remove cyclic dependencies between these traffic classes,
(b) dimension-order routing removes cyclic dependencies involving multiple dimensions, and (c)
two virtual channels per traffic class are used to remove cyclic channel dependencies involving the
wraparound connection within a given dimension. Routing in T3D employs end-to-end routing
tables. Each node contains a table, stored in dedicated hardware, that provides a routing tag for
every destination node in the machine specifying a direction, offset, and virtual channel for each
of the three dimensions. The routing tables are loaded by software but are used directly by the
hardware. They also allow alternate routes to be taken (i.e., the long way around a torus) to avoid
faulty nodes and links. The routing tables let us individually specify the virtual channels used
for every source-destination pair in the machine. Thus, two packets traveling along exactly the
same segment on a ring (as identified by the source and destination nodes on that ring) could use
different virtual channels, depending upon their original source and final destination.

The primary use of virtual channels in the T3D is to prevent deadlock. Since request and
response packets are routed on separate virtual networks, the dimension-order routing breaks cycles
between dimensions. Thus, we need to be concerned only about avoiding deadlock within a single
ring of the torus. This can be done using two virtual channels, VC0 and VCI1, and through
logical datelines, which are imaginary lines cutting a ring that can only be crossed by traffic on
the appropriate virtual channel. A packet stays on the same virtual channel while routing on a
given ring. No traffic ever switches between virtual channels. Therefore, if datelines are enforced
for both VC0O and VC1 in both positive and negative directions for each ring, there can be no
cyclic dependencies among VC buffers, and thus no deadlock. The datelines are logically placed at
carefully selected nodes so that the traffic through the two virtual networks is more or less balanced.
Balanced traffic enforces load balancing among the two virtual channels, which results in improved

performance over the unbalanced usage proposed in several adaptive routing schemes.

Wormhole Routing in Intel Paragon

Intel Paragon has a two-dimensional mesh topology and can be configured as a 16x4N mesh,
where N is the number of cabinets. Each node in Paragon is connected to a mesh router chip (MRC)
as shown in Figure 22. There are 10 unidirectional ports per MRC. A pair of ports are in each of
the four directions — north, south, east, and west — for communicating with neighboring nodes; the
fifth pair is used for communicating with the node associated with the router. The ports enable
16-bit parallel transfers plus parity, providing a total bandwidth of more than 200 MBytes/second
per port. Data flow through the MRC takes about 10ns for a straight path and a little longer for
a turn.

Messages in Paragon are routed deterministically using the wormhole switching technique. Mes-
sages are packetized prior to hardware transfer and the XY routing algorithm is used to send the

packets from a source node to destination. Signed horizontal and vertical displacements are used for
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Figure 22: Mesh router chip of Intel Paragon.

routing the packets of a message. The horizontal and vertical displacements are computed at the
source node. The packet is routed first in the horizontal dimension until the horizontal displacement
is zero, and then in the vertical dimension until the vertical displacement becomes zero. The mes-
sage is then absorbed at the destination node. All ports in the MRC can be active simultaneously,
and thus up to five message packets can be routed simultaneously without contention.

The message routing scheme in Paragon uses the deterministic XY algorithm, so it is deadlock-

free, as proved earlier.

Wormbhole Routing in IBM SP1/SP2

The nodes of IBM SP1 and SP2 are interconnected by a multistage interconnection network
(MIN) [1, 3], whose links contain two channels carrying packets in opposite directions between two
network devices. The MIN comprises of 8x8 Vulcan switch chips [65] (Figure 23). The switch
consists of eight receiver and eight transmitter modules, an unbuffered 8x8 crossbar, and a 1 KB
large central queue. Each input and output port consists of eight data lines and two control lines, so
that each port can process one flit (one byte) per cycle. A crossbar switch is implemented between
the input and output ports for transferring packets that encounter no contention for their desired
output port. If there is contention, the flits of a packet are stored in a central queue that has a
1 KB dynamically allocated shared buffer. Larger portions of the shared buffer are allocated to
the busier input ports. This dynamic behavior improves the network performance. To match the
maximum possible bandwidth from the input ports, it is necessary to write eight flits per cycle into
the central queue. Thus, each input port queues a chunk of eight flits at the deserializer before
requesting service from the central queue, and writes the entire chunk in one cycle when the request
is granted. The serializer at the output ports converts an eight-flit central queue chunk into the
flit-wide data stream sent from the output port. As long as the central queue is not full, each input
port can continue to receive flits at full bandwidth.

Processor nodes of the IBM SP1/SP2 communicate by sending and receiving message packets.
Packets are of variable length and up to 255 bytes in size. The method of packet transfer is similar
to wormhole routing. The only difference is that when a packet is blocked the packet bytes are not

buffered in place but are temporarily transferred to the central queue until the blocked output port
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Figure 23: Architecture of the Vulcan switch in IBM SP1/SP2.

is cleared up. The first byte of each packet indicates the packet length, followed by a number of
routing bytes, followed by data. The complete routing decision is made at the source node (source-
initiated routing). At each switch, the first byte of the packet is examined and the output port is
determined. The corresponding switch strips off the portion of routing information pertaining to
itself before sending the packet forward. In the absence of output contention, packet bytes pass
through a switch in five clock cycles. The switch operates at 40 MHz, resulting in a peak bandwidth
of 40 MB/s per port. The corresponding input and output ports of the switches are paired to form
a full duplex bidirectional channel. Thus the 4x4 bidirectional switch element can forward a packet
to any of the eight output ports, including the output ports on the same side of the input ports.
This implementation facilitates turnaround routing.

The routing algorithm used in SP1/SP2 selects a single shortest path between each pair of
processor nodes and is deterministic in nature. A modified breadth-first search algorithm is imple-
mented to build a breadth-first spanning tree rooted at each source node, and then the spanning
tree paths are followed to find the shortest path from the source nodes to the rest of the processor
nodes. A static load-balancing technique is used to ensure that links are included in the selected
routes in a balanced manner. The routes are stored in a routing table in each processor’s mem-
ory, which lets routing be done in a topology-independent fashion. This approach differentiates
the SP1/SP2 routing algorithm from the other deterministic routing schemes, namely the XY and
e-cube: they are topology dependent, XY for mesh and e-cube for hypercube.
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9 Conclusions and Open Issues

Wormbhole routing has emerged as the most widely used switching technique in massively par-
allel computer systems. This paper has given a comprehensive survey of various algorithms and
techniques proposed to enhance its performance. A number of open issues, however, remain. Some

of these issues are itemized as follows.

e Performance of wormhole-routed networks is not necessarily improved by increasing the adap-
tivity of the routing algorithm. Adaptivity is incorporated in the routing algorithm at the
expense of additional hardware. Other factors, such as balanced traffic distribution, have a
significant effect on network performance and may well be implemented at a lower cost. It is

thus necessary to investigate cost-effective methods to improve network performance.

e The performance of wormhole routed algorithms has been evaluated through analysis or
simulation with generalized workloads. The behavior of such algorithms should be studied

with real traces obtained from parallel computers.

e The overhead associated with the decision making process at the router is generally ignored
but might have significant impact on the overall network performance. Attempts in this
direction have already been made by Chien [14] and others. However, all microoperations

needs to be evaluated in detail for complete performance evaluation.

e Fault-tolerant routing algorithms have been evaluated assuming random faults at the nodes. It
might be interesting to incorporate fault-injection mechanisms and evaluate the performance

of the network under faulty links, nodes, routers, and interfaces.

e Collective operations that involve several processing nodes occur frequently in multicomputer
systems, for instance in multicast, broadcast, gather, scatter, and barrier synchronization.
A good survey of several algorithms for collective communication is given in [52]. Efficient
hardware communication support can be implemented for these operations to reduce their

latency further. Additional work in this area is needed.

e Research efforts on wormhole routing in switch-based networks should continue because of

the renewed interests in such architectures [54].

e Finally, application-specific routing algorithms are needed for specialized systems, probably

related to the routing of real-time traffic or multiple classes of traffic [60].

This report has concentrated on hardware routing algorithms. However, some functionality can
be implemented in software to derive hybrid routing schemes for cost-effective high-performance

networks.
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