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Abstract. We propose a Stackelberg game model for Moving Target
Defense (MTD) where the defender periodically switches the state of a
security sensitive resource to make it difficult for the attacker to identify
the real configurations of the resource. Our model can incorporate various
information structures. In this work, we focus on the worst-case scenario
from the defender’s perspective where the attacker can observe the previ-
ous configurations used by the defender. This is a reasonable assumption
especially when the attacker is sophisticated and persistent. By formu-
lating the defender’s problem as a Markov Decision Process (MDP), we
prove that the optimal switching strategy has a simple structure and de-
rive an efficient value iteration algorithm to solve the MDP. We further
study the case where the set of feasible switches can be modeled as a
regular graph, where we solve the optimal strategy in an explicit way
and derive various insights about how the node degree, graph size, and
switching cost affect the MTD strategy. These observations are further
verified on random graphs empirically.

1 Introduction

In cybersecurity, it is often the case that an attacker knows more about a defender
than the defender knows the attacker, which is one of the major obstacles to
achieve effective defense. Such information asymmetry is a consequence of time
asymmetry, as the attacker often has abundant time to observe the defender’s
behavior while remaining stealthy. This is especially the case for incentive-driven
targeted attacks, such as Advanced Persistent Threats (APT). These attacks are
highly motivated and persistent in achieving their goals. To this end, they may
intentionally act in a “low-and-slow” fashion to avoid immediate detection [1].

Recognizing the shortage of traditional cyber-defense techniques in the face of
advanced attacks, Moving Target Defense (MTD) has been recently proposed as
a promising approach to reverse the asymmetry in information or time in cyber-
security [2]. MTD is built upon the key observation that to achieve a successful



compromise, an attacker requires knowledge about the system configuration to
identify vulnerabilities that he is able to exploit. However, the system configura-
tion is under the control of the defender, and multiple configurations may serve
the system’s goal, albeit with different performance security tradeoffs. Thus,
the defender can periodically switch between configurations to increase the at-
tacker’s uncertainty, which in turn increases attack cost/complexity and reduces
the chance of a successful exploit in a given amount of time. This high level idea
has been applied to exploit the diversity and randomness in various domains,
including computer networks [3], system platforms [4], runtime environment,
software code, and data representation [5].

Early work on MTD mainly focus on empirically studies of domain specific
dynamic configuration techniques. More recently, decision and game theoretic
approaches have been proposed to reason about the incentives and strategic
behavior in cybersecurity to help derive more efficient MTD strategies. In par-
ticular, a stochastic game model for MTD is proposed in [6], where in each round,
each player takes an action and receives a payoff depending on their joint actions
and the current system state, and the latter evolves according to the joint actions
and a Markov model. Although this model is general enough to capture various
types of configurations and information structures and can be used to derive
adaptive MTD strategies, solutions obtained are often complicated, making it
difficult to derive useful insights for practical deployment of MTD. Moreover,
existing stochastic game models for MTD focus on Nash Equilibrium based so-
lutions and do not exploit the power of commitment for the defender. To this
end, Bayesian Stackelberg games (BSG) has been adapted to MTD recently [7].
In this model, before the game starts, the defender commits to a mixed strategy
– a probability distribution over configurations – and declare it to the attacker,
assuming the latter will adopt a best response to this randomized strategy. Note
that, the defender’s mixed strategy is independent of real time system states,
so does the attacker’s response. Thus, a BSG can be considered as a repeated
game without dynamic feedback. Due to its simplicity, efficient algorithms have
been developed to solve BSG in various settings, with broad applications in both
physical and cyber security scenarios [8]. However, a direct application of BSG
to MTD as in [8] ignores the fact that both the attacker and the defender can
adapt their strategies according to the observations obtained during the game.

In this paper, we propose a non-zero-sum Stackelberg game model for MTD
that incorporates real time states and observations. Specifically, we model the
defender’s strategy as a set of transition probabilities between configurations.
Before the game starts, the defender declares its strategy to the attacker. Both
players take rounds to make decisions and moves. In the beginning of each round,
the defender moves from the current configuration to a new one (or stay on the
current one) according to the transition probabilities. Note that this is more
general than [8], where the defender picks the next configuration independently
of the current one. Our approach also allows us to model the long-term switching
cost in a more accurate way. Moreover, we assume that the attacker can get some
feedback during the game. This is especially true for advanced attacks. In this



paper, we consider the extreme case where the attacker knows the previous
configuration used by the defender in the beginning of each round (even if it
fails in the previous round). This is the worst-case scenario from the defender’s
perspective. However, our model can be readily extended to settings where the
attacker gets partial feedback or no feedback.

To derive the optimal MTD strategy for the defender, we model the defender’s
problem as a Markov decision process (MDP). Under the assumptions that all the
configurations have the same value to the defender and require the same amount
of effort to compromise for the attacker, we prove that the optimal stationary
strategy has a simple structure. Based on this observation, we derive efficient
value iteration algorithm to solve the MDP. We further study the case where
the switching cost between any pair of configurations is either a unit or infinite.
In this case, the configuration space can be modeled as a directed graph. When
the graph is regular, we derive the optimal strategy in an explicit way and prove
that it is always better to have a higher degree in the graph, but the marginal
improvement decreases when the diversity increases. This observation is further
verified on random graphs empirically.

We have made the following contributions in this paper

– We propose a Stackelberg game model for moving target defense that com-
bines Markovian defense strategies and realtime feedback.

– We model the defender’s problem as a Markov decision process and derive
efficient algorithms based on some unique structural properties of the game.

– We derive various insights on efficient MTD strategies using our models. In
particular, we study how the diversity of the configuration space affects the
effectiveness of MTD, both analytically and empirically.

The remainder of the paper is organized as follows. We introduce the related
work in Section 2 and propose the game model in Section 3. Detailed solutions
for optimal strategies and a special case study are presented in Section 4. The
performance of optimal strategies under different scenarios are evaluated via
numerical study in Section 5. Finally, we conclude the paper in Section 6.

2 Related Work

As a promising approach to achieve proactive defense, MTD techniques have
been investigated in various cybersecurity scenarios [2,3,4,5]. A fundamental
challenge of large scale deployment of MTD, however, is to strike a balance
between the risk of being attacked and the extra cost introduced by MTD in-
cluding the extra resource added, the migration costs and the time overhead. To
this end, game theory provides a proper framework to analyze and evaluate the
key tradeoffs involved in MTD [9].

In this paper, we propose a non-zero-sum Stackelberg game model for MTD
where the defender plays as the leader and the attacker plays as the follower and
both players make their decision sequentially. Sequential decision making with
limited feedback naturally models many security scenarios. Recently, inspired



by poker games, an efficient sub-optimal solution for a class of normal-form
games with sequential strategies is proposed in [10]. However, the solution is
only applicable to zero-sum games, while the MTD game is typically non-zero-
sum as the defender usually has a non-zero migration cost.

Stackelberg game models have been extensively studied in cybersecurity as
they capture the fact that a targeted attacker may observe a finite number
of defender’s actions and then estimate the defender’s strategy [11]. This is
especially true for an APT attacker. By exercising the power of commitment,
the defender (leader) can take advantages of being observed to alert the attacker.

In the context of MTD, several Stackelberg game models have been pro-
posed [7,12,8]. In particular, a Stackelberg game is proposed for dynamic plat-
form defense against uncertain threat types [7]. However, this work does not
consider the moving cost for platform transitions, which should be taken into
consideration on strategy design. A Stackelberg game for MTD against stealthy
attacks is proposed in [12], where it is shown that MTD can be further improved
through strategic information disclosure. One limitation of this work is that the
authors only consider a one-round game.

More recently, a Bayesian Stackelberg Game (BSG) model is proposed for
MTD in Web applications [8], where multiple types of attackers with different
expertise and preferences are considered. Both theoretical analysis and exper-
imental studies are given in [8]. However, to adapt the classic BSG model to
MTD, the defender’s strategy is defined as a probability distribution over states
and is i.i.d. over rounds, which is a strong limitation. In contrast, we defined the
defender’s strategy as the set of transition probabilities between states. Such a
Markovian strategy is not only more natural in the context of MTD, but also
allows us to incorporate real time feedback available to the players.

Our model is similar in spirit to stochastic game models [6] and recent Markov
models for MTD [13,14]. However, existing stochastic game models for MTD fo-
cus on Nash Equilibria instead of Stackelberg Equilibria. Moreover, solutions
to stochastic games are often complicated and hard to interpret. More recently,
several Markov models for MTD have been proposed [13,14]. Due to the com-
plexity of these models, only preliminary analytic results for some special cases
are provided. In particular, these work focus on analyzing the expected time
needed for the attacker to compromise the resource under some simple defense
strategies.

3 Game model

In this section, we formally present our MTD game model. There are two players
in the game who fight for a security sensitive resource. The one who protects the
resource is called the defender while the one who tries to comprise the resource is
called the attacker. Below we discuss each element of the game model in details.

Resource: We consider a single resource with N features, where for the i-th
feature, there are mi possible configurations that can be chosen by the defender,
denoted by ci with |ci| = mi. We define the state of the resource at any time as



the set of configurations of all the features, s = {ci ∈ ci, i = 1, 2, · · · , N}. For
example, the resource can represent a critical cyber system with features such
as its processor architecture, operating system, storage system, virtual machine
instances, network address space, and communication channels, etc. Each fea-
ture has several possible configurations such as Windows/Linux for operating
system, a range of IP addresses for network address space and so on. Moreover,
the concept of resource is not limited to the cyber world. It can also represent
physical entities such as military units, vulnerable species, and antiques.

We define a state as valid if it is achievable by the defender and the resource
can function properly under that state. Although the maximum possible states
of the resource can be

∏N
i=1mi, typically only a small number of them are valid.

For instance, consider a mobile app that with two features:
{

program language ∈
{Objective-C, Java, JavaScript}, operating system ∈ {iOS,Android}

}
. The max-

imum number of states for the app is 6. However, since a Java based app is
incompatible with iOS, and an Objective-C based app is incompatible with
Android, there are only 4 valid states. We denote the set of valid states as
V = {1, 2, · · · , |V |}.

Defender: To protect the resource, the defender periodically switches the state
to make it difficult for the attacker to identify the real state of the resource. A
switch is achieved by changing the configurations of one or more features and is
subject to a cost. Note that not all the switches between valid states are feasible
as it can be extremely difficult or even impossible to switch between two valid
states in some cases.

Attacker: We assume that the attacker can potentially attack all the valid states
of the resource. Note that if the defender knows that the attacker does not have
technical expertise to attack certain states, then the defender should always keep
the resource in those states. We leave the case where the defender is uncertain
about the attacker’s capability in the future work.

Before each attack, the attacker selects an attack scheme that targets at a
specific configuration combination (state) of the resource. We assume that the
attacker can compromise the resource successfully if and only if the selected
attack scheme matches the real state of the resource. Due to this 1-1 correspon-
dence, we simply define the attacker’s action space as the set of valid states V .
We further assume that the attacker can only observe and exploit the state of
the resource but cannot modify it through successful attacks. That is, the state
of the resource is completely under the control of the defender.

The rules of the MTD game are introduced below.

1. The game is a turn based Stackelberg Game in which the defender plays as
the leader and the attacker plays as the follower.

2. The game starts at turn t = 0 with the resource initially in state s0 ∈ V
(chosen by the defender), and lasts for a possibly infinite number of turns T .

3. Each turn begins when the defender takes action. We assume that the de-
fender moves periodically and normalize the length of each turn to a unit.



4. At the beginning of turn t, the defender switches the resource from st to
st+1 with a switching cost cstst+1

, and the attacker selects one state at ∈ V
to attack. We assume that the attacker attacks once each turn. Moreover,
both switching and attacking are effective instantly.

5. If the attacker is successful at turn t (that is, if at = st+1), he obtains a
reward of 1, while the defender incurs a loss of 1 (not including the switching
cost). Otherwise, there is no reward obtained or loss incurred.

A Graphical View: We can model the set of states and state switches as a
directed graph. For example, Fig. 1a shows a fully connected graph with the set
of states as nodes and state switches as links. We then eliminate some invalid
states and invalid switches to get Fig. 1b. The defender chooses one node as
initial state s0 at the beginning of the game. The attacker selects one node at
as the target in each turn. Every valid state has a self loop meaning that that
no switch is always one option for the defender. We define the outdegree (or
degree for short) of a node as the number of outgoing links from the node, or
equivalently, the number of states that can be switched to from the state. We
define the neighbor of state s as a set N(s) = {s′ ∈ V |css′ 6= ∞}, ∀s ∈ V . The
degree of node s is equal to |N(s)|.

The graph can be uniquely determined by V and a matrix C = {css′}|V |×|V |,
where css′ represents the switching cost between two states s and s′. There is
no link between s and s′ if css′ =∞, and css′ = 0 if s′ = s. We expect that the
switching costs can be learned from history data and domain knowledge [8].

Consider again the example given above. There are four valid states corre-
sponding to four nodes. Let nodes 1, 2, 3 and 4 represent {Objective-C, iOS},
{JavaScript, iOS}, {JavaScript,Android} and {Java,Android}, respectively. An
example of the cost matrix C and the corresponding graph are given in Fig. 2. In
this example, if the current state of the resource is at node 1, the defender may
keep the state at node 1 without any expense, or switch the state from node 1
to node 2 or node 3 with a switching cost 0.8 and 1.5, respectively. However, the
defender cannot switch the resource from node 1 to node 4 in one step as there
is no direct link between them.

C =


0 0.8 1.5 ∞

0.7 0 0.6 1.6
1.3 0.5 0 0.4
∞ 1.2 0.4 0


1: {Objective-C, iOS} 2: {JavaScript, iOS}

4: {Java, Andriod} 3: {JavaScript, Andriod}

Fig. 2: A resource with 4 states and 14 switch pairs

3.1 Attacker’s Strategy

We define the attacker’s strategy and payoff in this subsection. In order to decide
at, the attacker forms a prior belief qt = {qs | s ∈ V } regarding the probability
distribution of states according to the feedback obtained during the game and
the previous actions (to be discussed). For the sake of simplicity, we assume that
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(b) A subgraph after elimination of
invalid states and valid links

Fig. 1: All the possible switch pairs modeled by a graph

the attacking cost is identical for all the states and it is always beneficial to
attack. Thus, the attacker always selects at = argmaxs∈V qs at turn t.

3.2 Defender’s Strategy and Cost

The defender’s objective is to strike a balance between the loss from attacks and
the cost of switching states. To this end, the defender commits to a strategy and
declares it to the attacker before the game starts. As in Bayesian Stackelberg
Games, the defender should adopt a randomized strategy taking into account the
possible response of the attacker. In this work, we define the defender’s strategy
as a set of transition probabilities P = {pss′}|V |×|V |, where pss′ is the probability
of switching the resource to s′ given that the current state is s. The defender
commits to an optimal P in the beginning and then samples the state in each
turn according to P . We require that pss′ = 0 if css′ = ∞ and

∑
s′∈V pss′ = 1,

∀s ∈ V . Given a pair of states st, st+1, the defender’s cost at turn t can be then
defined as follows:

c(st, st+1) = 1{at=st+1} + cstst+1
(1)

The first term in (1) represents the loss from being attacked where 1{at=st+1} = 1
if at = st+1 and is 0 otherwise. The second term depicts the switching cost.

3.3 Feedback During the Game

The main purpose of MTD is to reverse information asymmetry. Thus, it is
critical to define the information structure of the game. We assume that both
players know the defender’s strategy and all the information about the resource
such as V and C before the game starts. However, the players have different
feedback during the game:



– Defender: As the leader of Stackelberg game, the defender declares her
strategy P and initial state s0 to the public. The defender would not change
P and C during the game. In each turn, the defender knows if the attacker
has a successful attack or not.

– Attacker: As the follower of Stackelberg game, the attacker knows P and s0.
After attacking at any turn t, the attacker knows if the attack is successful or
not. If the attack is successful, the attacker knows st immediately. Otherwise,
we assume that the attacker spends this turn to learn st and will know st at
the end of this turn. In both cases, qt = pst , where pst represents the st-th
row in P . This is the worst-case scenario from the defender’s perspective. We
will leave the case where attacker only gets partial feedback or no feedback
to the future work.

3.4 Defender’s Problem as a Markov Decision Process

Given the feedback structure defined above, we have at = argmaxs∈V psts for
any t. Hence, the defender’s expected loss at turn t is:

E
[
1{at=st+1}

]
= E

[
1{st+1=argmaxs∈V psts}

]
= maxpst (2)

Therefore, given P and st, the defender’s expected cost at turn t is

cP (st) , Est+1 [c(st, st+1)]

= maxpst +
∑

st+1∈N(st)

pstst+1
cstst+1

(3)

In this work, we consider the defender’s objective to be minimizing its long-
term discounted cost defined as

∑∞
t=0 α

tc(st) where α ∈ (0, 1) is the discounted
factor. One interpretation of α is that the defender would prefer to minimize
the cost at current turn rather than future turns because she is not sure if the
attacker will attack at the next turn. A higher discount factor indicates that the
defender is more patient.

For a given P and an initial state s0, the state of the resource involves ac-
cording to a Markov chain with V as its state space and P as the transition
probabilities. Thus, the defender’s problem can be considered as a discounted
Markov decision problem where the defender’s strategy and the transition prob-
abilities coincide. We can rewrite the defender’s long-term cost with the initial
state s0 = s as follows:

CP (s) =

∞∑
t=0

cP (st)

=cP (s) + α
∑

s′∈N(s)

pss′E

[ ∞∑
t=0

αtc(st+1, st+2) | s1 = s′

]

=cP (s) + α
∑

s′∈N(s)

pss′CP (s′) (4)



3.5 Discussion about the MTD Model

In the BSG model for MTD in [8], the defender’s strategy is defined as a prob-
ability distribution x = {xs | ∀s ∈ V } over states, and the expected switching
cost is defined as

∑
s,s′∈V css′xsxs′ . This model implies that at each turn, the

defender samples the next state independent of the current state of the resource.
In contrast, we define the defender’s strategy as a set of transition probabilities
between states. Our choice is not only more natural for MTD, but also consid-
ers a richer set of defense strategies. Note that different transition probability
matrices may lead to the same stationary distribution of states, but with differ-
ent switching costs, which cannot be distinguished using the formulation in [8].
Our approach provides a more accurate definition of the defender’s real cost.
We show that by modeling the problem as a MDP, we can still find the optimal
defense strategy in this more general setting. Moreover, the MDP can be solved
in an explicit way under certain system settings, which provides useful insights
to the design of MTD strategies, as we discuss below.

4 Defender’s Optimal Strategy and Cost

In this section, we solve the defender’s optimal strategy as well as the optimal
cost under different scenarios. Recall that the defender’s problem is to find a
strategy such that the cost in (4) is minimized from any initial state. Let C∗(s)
denote the defender’s optimal cost with an initial state s, where

C∗(s) = min
P

CP (s) (5)

According to the theory of MDP, it is possible to find an optimal strategy
P ∗ that simultaneously optimizes the cost for any initial state s ∈ V ; that is,

P ∗ = argminPCP (s),∀s ∈ V (6)

4.1 Algorithms for Solving the MDP

According to (3) and (4), we expand CP (s) in (5) and rewrite C∗(s) in the
following form,

C∗(s) = min
P

maxps +
∑

s′∈N(s)

(
css′ + αCP (s′)

)
pss′

 (7)

In order to solve (7), we employ the standard value iteration algorithm to find
the defender’s optimal cost as well as the optimal strategy. Algorithm 1 shows
the value iteration algorithm, where Cτ (s) is the cost at state s in the τ−th
iteration. Initially, the value of Cτ (s) is set to 0 for all s. In each iteration, the
algorithm updates Cτ (s) by finding the optimal strategy that solves (7) using
the costs in the previous iteration (step 4), which involves solving a Min-Max
problem.



Although the value iteration algorithm is standard, solving the Min-Max
problem in step 4 of Algorithm 1 directly is computationally expensive. Note
that the decision variables pss′ can take any real value in [0, 1]. One way to
solve the problem is to approximate the search space [0, 1] by a discrete set
{0, 1

M , 2
M , ..., M−1M , 1} where M is a parameter. The search space over all the

neighbors of s has a size of O(M |V |). A suboptimal solution can be obtained by
searching over this space, which is expensive when M and |V | are large. Rather
than solving it directly, we first derive some properties of the MDP, which helps
reduce the computational complexity significantly.

Algorithm 1 Value Iteration Algorithm for the MTD game

Input: V , C, α, ε.
Output: P ∗, C∗(s).
1: Set τ = 0, Cτ (s) = 0, ∀s ∈ V ; {Cτ (s) is the cost at state s in the τ−th iteration}
2: repeat
3: τ = τ + 1;

4: p∗s = argminps

[
maxps +

∑
s′∈N(s) pss′

(
css′ + αCτ−1(s′)

)]
, ∀s ∈ V ;

5: Cτ (s) = CP∗(s), ∀s ∈ V ;
6: until

∑
s∈V |C

τ (s)− Cτ−1(s)| ≤ ε
7: C∗(s) = Cτ (s), ∀s ∈ V

Before presenting the results, we first give some definitions. Fix a state s.
For any s′ ∈ N(s), let θs′ = css′ +αCτ−1(s′) denote the coefficient of pss′ in the
second term of the Min-Max problem in the τ -th iteration. Let s1, s2, ..., sN(s)

denote the set of neighbors of s sorted according to their θ values nondecreasingly.
We abuse the notation a little bit and let θi = θsi .

The following lemma shows that the Min-Max problem can be simplified as
a minimization problem.

Lemma 1. Let P be the optimal solution to the Min-Max problem in the τ -th
iteration of Algorithm 1. We have pss1 = maxps.

Proof. Assume pss1 < ps. Let pssi = maxps for some si ∈ N(s) and pssi =
pss1 + ε1 for some ε1 > 0. By the definition of s1, there is ε2 ≥ 0 such that
θi = θ1 + ε2. From the definition of P and si, we have

Cτ (s) = pssi +
∑

sj∈N(s)

pssjθj

= pss1θ1 + pssi (1 + θi) +
∑

sj∈N(s)\{s1,si}

pssjθj

= pss1θ1 + (pss1 + ε1) (1 + θ1 + ε2) +
∑

sj∈N(s)\{s1,si}

pssjθj

> (pss1 + ε1)(1 + θ1) + pss1(θ1 + ε2) +
∑

sj∈N(s)\{s1,si}

pssjθj

= pssi(1 + θ1) + pss1θi +
∑

sj∈N(s)\{s1,si}

pssjθj (8)



The value in (8) can be obtained by a strategy P ′ that switches the values of
pss1 and pssi while keeping everything else in P unchanged. This contradicts the
optimality of P .

According to Lemma 1, the Min-Max problem in the τ -th iteration can be
simplified as follows:

Cτ (s) = min
P

pss1 +
∑

sj∈N(s)

θjpssj


= min

P

(1 + θ1) pss1 +
∑

sj∈N(s)\{s1}

θjpssj

 (9)

The following lemma gives a further relation among the elements in the optimal
solution to the Min-Max problem.

Lemma 2. Let P be the optimal solution to the Min-Max problem in the τ -th
iteration of Algorithm 1. If i < j, then pssi ≥ pssj ∀si, sj ∈ N(s).

Proof. Assume pssi < pssj for some i < j. Then we have pssj = pssi + ε for some
ε > 0. It follows that

Cτ (s) = maxps +
∑

sk∈N(s)

θkpssk

= maxps + θipssi + θj(pssi + ε) +
∑

sk∈N(s)\{si,sj}

θkpssk

> maxps + θi(pssi + ε) + θjpssi +
∑

sk∈N(s)\{si,sj}

θkpssk (10)

The value in (10) can be obtained by a strategy P ′ that switches pssi and pssj
while keeping everything else in P unchanged. This contradicts the optimality
of P .

From Lemma 1 and Lemma 2, we can obtain a complete characterization
of the optimal solution to the Min-Max problem, as stated in the following
proposition.

Proposition 1. Let P be the optimal solution to the Min-Max problem in the
τ -th iteration of Algorithm 1. Let k < |N(s)| be the smallest positive integer such

that θk+1 >
1+

∑k+1
i=1 θi

k+1 , then we have pssi = 1
k , ∀i ≤ k and pssi = 0,∀i > k. If

no such k exists, pssi = 1
|N(s)| , ∀i ∈ N(s).

Proof. First note that since θ1 < 1 + θ1, we must have k ≥ 1 (if it exists). We
first show that pssi = 0 ∀i > k. Assume pssj = ε > 0 for some j > k. From



Lemma 1, we have

Cτ (s) = pss1 +
∑

sj∈N(s)

θjpssj

≥ pss1 +

k∑
i=1

θipssi + θjε

> pss1 +

k∑
i=1

θipssi +
1 +

∑k
i=1 θi

k + 1
ε

= (pss1 +
ε

k + 1
) +

k∑
i=1

θi(pssi +
ε

k + 1
) (11)

Consider another strategy P ′ where p′ssi = pss1 + ε
k+1 for all i ≤ k and p′ssi = 0

for all i > k. According to (11), a smaller cost (pss1 + ε
k+1 )+

∑k
i=1 θi(pssi + ε

k+1 )
can be obtained by adopting P ′. This contradicts the optimality of Cτ (s).

We then show that pssi = 1
k for all i ≤ k. To this end, we first prove the

following claim: θi ≤ 1 + θ1 for all i ≤ k. We prove the claim by inducion. For
i = 1, it is clear that θ1 ≤ 1 + θ1. Assume the claim is true for all i ≤ m− 1 < k.

We need to show that θm ≤ 1 + θ1. Since θm ≤
1+

∑m
i=1 θi
m , we have (m− 1)θm ≤

1 + θ1 +
∑m−1
i=2 θi ≤ 1 + θ1 + (m − 2)(1 + θ1) = (m − 1)(1 + θ1), which implies

θm ≤ 1 + θ1.
To show that pssi = 1

k for all i ≤ k, it suffices to show that pss1 = 1
k .

Assume CP (s) obtains the minimum value at P ∗ where pss1 >
1
k . Without loss of

generality, assume pss1 > pss2 . Then there exists an ε > 0 such that pss1 − ε ≥ 1
k

and pss1 − ε ≥ pss2 + ε. Consider another strategy P ′′ where p′′ss1 = pss1 − ε,
p′′ss2 = pss2 + ε, p′′ssi = pssi for i ≥ 3. We have

CP ′′(s) = pss1 − ε+ θ1(pss1 − ε) + θ2(pss2 + ε) +

k∑
i=3

θipssi

= CP∗(s)− (1 + θ1 − θ2)ε

< CP∗(s) (12)

where the last inequality follows from the claim above. This contradicts the
optimality of P . Therefore, pss1 = 1

k , which implies that pssi = 1
k for all i ≤ k.

If θk ≤
1+

∑k
i=1 θi
k for all k ≤ |N(s)|, we can use a similar argument as above

to show that CP (s) ≥ pss1 + θ1, where the equality can be achieved by setting
pss1 = 1

|N(s)| , which implies that pssi = 1
k for all i.

Proposition 1 has several important implications. First, each row of the op-
timal P has at most two different values 0 and 1

k , where k is bounded by the
degree of the corresponding node. This implies that the defender may move
the resource to several states with the same switching probability even if their
switching costs are different. Second, depending on the structure of the state



graph, the defender may prefer switching to a state with larger cost or never
switch the resource from one state to another even if there is a link between
them. Third, for any state s, the value of k in the (τ + 1)−th iteration only
depends on the s-th row of C and {Cτ (s)|s ∈ V } from the τ -th iteration. Thus,
the minimization problem in (9) can be easily solved. Forth, according to the
proof of Proposition 1, if θk ≤ 1 + θ1 for ∀k ∈ [1, |N(s)|], then pss1 = 1

|N(s)| .

Otherwise, pss1 = 1
k .

According to the above observations, we can derive an efficient solution to
the step 4 in Algorithm 1, as shown in Algorithm 2.

Algorithm 2 Solving the Min-Max problem in the τ -th iteration of Algorithm 1

Input: V , C, Cτ−1(·), α.
Output: P ∗.
1: for s ∈ V do
2: {s1, s2, ..., s|N|} ← a nondecreasing ordering of s′ ∈ N(S) in terms of css′ +

αCτ−1(s′);
3: θi ← cssi + αCτ−1(si),∀si ∈ N(s);
4: k ← 1;

5: while θk+1 ≤
1+

∑k+1
i=1 θi
k+1

and k < |N(s)| do
6: k ← k + 1
7: end while
8: p∗ssi = 1

k
, for all i ≤ k, p∗ssi = 0, for all i ≥ k + 1;

9: end for

The running time of Algorithm 2 is dominated by sorting the neighbors of
a node according to their θ values. Thus, the complexity of the algorithm is
bounded by O(|V |2 log |V |). This is much faster than the searching approach
with complexity of O(M |V |).

4.2 Solving the MDP in Regular Graphs

In this section, we consider a special case of the MTD game where each state has
K + 1 neighbors (including itself) and the switching costs between two distinct
switchable states have the same value c > 0 as the beginning step. In this case,
the state switching graph becomes a regular graph (with self loops on all the
nodes). Intuitively, the regular graphs are hard to attack since all the vertices
(states) look the same. It will be beneficial for the defender to construct regular
or approximately regular graphs to protect the resource if this hypothesis is
true. We will show that explicit formulas can be obtained for the MDP under
this scenario.

Due to the symmetric nature of the regular graph, it is easy to see that the
defender has the same optimal cost at every state. Let C(K) denote the optimal



cost when each state has K + 1 neighbors. We have

C(K) = maxps +
∑

s′∈N(s)

pss′(css′ + αC(K))

(a)
=pss(1 + αC(K)) +

∑
s′∈N(s)\s

pss′(c+ αC(K)) (13)

where (a) is due to the fact that css + αC(K) = αC(K) < css′ + αC(K) for
any s′ 6= s, which implies that pss is the maximum element in ps according to

Lemma 1. If c > 1, then θ2 = c+αC(K) > 1+αC(K)+c+αC(K)

2 = 1+θ1+θ2
2 . We have

pss = 1 and pss′ = 0 for all s′ 6= s according to Proposition 1, and C(K) = 1
1−α .

In this case, the defender will keep the resource at the original state all the time.

If c ≤ 1, then θk ≤
1+

∑k
i=1 θk
k for all k ≤ K + 1. We have pss′ = 1

K+1 for all
s′ ∈ N(s) according to Proposition 1. In this case, we can solve the value of
C(K) as

C(K) =
1

K + 1
(1 + αC(K)) +

K

1 +K
(c+ αC(K))

⇒ C(K) =
1 +Kc

(1− α)(1 +K)
(14)

Putting the two cases together, we have

C(K) =

{ 1
1−α if c > 1,

1+Kc
(1−α)(1+K) if c ≤ 1.

Assume c ≤ 1 in the rest of this section. It is clearly that C(K) is increasing
with c. Taking the partial derivative of C(K) w.r.t. K, we have

∂C(K)

∂K
= − 1− c

(1− α)(1 +K)2
< 0 (15)

Therefore, C(K) is strictly decreasing with K. Further, we find that C(K) is a
convex function of K by taking the second partial derivative of C(K) w.r.t. K,

∂2C(K)

∂K2
=

1− c
(1− α)(1 +K)3

> 0 (16)

which implies that for larger K, the marginal decrease of C(K) is smaller. We
further notice that C(K) is independent of the number of valid states |V | and total
links in the graph. Hence, adding more states and switching pairs is not always
helpful. For example, in a 8-node regular graph with K = 2, the defender has
an optimal cost of 1+2c

3(1−α) . However, given the same switching cost and discount

factor, the defender has a smaller cost of 1+3c
4(1−α) in a 4-node regular graph with

K = 3.



5 Numerical Results

In this section, we examine our proposed model with numerical study under
different system scenarios and configurations.

5.1 Warm-up Example

We first use a simple example to illustrate the defender’s optimal strategy P ∗

and optimal cost C∗. We consider a resource with n = |V | valid states and
model the valid state switches as an Erdős - Rényi G(n, p) random graph [15],
where every possible link between two distinct states occurs independently with
a probability p ∈ (0, 1).

Fig. 3a shows a small state switching graph sampled from G(10, 0.6) (we also
add self links to all the nodes). The switching costs between any two distinct
connected states follow the uniform distribution U(0, 2) as shown in Fig. 4, and
the discount factor is set to 0.5. Fig. 5 gives the defender’s optimal strategy
P ∗ and optimal cost C∗(s). The s-th row of C∗ represents the optimal cost
with an initial state s. Fig. 3b highlights the optimal strategy P ∗, where from
a current state s, the resource may switch to any of the neighboring states
connected by red links with an equal probability. From the optimal P ∗ given in
Fig. 5, we can make some interesting observations. First, the defender abandons
some switching pairs and only switches the resource to the rest of states with
equal probability. Second, the defender may prefer switching to a state with
larger switching cost. For example, when the resource is currently at state 5, the
probability of switching to state 2 is higher than the probability of switching
state 7, even though c52 > c57 (c52 = 0.39, c57 = 0.30). Third, a state s with
more neighbors does not necessarily has smaller C∗(s). For instance, state 2 has
7 neighbors and state 6 has 9 neighbors, but C∗(2) = 0.8639 < C∗(6) = 1.0798.
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(a) State switching graph
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(b) A graphical view of P ∗

Fig. 3: An example of the MTD game where the state switching graph is sampled from
the Erdős - Rényi random graph G(10, 0.6).
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Fig. 5: The defender’s optimal strategy P ∗ and the corresponding optimal cost C∗(s)

5.2 Evaluation of the Optimal MTD Strategy

We then conduct large scale simulations to evaluate our MTD strategies and
investigate how the structure of the state switching graph affect the defender’s
cost.

We first compare our strategy with two baseline strategies: (1) A simple
uniform random strategy (URS) where the defender switches the resource to each
neighbor of the current state with the same probability. This is the simplest MTD
strategy one can come up with. (2) A simple improvement of the uniform random
strategy (IRS) where the transition probabilities are inversely proportional to
the switching costs. More concretely, we set pss = 1

|N(s)| and ensure that pss′css′

is a constant for all s′ ∈ N(s)\s. The objective is to compare the average cost
over all the states achieved by our algorithm and the two baselines.

The state switching graph is sampled from G(50, 0.1). 100 samples are gen-
erated. We set the discount factor α = 0.5. The switching costs between two
distinct connected nodes follow an uniform distribution U [0, 2a] where a varies
between 0.2 and 1.

Fig. 6 shows the mean average cost over all the random graphs generated.
As we expected, the optimal strategy (OS) has significant better performance
than the two baselines, especially when the mean switching cost becomes larger.
One thing to highlight is that, although URS is the simplest strategy that one
can think of, it may actually perform better than a more complicated strategy
such as IRS in certain scenarios. Hence, one has to be careful when adapting a



heuristic based strategy to MTD. This observation also indicates the importance
of developing optimal strategies for MTD.
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Fig. 6: Mean average cost v.s. mean switching cost

5.3 Impact of Switching Graph Structures

In Section 4.2, we have derived explicit relations between the optimal defense
cost and the structure of the switching graph when the graph is regular. It
is interesting to know if such relations hold in more general settings. In this
section, we conduct simulations to answer this question for random graphs. To
have a fair comparison between regular graphs and random graphs, we set the
switching costs between distinct connected nodes to a constant c in this section.
We consider two scenarios.

We first fix |V | = 128 and the switching cost c = 0.5, and vary the average
degree K of the switching graph, by using different values of p in the G(128, p)
model. We compare this case with a regular graph with the same K. Fig. 7a
gives the mean average costs for the two models. We observe that when the
average degree increases, the defender’s optimal cost follows a similar trend in
both models. In particular, the cost reduces sharply in the small degree regime,
which is consistent with our analysis in Section 4.2. In addition, the defender’s
performance in regular graphs is always better than that in random graphs, es-
pecially when the average degree is small. This can be explained by the convexity
of C(K) over K shown in Section 4.2. More specifically, the degree distribution of
a random graph is more diverse than that of a regular graph with the same av-
erage degree. Due to the convexity of C(K), we have C(K+ε) + C(K−ε) > 2C(K)

(ε is a small positive integer), which implies that a graph where the degree
distribution is more concentrated has better performance. In addition, the gap
between C(K+ε) + C(K−ε) and 2C(K) is bigger for smaller K. Hence, regular
graphs perform much better than random graphs when the average degree is
small.

We then fixe the average degree K = 8 and vary |V | and the switching cost
c. From Fig. 7b, we observe that the defender’s optimal costs in different |V | are
almost the same when both the average degree and the switching cost are fixed.
Moreover, by increasing the switching cost, the defender’s optimal cost in the
random graph model increases linearly. Both observations are consistent with
our analysis for the regular model in Section 4.2.
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5.4 Rate of Convergence

Previous studies have analyzed the convergence rate of discounted MDP [16]. We
will examine the convergence speed of proposed Algorithm 1 using simulations
with a similar setup as in Section 5.3. In Fig. 8a, we vary both |V | and the mean
switching cost c, while fixing the discount factor α = 0.5. We observe that each
curve converges to a relative stable value after 8 iterations. We then fix |V |, p,
and mean switching cost c, while varying the discount factor α. From Fig. 8b, we
observe that the convergence speed gets slower with larger α, which is expected.
We draw the conclusion that the main factor that affects the convergence rate
of Algorithm 1 is the discount factor.
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Fig. 8: Rate of Convergence with different parameters

5.5 Suggestions to the Defender

Based on the results and observations above, we make the following suggestions
to the defender for holding a more secured resource:

– Due to the fact that the defender’s cost is largely determined by the average
degree of the switching graph, adding more switching pairs can help reduce
the cost. In particular, for a given number of states, the average degree can



be maximized adopting a complete graph where the resource can switch
between any two states.

– Since the defender’s cost is approximately convex with the average degree
and linear with the switching cost, the defender should pay more attention
to increasing the number of states rather than reducing the switching cost
if the average degree is small. While if the average degree is already large
enough, reducing switching cost is more useful.

– Introducing a large number of states is not always helpful. The main reason
is that the attacker could obtain full feedback about the previous configu-
ration used by the defender in our model. Under this assumption, adding
more states does not necessarily means that the defender has more choice
to switch. Instead of increasing the number of states, adding more switching
pairs is more beneficial to the defender.

6 Conclusion

In this paper, we propose a Stackelberg game model for Moving Target De-
fense (MTD) between a defender and an attacker. After fully characterizing
the player’s strategies, payoffs and feedback structures, we model the defender’s
problem on optimizing the switching strategy as a Markov Decision Process
(MDP) and further derive an efficient value iteration algorithm to solve the MDP.
By employing a directed graph to illustrate the pattern of switching states, we
obtain the relation between defender’s performance and the properties of the
graph in an explicit way when the graph is regular. Similar results are further
verified on random graphs empirically. Through theoretical analysis and numer-
ical study of the proposed model, we have derived several insights and made
suggestions to the defender towards more efficient MTD.
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