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ABSTRACT
Increased popularity of smartphones has attracted a large
number of developers to various smartphone platforms.
As a result, app markets are also populated with spam
apps, which reduce the users’ quality of experience and in-
crease the workload of app market operators. Apps can be
“spammy” in multiple ways including not having a specific
functionality, unrelated app description or unrelated key-
words and publishing similar apps several times and across
diverse categories. Market operators maintain anti-spam
policies and apps are removed through continuous human
intervention. Through a systematic crawl of a popular app
market and by identifying a set of removed apps, we pro-
pose a method to detect spam apps solely using app meta-
data available at the time of publication. We first propose
a methodology to manually label a sample of removed apps,
according to a set of checkpoint heuristics that reveal the
reasons behind removal. This analysis suggests that approx-
imately 35% of the apps being removed are very likely to be
spam apps. We then map the identified heuristics to several
quantifiable features and show how distinguishing these fea-
tures are for spam apps. Finally, we build an Adaptive Boost
classifier for early identification of spam apps using only the
metadata of the apps. Our classifier achieves an accuracy
over 95% with precision varying between 85%–95% and re-
call varying between 38%–98%. By applying the classifier
on a set of apps present at the app market during our crawl,
we estimate that at least 2.7% of them are spam apps.

1. INTRODUCTION
Recent years have seen wide adoption of mobile apps, and

the number apps that are being offered are growing expo-
nentially. As of mid-2014, Google Play Store and Apple
App Store, each hosted approximately 1.2 million apps [47],
with around 20,000 new apps being published each month
in both of these app markets. These numbers are expected
to significantly grow over the next few years [48].

Both Google and Apple have policies governing the pub-
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lication of apps through their app markets. Google has an
explicit spam policy [30] that describes their main reasons
for considering an app to be “spammy”. These include : i)
apps that were automatically generated and published, and
as such do not have any specific functionality or a meaning-
ful description; ii) multiple instances of the same app being
published to obtain increased visibility in the app market;
and iii) apps that make excessive use of unrelated keywords
to attract unintended searches. Overall, spam apps vitiate
the app market experience and its usefulness.

At present, Google and Apple take different approaches
to the spam detection problem. Google’s approach is re-
active. Google’s app approval process does not check an
app against its explicit spam app policy [41], and takes ac-
tion only on the basis of customer complaints [45]. Such
crowdsourced approach can lead to a considerable time lag
between app submission and detection of spam behaviour.
In contrast, Apple scrutinises the apps submitted for ap-
proval, presumably using a manual or semi-manual process,
to determine whether the submitted app conforms to Ap-
ple’s policies. Although this approach is likely to detect
spam apps before they are published, it lengthens the app
approval process. With the ever increasing number of apps
being submitted daily for approval, the app market operators
need to be able to detect spam apps quickly and accurately.

This paper proposes a methodology for automated detec-
tion of spam apps at the time of app submission. Our classi-
fier utilises only features that can be derived from an app’s
metadata available during the publication approval process.
It does not require any human intervention such as manual
inspection of the metadata or manual testing of the app. We
validate our app classifier, by applying it to a large dataset
of apps collected between December 2013 and May 2014,
by crawling and identifying apps that were removed from
Google Play Store. We make the following contributions:

• We develop a manual app classification methodology
based on a set of heuristic checkpoints that can be
used to identify reasons behind an app’s removal (Sec-
tions 3 and 4). Using this methodology we found that
approximately 35% of the apps that were removed are
spam apps; problematic content and counterfeits were
the other key reasons for removal of apps.

• We present a mapping of our proposed spam check-
points to one or more quantifiable features that can be
used to train a learning model (Section 5). We provide
a characterisation of these features highlighting differ-
ences between spam and non-spam apps and indicate
which features are more discriminative.



• We build an Adaptive Boost classifier for early detec-
tion of spam apps and show that our classifier can
achieve an accuracy over 95% at a precision between
85%–95% and a recall between 38%–98% (Section 6).

• We applied our classifier to over 180,000 apps avail-
able in Google Play Store and show that approximately
2.7% of them are potentially spam apps (Section 6).

To the best of our knowledge, this is the first work to de-
velop an early detection framework for identifying spam mo-
bile apps and to demonstrate its efficacy using real world
datasets. Our work complements prior research on detect-
ing apps seeking over-permissions or apps containing mal-
ware [59, 21, 7, 44, 20].

2. RELATED WORK
In this section, we discuss related work in spam detec-

tion for web pages, SMS, and emails, and the detection of
malware apps and over-privileged apps.

Web spam refers to the publication of web pages that are
specifically designed to influence search engine results. Us-
ing a set of manually classified samples of web pages ob-
tained from “MSN Search”, Ntoulas et al. [40] characterise
the web page features that can be used to classify a web
page as spam or not. The features include top-level domain,
language of the web page, number of words in the web page,
and number of words in the page title etc.

Fetterly et al. [16] characterise the features that can po-
tentially be used to identify web spam through statistical
analysis. The authors analyse features such as URL proper-
ties, host name resolutions, and linkage properties and find
that outliers within each of the properties considered are
spam. Gyöngyi et al. [22] propose the use of the link struc-
ture in a limited set of manually identified non-spam web
pages to iteratively find spam and non-spam web pages, and
show that a significant fraction of the web spam can be fil-
tered using only a seed set of less than 200 sites. Krishnan
et al. [35] use a similar approach. Erdélyi et al. [14] show
that a computationally inexpensive feature subset, such as
the number of words in a page and the average word length,
is sufficient to detect web spam.

Detection of email spam has received considerable atten-
tion [6]. Various content related features of mail messages
such as email header, text in the email body, and graphi-
cal elements have been used together with machine learning
techniques, such as naive Bayesian [43, 49, 37], support vec-
tor machines [13, 3, 50], and k nearest neighbour [2]. Non-
content related features such as SMTP path [36] and user’s
social network [42, 10] has also been used in spam email
detection.

Spam has also been studied in the context of SMS [19, 11],
product reviews [33, 32, 9], blog comments [38], social me-
dia [57, 5]. Cormack et al. [11] show that due to the limited
size of SMS messages, bag of words or word bigram based
spam classifiers do not perform well, and their performance
can be improved by expanding the set of features to include
orthogonal sparse word bigrams, and character bigrams and
trigrams. Jindal et al. [33] identify spam product reviews us-
ing review centric features such as the number of feedback
reports, textual features of the reviews, and product centric
features such as price, sales rank as well as reviewer-centric
features such as the average rating given by the reviewer.
Wang et al. [57] study detection of spammers in Twitter.

More recently, Malware mobile apps, over-privileged apps
(i.e., apps with over-permissions), and similar apps (i.e.,
clones: similar apps by different developers and rebrand-
ing: similar apps by the same developer) have received at-
tention [59, 21, 7, 44, 20, 56, 12]. Zhou et al. [59] pro-
pose DroidRanger, which uses permission-based behavioural
fingerprinting to detect new samples of known Android mal-
ware families and heuristics-based filtering to identify in-
herent behaviours of unknown malware families. Gorla et
al. [20] regroup app descriptions using a Latent Dirichlet Al-
location and k-means clustering to identify apps that have
unexpected API usage characteristics. Viennot et.al [56]
clustered apps based on the Jaccard Similarity of app re-
sources such as images and layout XMLs, to identify similar
apps and used developer information such as the name and
the certificate included in the app to differentiate clones from
rebranding. Crussell et al. [12] clustered apps according to
the code level similarity features to identify similar apps.

3. METHODOLOGY

3.1 Dataset
We use apps collected in a previous study [53], as a seed

for collecting a new dataset. This initial seed contained
94,782 apps and was curated from the lists of apps obtained
from approximately 10,000 smartphone users. The user base
consisted of volunteers, Amazon mechanical turk users, and
users who published their lists of apps in social app discovery
sites such as Appbrain1. We crawled each app’s Google Play
Store page through a Java client that uses jsoup2 HTML
parser to discover: i) functionally similar apps; ii) other
apps by the same developer. Then we collected metadata
such as app name, app description, and app category for all
the apps we discovered including the seed set. We discarded
the apps with a non-English description using the language
detection API, “Detect Language” [1]. We refer to this final
set as the Observed Set - O.

After identifying the Observed Set apps, we revisited
Google Play Store to check the availability of each app. The
subset of apps that were unavailable at the time of this sec-
ond crawl is referred to as Crawl 1 - C1. This process
was repeated two times, Crawl 2 - C2 and Crawl 3 - C3

with at least one month gap between two consecutive crawls.
Figure 1 illustrates data collection process and Table 1 sum-
marises the datasets in use.

Initial 
Seed 

Observed 
Set 

App discovery 

~2 weeks 4 weeks ~2 weeks 

Crawl 1 

4 weeks ~2 weeks 

Crawl 2 

4 weeks ~2 weeks 

Crawl 3 

Crawl 1 Crawl 2 Crawl 3 

Dec’13 – May’14 

Figure 1: Chronology of the data collection

We identify temporary versus long-term removal of apps
by re-checking the status of apps deemed to have been
removed during an earlier crawl. For instance, all apps
in Crawl 1 were checked again during Crawl 2. We

1www.appbrain.com
2www.jsoup.org



Table 1: Summary of the dataset

Set Number of apps

Observed set (O) 232,906
Crawl 1 (C1) 6,566
Crawl 2 (C2) 9,184
Crawl 3 (C3) 18,897

found that only 85 (∼0.13%) apps identified as removed in
Crawl 1 reappeared in Crawl 2. Similarly, only 153 apps
(∼0.02%) identified as removed in Crawl 2 reappeared in
Crawl 3. These apps were not included in our analysis.

3.2 App Labelling Process
For a subset of the removed apps in our dataset, our goal

was to manually identify the reasons behind their removal.
We identified factors that lead to removal of apps from the

market place by consulting numerous market reports [46,
24] as well as by examining the policies of the major app
markets [30, 28, 26, 27, 29, 23]. We identified nine key
reasons, which are summarised in Table 2. For each of
these reasons, we formulated a set of heuristic checkpoints
that can be used to manually label whether or not an app
is likely to be removed. Owing to space limitations we do
not provide the heuristic checkpoints for removed reasons
except for spam. Full list of checkpoints for each reason can
be found in our technical report [52]. Section 4 delves into
the checkpoints developed for identifying spam apps.

Table 2: Key reasons for removal of apps

Reason Description
Spam These apps often have characteristics such as un-

related description, keyword misuse, and multiple
instances of the same app. Section 4 presents de-
tails on spam app characteristics.

Unofficial
content

Apps that provide unofficial interfaces to popular
websites or services (E.g., an app providing an in-
terface to a popular online shopping site without
any official affiliation).

Copyrighted
content

Apps illegally distributing copyrighted content.

Adult
content

Apps with explicit sexual content.

Problematic
content

Apps with illegal or problematic content.
E.g., Hate speech and drug related.

Android
counterfeit

Apps pretending to be another popular app in the
Google Play Store.

Other
counterfeit

A counterfeit app, for which the original app
comes from a different source than Google Play
Store (E.g., Apple App Store)

Developer
deleted

Apps that were removed by the developer.

Developer
banned

Developer’s other apps were removed due to vari-
ous reasons and Google decides to ban the devel-
oper. Thus all of his apps get removed.

From Crawl 1, we took a random sample of 1500 apps
and asked three independent reviewers to identify the high-
est likely reason behind the removal of each app using the
heuristic checkpoints that we developed as a guideline. A
reviewer’s selection of a reason for app removal is subjective
and it is based upon their judgement on the level of satis-
faction of one or more checkpoints. If a reviewer could not
conclusively determine the reasons behind a removal, she
labelled those apps as unknown.

The reviewers were Android app developers and worked
full time for 1.5 months at NICTA for this task. The manual
labelling processing took approximately 20 working days (7
hours per day).

Table 3: Reviewer agreement in labelling reason for removal

Reason
3

reviewers
agreed

2
reviewers
agreed

Total
Percent.

(%)

Spam 292 259 551 36.73%
Unofficial content 65 127 192 12.80%
Developer deleted 68 56 124 8.27%
Android counterfeit 27 61 88 5.87%
Developer banned 24 54 78 5.20%
Copyrighted content 2 34 36 2.40%
Other counterfeit 11 23 34 2.27%
Adult content 8 4 12 0.80%
Problematic content 3 4 7 0.47%
Unknown 101 127 228 15.20%

Sub total 601 749 1350 90.00%

Reviewer disagree-
ment

NA NA 150 10.00%

Total Labelled NA NA 1500 100.00%

3.3 Agreement Among the Reviewers
We used majority voting to merge the results of the ex-

perts assessment, to arrive at the reason behind the app
removal in our labelled dataset (L). We decided not to
crowdsource the labelling task to avoid issues with training
and expertise.

Table 3 summarises reviewer agreement. For approxi-
mately 40% (601 out of 1500) of labelled apps, the three
reviewers reached a consensus on the reason for removal and
for 90% (1350 out of 1500) of the apps majority of the re-
viewers agreed on the same reason. For the remaining 10%
of apps, reviewers disagreed about the reasons.

Table 3 also shows the composition of labelled dataset (L)
after majority voting-based label merging. We observe that
spam is the main reason for app removal, accounting for
approximately 37% of the removals, followed by unofficial
content accounting for approximately 13% of the removals.
Around 15% of the apps were labelled as unknown.

Figure 2 shows the conditional probability of the third re-
viewer’s reasoning, given that the other two reviewers are in
agreement. There is over 50% probability of the third re-
viewer’s judgement of an app being spam, when two review-
ers already judged the app to be spam. Other reasons show-
ing such high probability are developer deleted and adult
content apps.

Our analysis through the manual labelling process shows
that the main reason behind app removal is them being spam
apps. Furthermore, the reviewer agreement was high (more
than 50%) when manually labelling spam apps indicating
spam apps stand out clearly when looking at removed apps.

We release our labelled dataset to the research commu-
nity [51] to stem further research in spam app detection.

4. MANUAL LABELLING OF SPAM APPS
This section introduces our heuristic checkpoints, which

are used to manually label the spam apps. We also provide
a characterisation of the reviewer agreement related to nine
manual spam checkpoints and show that checkpoints are un-
ambiguous and suitable for manual labelling. Section 5 maps
the defined checkpoints into automated features.

4.1 Spam Checkpoints
Table 4 presents the nine heuristic checkpoints used by the

reviewers and those were derived based on Google’s spam
policy [30]. While we are unaware of Apple’s spam pol-
icy, we note that Apple’s app review guideline [23] includes
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Figure 2: Probability of a third reviewer’s judgement when
two reviewers already agreed on a reason

certain provisions that match our spam checkpoints. For
example, term 2.20 in the Apple app review guideline, “De-
velopers spamming the App Store with many versions of sim-
ilar apps will be removed from the iOS Developer Program”
maps to our checkpoint S6. Similarly, term 3.3 “Apps with
names, descriptions, screenshots, or previews not relevant to
the content and functionality of the app will be rejected” is
similar to our checkpoint S2.

Reviewers were asked not to deem the apps as spam when
they simply observe an app satisfying a single checkpoint,
but to consider making their decision based on matches with
multiple checkpoints according to their domain expertise.

Note that Table 4 includes all checkpoints relevant to
spam, including those that are considered only for manual
labelling and not for automated labelling. In particular,
checkpoints S8 and S9 are only used for manual labelling as
features corresponding to these checkpoints are either not
available at the time of app submission or require signifi-
cant dynamic analysis for feature discovery. For instance,
we do not use user “reviews” of the app (cf. checkpoint S8),
as user reviews are not available prior to the app’s approval.
Similarly, checking for excessive advertising (cf. checkpoint
S9) was also used only for manual labelling, as it requires dy-
namic analysis by executing it in a controlled environment.

4.2 Reviewer Agreement on Spam Check-
points

Table 5 shows how often the reviewers agreed upon each
checkpoint. Checkpoints S2 and S6 led to the highest num-
ber of 3-reviewers agreements and 2-reviewer agreements.
Checkpoints S1 and S3 have moderate number of 3-reviewer
agreements while having a high number of 2-reviewer agree-
ments. The table also suggests that checkpoints S1, S2, S3

and S6 are the most dominant checkpoints.

Table 5: Checkpoint-wise reviewer agreement for spam

Checkpoint S1 S2 S3 S4 S5 S6 S7 S8 S9

3 reviewers
agreed

22 63 20 0 4 89 11 3 3

2 reviewers
agreed

52 81 75 3 6 115 11 26 15

Disagreed 45

The sum of the cases where 3 reviewers agreed, 2 reviewers
agreed, and reviewers disagreed shown in Table 5, is more
than the total number of spam apps identified by merging
the reviewer agreement (i.e., 551 apps) because one reviewer
might mark an app as satisfying multiple checkpoints. For
example, consider a scenario where reviewer-1 labels the app
as satisfying checkpoints S1, S2 and reviewer-2 labels as S1,
S2 and reviewer-3 labels only as S1. This will cause one sce-
nario of 3 reviewer agreement (for S1) and another scenario
of 2 reviewer agreement (for S2).

Out of the 551 spam apps, three reviewers agreed on at
least one checkpoint for 210 apps (∼ 38%), and two review-
ers agreed on at least one checkpoint for 296 apps (∼ 54%).
For 45 apps (∼ 8%), the three reviewers gave different check-
points (i.e. when the reviewers assess an app as spam, over
90% of the time they also agreed on at least one checkpoint).
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Figure 3: Probability of a third reviewer’s judgement when
two reviewers already agreed on a checkpoint

Figure 3 illustrates the conditional probability of the third
reviewer’s checkpoint selection given two reviewers have al-
ready agreed on a checkpoint. We observe that for check-
points S1, S2, S5, S6, S7 and S8, there is a high proba-
bility that the third reviewer indicates the same checkpoint
when two of the reviewers already agreed on a checkpoint.
There is, however, a noticeable anomaly for checkpoint S4,
for which it seems that reviewers are getting confused with
S3. This is due to the lower frequency of occurrences of
checkpoint S4. There were no 3-reviewer agreements for
S4 and there were only 3 cases where 2 reviewers agreed
as shown in Table 5. In those 3 cases the other reviewer
marked the checkpoint S3 in 2 cases giving a high proba-
bility (∼ 67%) for S4 getting confused with S3. Note that
Other refers to all the checkpoints associated with reasons
for app removals other than spam; the probability of Oth-
ers being chosen is high because of the accumulated sum of
probabilities of checkpoints associated with other reasons.

5. FEATURE MAPPING
Checkpoint heuristics for spam (cf. Table 4) need to be

mapped into features that can be extracted and used for
automatic spam detection during the app approval process.
This section presents this mapping and a characterisation of
these features with respect to spam and non-spam apps.

An app is considered spam if two-out-of-three reviewers
labelled it as spam. We assumed that top apps with re-
spect to the number of downloads, number of user reviews,



Table 4: Checkpoints used for labelling of spam apps

Attribute ID Description and Examples

Description

S1 Does the app description describe the app function clearly and concisely?

E.g. Signature Capture App (Non - spam) - Description is clear on the functionality of the application
“SignIt app allows a user to sign and take notes which can be saved and shared instantly in email or social
media.”

E.g. Manchester (Spam) - Description contains details about Manchester United Football Club without any
detail on the functionality of the app.
“Manchester United Football Club is an English professional football club, based in Old Trafford, Greater
Manchester, that plays in the Premier League. ..... In 1998-99, the club won a continental treble of the
Premier League, the FA Cup and the UEFA Champions League, an unprecedented feat for an English club.”

S2 Does the app description contain too much details / incoherent text / unrelated text for an app description?

E.g. SpeedMoto (Non - spam) - Description is clear and concise about the functionality and usage.
“SpeedMoto is a 3d moto racing game with simple control and excellent graphic effect. Just swap your phone
to control moto direction. Tap the screen to accelerate the moto. In this game you can ride the motorcycle
shuttle in outskirts, forest, snow mountain,bridge. More and More maps and motos will coming soon”

E.g. Ferrari Wallpapers HD (Spam) - Description starts mentioning app as a wallpaper. However, then it
goes into to details about Ferrari.
“*HD WALLPAPERS *EASY TO SAVE *EASY TO SET WALLPAPER *INCLUDES ADS FOR ES-
TABLISHING THIS APP FREE TO YOU THANKS FOR UNDERSTANDING AND DOWNLOADING
=) Ferrari S.p.A. is an Italian sports car manufacturer based in Maranello, Italy. Founded by Enzo Ferrari
in 1929, as Scuderia Ferrari, the company sponsored drivers and manufactured race cars before moving into
production of street-legal .....”

S3 Does the app description contain a noticeable repetition of words or keywords?

E.g. English Chinese Dictionary - Keywords do not have excessive repetition.
“Keywords: ec, dict, translator, learn, translate, lesson, course, grammar, phrases, vocabulary, translation,
dict”

E.g. Best live HD TV no ads (Spam) - Excessive repetition of words.
“Keywords: live tv for free mobile tv tuner tv mobile android tv on line windows mobile tv verizon mobile
tv tv streaming live tv for mobile phone mobile tv stream mobile tv phone mobile phone tv rogers mobile tv
live mobile tv channels sony mobile tv free download mobile tv dstv mobile tv mobile tv.....”

S4 Does the app description contain unrelated keywords or references?

E.g. FD Call Assistant Free (Non - spam) - All the keywords are related to the fire department.
“Keywords: firefighter, fire department, emergency, police, ems, mapping, dispatch, 911”

E.g. Diamond Eggs (Spam) - Reference to popular games Bejeweled Blitz and Diamond Blast without any
reason.
“Keywords : bejeweled, bejeweled blitz, gems twist, enjoy games, brain games, diamond, diamond blast,
diamond cash, diamond gems, Eggs, jewels, jewels star”

S5 Does the app description contain excessive references for other applications from the same developer?

E.g. Kids Puzzles (Non - spam) - Description does not contain references to developer’s other apps.
“This kids game has 55 puzzles. Easy to build puzzles. Shapes Animals Nature and more... With sound
telling your child what the puzzle is. Will be adding new puzzles very soon. Keywords: kids, puzzle, puzzles,
toddler, fun”

E.g. Diamond Snaker (Spam) - Excessive references to developer’s other applications.
“If you like it, you can try our other apps (Money Exchange, Color Blocks, Chinese Chess Puzzel, PTT
Web .....”

S6 Does the developer have multiple apps with approximately the same description?

The developer “Universal App” has 16 apps having the following description, with each time XXXX term is
replaced with some other term.
“Get XXXX live wallpaper on your devices! Download the free XXXX live wallpaper featuring amazing
animation. Now with ”Water Droplet”, ”Photo Cube”, ”3D Photo Gallery” effect! Touch or tap the screen
to add water drops on your home screen! Touch the top right corner of the screen to customise the wallpaper
<>. To Use: Home -> Menu -> Wallpaper -> Live Wallpaper -> XXXX 3D Live Wallpaper To develop
more free great live wallpapers, we have implemented some ads in settings. Advertisement can support
our develop more free great live wallpapers. This live wallpaper has been tested on latest devices such as
Samsung Galaxy S3 and Galaxy Nexus. Please contact us if your device is not supported. Note: If your
wallpaper resets to default after reboot, you will need put the app on phone instead of SD card. ”

Identifier S7 Does the app identifier make sense and have some relevance to the functionality of the application or does it
look like auto generated?

E.g. Angry Birds Seasons & Candy Crush Saga (Non - spam) - Identifier give an idea about the app.
“com.rovio.angrybirdsseasons”, “com.king.candycrushsaga”

E.g. Game of Thrones FREE Fan App & How To Draw Graffiti (Spam) - Identifiers appear to be auto
generated.
“com.a121828451851a959009786c1a.a10023846a”, “com.a13106102865265262e503a24a.a13796080a”

Reviews S8 Do users complain about app being spammy in reviews?

E.g. Yoga Trainer & Fitness & Google Play History Cleaner (Spam) - Users complain about app being
spammy.
“Junk spam app Avoid”, “More like a spam trojan! Download if you like, but this is straight garbage!!”

Adware S9 Do the online APK checking tools highlight app having excessive advertising?

E.g. Biceps & Triceps Workouts
“AVG threat labs” [25] gives a warning about inclusion of malware causing excessive advertising.



and rating, are quite likely to be non-spam. For exam-
ple, according to this ranking, number one ranked app was
Facebook and number 100 was Evernote3, number 500 was
Tictoc4 and number 1000 was Saavn5. Thus, for non-spam
apps, we selected top k times the number of labelled spam
apps (551) from the set O, except all removed apps, after
ranking them according to total number of downloads, total
number of user reviews, and average rating. We varied k
logarithmically between 1 and 32, (i.e., 1x, 2x, 4x,..., 32x)
to obtain 6 datasets of non-spam apps. At larger k values it
is possible that spam apps are considered to be non-spam,
as discussed later in this section.

As noted in Section 4.1, checkpoints S8 and S9 are not
used to develop features as we intend to enable automated
spam detection at the time of developer submission.

5.1 Checkpoint S1 - Does the app description de-
scribe the app function clearly and concisely?

We automate this heuristic by identifying word-bigrams
and word-trigrams that are used to describe a functionality
and are popular among either spam or non-spam apps.

First, we manually read the descriptions of top 100 non-
spam apps and identified 100 word bigrams and word tri-
grams that describe app functionality, such as “this app’,
“allows you”, and “app for”. Figure 4 shows the cumulative
distribution function (CDF) of the number of bigrams and
trigrams observed in app descriptions in each dataset. There
is a high probability of spam apps not having these features
in their app descriptions. For example, 50% of the spam
apps had one or more occurrences of these bigrams whereas
80% of the top 1x apps had one or more of these bi- and
tri-grams. The difference in distribution of these bigrams
and trigrams between spam and non-spam apps decreases
when more and more lower ranked apps are considered in
the non-spam category. This finding is consistent across
some of the features we discuss in subsequent sections and
we believe this indicates lower ranked apps can potentially
include spams that are as yet not identified by Google.

Second, as manual identification of bigrams and trigrams
is not exhaustive, we identified the word-bigrams and word-
trigrams that appear in at least 10% of the spam and 10%
of the non-spam apps. We used each such word-bigram and
word-trigram as features and the frequency of occurrence as
the value of the feature. Figure 6 visualises top-50 bigrams
(when ranked according to information gain); the size of
the bigrams proportional to the logarithm of the normalised
information gain. Note that bigrams such as “live wallpa-
per”, “wallpaper on”, and “some ads” are mostly present in
spam whereas bigrams such as “follow us”, “to play” and “on
twitter” are popular in non-spam.

5.2 Checkpoint S2 - Does the app description con-
tain too much details, incoherent text, or unre-
lated text?

We use writing style related “stylometry” features to map
this checkpoint to a set of features anticipating spam and
non-spam apps might have a different writing style. We
used the 16 features listed in Table 6 for this checkpoint.

For characterisation, we select features using the greedy
forward feature selection in wrapper method [34]. We use

3https://evernote.com
4http://www.tictoc.net
5http://www.saavn.com
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Figure 6: Top-50 bigrams differentiating Spam and Top-1x

Table 6: Features associated with Checkpoint S2

Feature

1 Total number of characters in the description
2 Total number of words in the description
3 Total number of sentences in the description
4 Average word length
5 Average sentence length
6 Percentage of upper case characters
7 Percentage of punctuations
8 Percentages of numeric characters
9 Percentage of non-alphabet characters
10 Percentage of common English words [8]
11 Percentage of personal pronouns [8]
12 Percentage of emotional words [39]
13 Percentage of misspelled words [58]
14 Percentage of words with alphabet and numeric characters
15 Automatic readability index (AR) [54]
16 Flesch readability score (FR) [17]

a decision tree classifier with maximum depth 10 and the
feature subset was selected such that the classifier opti-
mises the performance metric asymmetric F-Measure, Fβ =
(1 + β2). precision.recall

(β2.precision)+recall
, with β = 0.5. This metric was

used since in spam app detection, precision is more impor-
tant than recall [55]. This process identified the Total num-
ber of words in the description, Total number of sentences in
the description, Percentages of numeric characters, Percent-
age of non-alphabet characters, and Percentage of common
English words as the most discriminative features.

Figures 5a shows the CDF of the total number of words
in the app description. Spam apps tend to have less wordy
app descriptions than non-spam apps. For instance, nearly
30% of the spam apps have less than 100 words whereas ap-
proximately only 15% top-1x apps and top-2x apps have less
than 100 words. As we inject more and more apps of lower
popularity the difference diminishes. Figure 5b presents the
CDF of the percentage of common English words [8] in the
app description. It illustrates that spam apps typically use
fewer common English words compared to non-spam apps.

5.3 Checkpoint S3 - Does the app description con-
tain a noticeable repetition of words or key-
words?

We quantify this checkpoint using the vocabulary richness
(VR)=Number of unique words

Total number of words
metric. Figure 7 shows the CDF

of the VR measure. We expected spam apps to have low VR
due to repetition of keywords. However, we observe this only
in a limited number of cases. According to Figure 7, if VR
is less than 0.3, an app is only marginally more likely to be
spam. Perhaps the most surprising finding is that the apps
with VR close to 1 are more likely to be spam. 10% of the
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Figure 5: Example features associated with Checkpoint S2
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Figure 7: Vocabulary Richness
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Figure 8: Mentioning popular app names

spam apps had VR over 0.9 and none of the non-spam apps
had such high VR values. When we manually checked these
spam apps we found that they had terse app descriptions.
We showed earlier that apps with shorter description are
more likely to be spam under checkpoint S2.

5.4 Checkpoint S4 - Does the app description con-
tain unrelated keywords or references?

Inserting unrelated keywords such that an app would ap-
pear in popular search results is a common spamming tech-
nique. Since the topics of the apps can vary significantly it
is difficult to find when the terms included in the description
are actually related to the functionality. In this study, we fo-
cussed on a specific strategy the developers might use, that
is mentioning the names of the popular applications with the
hope of appearing in the search results for these applications.
For each app we calculated the number of mentionings of the
top 100 popular app names in the app’s description.

Figure 8a shows the distribution of the number of times
the name of top-100 apps appear in the description. Some-
what surprisingly, we found that only 20% of the spam apps
had more than one mention of popular apps, whereas 40%–
60% of the top-kx apps had more than a single mention of
popular apps. On investigation, we find that many top-kx
apps have social networking interfaces and fan pages and as
a result they mention the names of popular social network-
ing apps. This is evident in Figure 6 as well where Twitter or
Facebook are mentioned mostly in non-spam apps. To sum-
marise, presence of social sharing features or availability of
fan pages can be used to identify non spam apps.

Next, we consider the sum of the tf-idf weights of the top-
100 app names. This feature attempts to reduce the effect
of highly popular apps. For example, Facebook can have a
high frequency because of its sharing capability and many

apps might refer it. However, if an app refers to another app
which is not as popular as Facebook, such as reference to pop-
ular games, it indicates a likelihood of it being a spam app.
To discount the effect of the commonly available app names,
we used the sum of tf-idf weights as a feature. For a given
dataset let tfik where i = 1 : 100 be the number of times the
app name of ith app (ni) in top-100 apps appear in an app
description of app k (ak). Then we define IDFi for ith app in
top-100 apps as, IDFi = N

log(1+|{ni∈ak}|)
∀k. Then feature

tf − idf(k) for kth app is, tf − idf(k) =
∑i=100
i=1 tfik . IDFi.

The calculation above is dataset dependent. Despite this,
as Figures 8b shows, the CDF of top-1x dataset and the
results still indicates that if popular app names are found in
the app description, the app tends to be non spam rather
than spam. We repeated the same with top-1000 app names
and found that the results were similar.

5.5 Checkpoint S5 - Does the app description con-
tain excessive references to other applications
from the same developer?

We use the number of times a developer’s other app
names appear as the feature corresponding to this check-
point. However, none of the cases marked by the reviewers
as matching checkpoint S5 satisfied this feature because the
description contained links to the applications rather than
the app names and only 10 spam apps satisfied this feature
(cf. Table 5). We do not use checkpoint S5 in our classifier.

5.6 Checkpoint S6 - Does the developer have multi-
ple apps with approximately the same descrip-
tion?

For this checkpoint, for each app we considered the fol-
lowing features: (i) The total number of other apps the de-
veloper has, (ii) The total number of apps with an English



language description which can be used to measure descrip-
tions similarity and (iii) The number of other apps from the
same developer having a description cosine similarity(s), of
over 60%, 70%, 80% and 90%.

To calculate the cosine similarity we first preprocess the
app description text by converting the characters to lower
case and removing punctuation symbols. Then we represent
each document as a word frequency vector and calculate the
cosine similarity between the two documents a and b as,
Cos(a,b) = a.b

||a|| ||b|| .

We observe that the features based on the similarity be-
tween app descriptions are the most discriminative. As ex-
amples, Figures 9a and 9b respectively show the CDF of
number of apps with s over 60% and 90% by the same de-
veloper.

Figure 9a shows that only about 10%–15% of the non-
spam apps have more than 5 other apps from the same de-
veloper with over 60% of description similarity. However,
approximately 27% of the spam apps have more than 5 apps
with over 60% of description similarity. This difference be-
comes more evident when the number of apps from the same
developer with over 90% description similarity is considered,
indicating that spam apps tend to have multiple clones with
similar app descriptions.
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Figure 9: Similarity with developer’s other apps

5.7 Checkpoint S7 - Does the app identifier (ap-
pid) make sense and have some relevance to
the functionality of the application or does it
appear to be auto generated?

Every Android app has an app identifier (appid), which
is used to uniquely identify the app in Google Play Store.
Appid follows the Java package naming convention [31] and
differs from the app name which is visible to the users. For
example, for the Facebook Android app, the app name is
Facebook whereas the appid is com.facebook.katana

Table 7 shows the features derived from the appid. We
applied the feature selection method noted in Section 5.2 to
identify the most discriminative features (Number of words,
Average word length, Percentage of bigrams with 2 non-
letters).

In Figure 10a we show the CDF of the number of words
in the appid. The spam apps tend to have more words com-
pared to non-spam apps. For example, 15% of the spam
apps had more than 5 words in the appid where as only 5%
of the non-spam had the same. Figure 10b shows the CDF
of the average word length of a word in appid. For 10% of
the spam apps the average word length is higher than 10
and it was so only for 2%–3% of the non-spam apps.

Figure 10c shows the percentage of non-letter bigrams
(e.g., “01”, “8 ”) among all character bigrams that can be
generated from the appid. None of the non-spam apps had
more 20% of non-letter bigrams in the appid, whereas about

Table 7: Features associated with Checkpoint S7

Feature

1 Number of characters
2 Number of words
3 Average word length
4 Percentage of of non-letter characters to total characters
5 Percentage of upper case characters to total letter characters
6 Presence of parts of app name in appid
7 Percentage of bigrams with 1 non-letter to total bigrams
8 Percentage of bigrams with 2 non-letters to total bigrams
9 Percentage of bigrams with 1 or 2 non-letters to total bigrams
10 Percentage of trigrams with 1 non-letter to total trigrams
11 Percentage of trigrams with 2 non-letters to total trigrams
12 Percentage of trigrams with 3 non-letter to total trigrams
13 Percentage of trigrams with 1, 2 or 3 non-letters to total tri-

grams

5% of the spam apps had more than 20% of non-letter bi-
grams. Therefore, if an appid contains over 20% of non-
letter bigrams out of all possible bigrams that can be gen-
erated, that app is more likely to be spam than non-spam.

5.8 Other Metadata
In addition to the features derived from the checkpoints,

we added the metadata related features listed on Table 8.
Figure 11 shows the app category distribution in the spam

and the top-1x categories. We note that approximately 42%
of the spam apps belong to the categories Personalisation
and Entertainment. We found a negligibly small number of
spam apps in the categories Communication, Photography,
Racing, Social, Travel, and Weather. Moreover, for cate-
gories Arcade, Tools, and Casual, the percentage of spam is
significantly less than the percentage of non-spam. Qualita-
tively similar observations hold for these other top-kx sets.

Figure 12a shows the CDF of the length of the app name.
Spam apps tend to have longer names. For example, 40%
of the spam apps had more than 25 characters in the app
name. Only 20% of the non-spam apps had more than 25
characters in their app names. Figures 12b shows the CDF
of the size of the app in kilobytes. Spam apps tend to have
a high probability of having a size in some specific ranges.
For example if the size of the app is very low those apps are
more likely to be non-spam. For example, 30% of the top-
kx apps were less than 100KB in size and the corresponding
percentage of spam apps is almost zero. Almost all the spam
apps were having sizes less than 30MB whereas 10%–15% of
the top-kx apps were more than 30MB in size. CDF of the
spam app shows a sharp rise between 1000KB and 3000KB
indicating there are more apps in that size range.

Table 9 shows the external information related features.
For example, if a link to a developer web site or a privacy
policy is given the app is more likely to be non-spam.

Table 8: Features associated with other app metadata

Feature Feature

1 App category 5 Developer’s website available
2 Price 6 Developer’s website reachable
3 Length of app name 7 Developer’s email available
4 Size of the app (KB) 8 Privacy policy available

6. EVALUATION

6.1 Classifier Performance
We build a binary classifier based on the Adaptive Boost

algorithm [18] to detect whether or not a given app is spam.
We use the spam apps as positives and apps from a top-kx



 0

 0.2

 0.4

 0.6

 0.8

 1

 2  4  6  8  10  12

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

No of words in appid

Spam
Top-1x
Top-2x
Top-4x
Top-8x

Top-16x
Top-32x

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

Average word length appid

Spam
Top-1x
Top-2x
Top-4x
Top-8x

Top-16x
Top-32x

(b)

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0  0.2  0.4  0.6  0.8

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

Percentage of 2 non-letters to total bigrams

Spam
Top-1x
Top-2x
Top-4x
Top-8x

Top-16x
Top-32x

(c)

Figure 10: Example features associated with Checkpoint S7
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Figure 12: Features associated with other app metadata

Table 9: Availability of developer’s external information

Spam top
1x

top
2x

top
4x

top
8x

top
16x

top
32x

Website availa. 57% 93% 94% 93% 91% 89% 86%
Website reacha. 93% 98% 97% 97% 96% 96% 95%
Email availa. 99% 84% 89% 91% 93% 94% 95%
Priv. policy availa. 9% 56% 50% 48% 38% 32% 26%

set as negatives. Each app is represented by a vector of all
the features listed in Section 5. The classifier is trained using
80% of the data and the remaining 20% of the data is used
for testing. We repeat this experiment for k = 1, 2, 4, · · · , 32.

Some of the features discussed in Section 5 depend on
the other apps in the dataset rather than on the metadata
of the individual apps. For such cases we calculate the fea-
tures based only on the training set to avoid any information
propagation from the training to the testing set that would
artificially inflate the performance of the classifier. For ex-
ample, when extracting the bigrams (and trigrams) that are
popular in at least 10% of the apps, only spam and non-
spam apps from the training set are used. This vocabulary
is then used to generate feature values for individual apps
in both training and testing sets.

Decision trees with a maximum depth of 5 are used as
the weak classifiers in the Adaptive Boost classifier6 and we
performed 500 iterations of the algorithm. Table 10 sum-
marises the result. Our classifiers, while varying the value
of k, have precision over 85% with recall varying between
38%–98%. Notably, when k is small (e.g., when the total
number of non spam apps represents ≤ 2x the number of
spam apps) the classifier achieves up to 95% accuracy.

Recall drops when we increase the number of negative ex-
amples because larger k values implies inclusion of lower
ranked apps as negative (non-spam) examples. Some of
these lower ranked apps, however, exhibit some spam fea-
tures and some may indeed be spam (not yet been detected
as spam). As we have only a small number of spam apps
in the training set, when unlabelled spam apps are added
as non-spam, some spam related features become non-spam
features as the number of apps satisfying that feature is high
in non-spam. As a result recall drops when k increases.

As the number of negative examples increases the clas-
sifier becomes more conservative and correctly identifies a
relatively small portion of spam apps. Nonetheless, even at
k = 32 we achieve a precision over 85%. This is particularly
helpful in spam detection, as marking a non-spam as spam
can be more expensive than missing a spam.

Additionally, if the objective is to build an aggressive clas-
sifier that identifies as much spam as possible so that app
market operators can flag these apps to make a decision
later, a classifier built using smaller number of negative ex-
amples (i.e., k = 1 or k = 2) can be used. For example,
in Table 11 we show the k = 2 classifier’s performance in
the higher order datasets. As can be seen, this classifier
identifies nearly 90% of the spam. However, the precision
goes down as we traverse down the app ranking because of
increased number of false positives. Nonetheless, in reality
some of these apps may actually be spam and as a result
may not exactly be false positives.

Table 10: Classifier Performance

k Precision Recall Accuracy F0.5

1 0.9310 0.9818 0.9545 0.9408
2 0.9533 0.9273 0.9606 0.9480
4 0.9126 0.8545 0.9545 0.9004
8 0.9405 0.7182 0.9636 0.8857
16 0.8833 0.4818 0.9658 0.7571
32 0.8571 0.3818 0.9793 0.6863

6Adaptive Boost algorithm combines the output of set of
weak classifiers to build a strong classifier. Interested readers
may refer to [18].



Table 11: Classifier Performance: k = 2 model

k Precision Recall Accuracy F0.5

4 0.8080 0.9182 0.9400 0.8279
8 0.5549 0.9182 0.9091 0.6026
16 0.2730 0.9182 0.8513 0.3176
32 0.1164 0.9182 0.7862 0.1410

Table 12: Predictions on spam apps in Google Play Store

Dataset Size k = 2 k = 32

Crawl 1 (C1) 6,566 70.37 % 12.89 %
Crawl 2 (C2) 9,184 73.14 % 6.57 %
Crawl 3 (C3) 18,897 72.99 % 6.49 %

Others 180,627 54.59 % 2.69 %

6.2 Applying the Classifier in the Wild
To estimate the volume of potential spam that might be in

Google Play Store, we used two of our classifiers to predict
whether or not an app in our dataset was spam. We selected
a conservative classifier (k = 32) and an aggressive classifier
(k = 2) to obtain a lower and upper bound.

We did this prediction only for the apps which were not
used for training during the classifier evaluation phase to
avoid classifier artificially reporting higher number of spam.
Table 12 shows the results. C1, C2, and C3 are three sets of
removed apps we identified as described in Section 3.1 and
Others are the apps in O which were neither removed nor
belong up to top-32x. Thus Others apps represent the aver-
age apps in Google Play Store and we know that they were
there in the market for at least for 6 months, and by time
we stopped monitoring they were still there in the market.

According to the results, more aggressive classifier (k = 2)
predicted around 70% of the removed apps and 55% of the
other apps to be spam. The conservative classifier (k = 32)
predicted 6%–12% of the removed apps and approximately
2.7% of the other apps as spam; this can be considered as
the lower bound for the percentage of spam apps currently
available in Google Play Store.

7. CONCLUDING REMARKS
In this paper, we propose a classifier for automated de-

tection of spam apps at the time of app submission. Our
app classifier utilises only those features that can be derived
from an app’s metadata available during the publication ap-
proval process. It does not require any human intervention
such as manual inspection of the metadata or manual app
testing. We validate our app classifier, by applying it to a
large dataset of apps collected between December 2013 and
May 2014, by crawling and identifying apps that were re-
moved from Google Play Store. Our results show that it
is possible, to automate the process of detecting spam apps
solely based on apps’ metadata available at the time of pub-
lication and achieve both high precision and recall. In the
remainder of this section, we discuss two challenges that can
be fruitful avenues for future work.

The manual labelling challenge. In this work, we
used a relatively small set (551) of labelled spam apps and
used the top apps from the market place as proxies for non-
spam apps. Our choices were dictated largely by the time
consuming nature of the labelling process as mentioned in
Section 3.2. Obviously, the performance of the classifier can
be improved by increasing the number of labelled spam apps
and further labelling non-spam apps through an extension
of our manual effort.

One approach is to rely on crowdsourcing and recruit app-
savvy users as reviewers. This in turn would require a major
effort of providing individualised guidelines and interactions
with the reviewers, and need to deal with assessment incon-
sistencies due to variable technical expertise. Nonetheless,
from an app market provider perspective, this is a plausi-
ble option to consider. A framework that can quickly assess
whether an app is spam, when the developers submit apps
for approval will enable faster approvals whilst reducing the
number of spam apps in the market.

Alternatively, hybrid schemes can be developed where
apps are flagged during the approval process and removed
based on a limited number of customer complaints. An-
other potential direction is to consider a mix of supervised
and unsupervised learning, known as semi-supervised learn-
ing [4]. The basic idea behind semi-supervised learning is
to use “unlabelled data” to improve the classification model
that was previously being built using only labelled data.
Semi-supervised learning has previously being successfully
applied to real-time traffic classification problems [15].

The classification arms race. It is possible that spam-
mers adapt to the spam app detection framework and change
their strategies according to our selected features to avoid
the detection. The relevant questions in this context are:
i) how frequently should the classifier be retrained? and ii)
how to detect when retraining is required? We believe that
spam app developers will find it challenging and have sig-
nificant cost overheads to adapt their apps to avoid features
that allow discriminating between spam and non-spam apps.
For instance, to avoid the similarity of descriptions of multi-
ple apps, the spammer has to edit the different descriptions
of the apps and to customise each of the app description to
contain sufficient details and coherent text, etc. An impor-
tant direction for future work is to study the longevity of
our classifier. Additionally, we plan to investigate how the
process of identifying retraining requirements can be auto-
mated. Prior work on traffic classification suggests that au-
tomated identification of re-training points is possible using
semi-supervised learning approaches [15].

Future work. Our experiment suggests approximately
2.7% of the apps on Google Play Store are potentially spam.
We plan to apply our rigorous manual labelling process to
a sample of these apps and quantify the accuracy of our
predictions. In this work, we used all the features mentioned
in Section 5 to build the classifier while highlighting most
discriminative features using forward feature selection on a
manual checkpoint basis. Final weights of each features can
be studied further to study the trade off between the number
of features selected and the classifier’s performance. Another
interesting direction is to augment the proposed features
with features extracted from the app binary and investigate
whether the classifier performance can be enhanced.
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