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Abstract—Incentive-driven advanced attacks have become a

major concern to cyber-security. Traditional defense techniques

that adopt a passive and static approach by assuming a fixed

attack type are insufficient in the face of highly adaptive and

stealthy attacks. In particular, a passive defense approach often

creates information asymmetry where the attacker knows more

about the defender. To this end, moving target defense (MTD) has

emerged as a promising way to reverse this information asymme-

try. The main idea of MTD is to (continuously) change certain

aspects of the system under control to increase the attacker’s

uncertainty, which in turn increases attack cost/complexity and

reduces the chance of a successful exploit in a given amount

of time. In this paper, we go one step beyond and show that

MTD can be further improved when combined with information

disclosure. In particular, we consider that the defender adopts a

MTD strategy to protect a critical resource across a network of

nodes, and propose a Bayesian Stackelberg game model with the

defender as the leader and the attacker as the follower. After fully

characterizing the defender’s optimal migration strategies, we

show that the defender can design a signaling scheme to exploit

the uncertainty created by MTD to further affect the attacker’s

behavior for its own advantage. We obtain conditions under

which signaling is useful, and show that strategic information

disclosure can be a promising way to further reverse the

information asymmetry and achieve more efficient active defense.

I. INTRODUCTION

Advanced cyber-attacks have become a major concern to
security engineers these days. One example is advanced per-
sistent threats (APT), an emerging class of continuous and
stealthy hacking processes launched by highly motivated enti-
ties with specific targets in mind [1]. These attacks are highly
persistent and adaptive in achieving their goals. For instance,
they may operate in a stealthy way to avoid detection and
obtain long-term advantages. Traditional defense techniques
targeting one-shot attacks with known types are insufficient in
the face of these more advanced attacks with unique behavioral
patterns. To this end, optimal decision and game theoretic
approaches have been introduced into cyber-security in recent
years to better reason about the strategic behavior of the at-
tacker (and the defender). While these models provide valuable
insights on designing more efficient defense strategies, most

of them adopt a passive defense approach without exploring
the attacker’s cognitive or resource constraint.

Passive defense is insufficient in the face of advanced
attacks. In particular, it creates information asymmetry where
the attacker knows more about the defender than the defender
knows about the attacker, which is an important obstacle to
achieving more efficient cyber-defense. This is especially true
in the case of APT, where the attacker may take time to
observe and predict the defender’s strategy before taking its
action. To this end, Moving Target Defense (MTD) [2], [3]
is emerging as a promising way to achieve active defense.
The main idea of MTD is to (continuously) change certain
aspects of the system under control to increase the attacker’s
uncertainty, which in turn increases attack cost/complexity and
reduces the chance of a successful exploit in a given amount
of time. To date, MTD has been studied in various contexts,
including cloud computing [4], [5], web applications [6], [7],
and game theoretic approaches have been applied to devise
efficient MTD strategies [8], [9], [10].

In this paper, we go one step beyond by showing that MTD
can be further improved when combined with information
disclosure. In particular, we show that the defender may design
a signaling scheme that exploits the uncertainty created by
MTD to modify the attacker’s behavior for its own advantage.
We envision that strategic information disclosure can be a
promising way to further reverse the information asymmetry
and achieve more efficient active defense.

More specifically, we consider that a defender protects a
security sensitive resource across a network of nodes to make
it difficult for the attacker to identify the real location of
the resource. We model this setting as a Bayesian Stackel-
berg game where the defender first determines a randomized
strategy in terms of the conditional probabilities of moving
the resource from one node to the other for every pair of
nodes. We consider a single resource for the sake of simplicity.
Our model can be readily generalized to the case of multiple
independent resources. The defender first commits to a strategy
and declares it (but not its realization) to the attacker at the
beginning of the game. The attacker then decides whether to



attack or not and which node to attack based on this prior
information and its attack cost. We assume that the attacker
can attack at most one node each time. Crucially, there is
a migration cost associated with nodes, which needs to be
taken into account by the defender. Building upon this model,
we then introduce a signaling scheme to further improve the
defender’s payoff. The idea is that after the defender samples
an action from its declared migration strategy, it may send a
signal to the attacker that discloses part of its realized strategy
to affect the attacker’s posterior belief and the corresponding
attack behavior.

To design the signaling scheme, we adopt the influential
Bayesian Persuasion model [11], which is a variant of sig-
naling games with commitment, and is also more tractable
than traditional signaling games. We derive the set of subgame
perfect equilibria of the basic MTD game as well as the
enhanced game when signaling is applied, and identify com-
plete conditions under which signaling is useful. We observe
that signaling can be a useful tool for the defender to deter
the attacker under a broad setting of system parameters and
can sometimes significantly improve the defender’s payoff
compared to a pure migration strategy.

We make the following contributions in this paper:
• We show that MTD can be further improved through

strategic information disclosure to the attacker;
• We propose a Bayesian Stackelberg game that models the

joint migration and signaling strategies for the defender
in the face of a strategic and rational attacker.

• We thoroughly investigate the proposed game model and
characterize the subgame perfect equilibria of the game
under a pure migration setting and when both migration
and signaling are applied.

• We derive several insights from equilibrium analysis and
numerical study, and make suggestions to the defender
on realizing a more efficient MTD.

The remainder of the paper is organized as follows. We
discuss the related work in Section II and propose the game
model in Section III. Detailed analysis of strategies and equi-
libria derivation are presented in Section IV and Section V,
respectively. The performance of optimal strategies under
different system settings is evaluated via numerical study in
Section VI. Finally, we conclude the paper in Section VII.

II. RELATED WORK

A. Moving Target Defense

One main idea of Moving Target Defense (MTD) is to
hinder the attacker from discovering vulnerabilities or critical
resource of the system. Generally, MTD schemes can be
categorized into five different domains [12]: (1) Dynamic
Network: where network properties are continuously mod-
ified [13], (2) Dynamic Platforms: where the computing
platform properties are changed [14], (3) Dynamic Runtime
Environment: where the environment in which the application
operates is randomized [15], (4) Dynamic Software: where the
application code is shifted while ensuring that the functionality

is unaffected [6], (5) Dynamic Data: where the internal or
external representation of an application’s data is changed [16].
In the context of game theory, each domain has substantial
literature related to our work. An approach which introduces
MTD into the FlipIt game model [17] has been studied in [18]
where the attacker randomly selected a server to attack (which
might take some time) and the defender could neutralize the
attack by protecting that server (with a probability). A dynamic
platform MTD which models an attacker who has feedback on
defender’s moves has been investigated in [19]. [10] proposed
a game model in which the defender adopted diversity defense
to prevent the attacker from finding the vulnerability of a
server. [6] proposed a repeated Bayesian game to model
the switching technologies of web applications and derived
an effective strategy while considering the cost of switching
between different web-stack configurations.

Rather than focusing on a specific application, we propose
a general game framework which is applicable to most sce-
narios in the five domains mentioned above. In particular,
the resource in our model can represent a critical server, a
software object such as a web application, etc.. The nodes can
be physical or virtual machines, types of data format, types of
application technique, etc.. The migration cost can represent
the expenses on changing network properties, computing plat-
forms, programming techniques, etc.. The network topology
can be considered as the internal restriction of migration.
The main focus of this paper is to understand the impact of
signaling in MTD. Therefore, we develop a simple but generic
and flexible two-player MTD model which is appropriate for
rigorously analyzing the complicated strategies.

B. Signaling Game

Another aspect of our model is the signaling game model
which has been extensively studied in the literature. Bayesian
Persuasion model [11] captures the general concept of the
signaling game. The main contribution of the Bayesian Persua-
sion model is in answering the question: when and how does
the sender (the defender in our model) exploit the asymmetric
information to persuade the receiver (the attacker in our
model). [20] investigated the optimal information disclosure
problems in the signaling game. [21] examined the computa-
tional complexity problem of the Bayesian Persuasion model.
Deception games can be considered as another application of
the signaling model. [22], [23] studied a two-player game in
which one player increases the other player’s uncertainty by
either disguising a normal node as a honeypot or disguising
a honeypot as a normal node. The common feature of the
above work is that the state of the system is not decided by
the sender (defender). In our model, the defender can not only
observe the system states but also employ strategies to change
the system states. [24] investigated the general case where
the sender has additional private information. However, [24]
did not solve the defender’s optimal strategies in an explicit
form. By introducing a concrete MTD model, we solve the
defender’s optimal strategies and characterize the equilibria of
the defender-attacker game under general system settings.
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Figure 1: An Example of a 4-Node System

III. SIGNALING GAME ON MOVING TARGET DEFENSE

In this section, we propose a two-player game model in
which the defender adopts a moving target defense scheme,
e.g., a migration strategy, to thwart a strategic attacker. MTD
creates uncertainty to the attacker, which can be further
exploited by the defender to improve her performance through
strategic information disclosure. To this end, we adopt the
influential Bayesian Persuasion approach to design an effective
signaling scheme over MTD. In the following, we first provide
the formal definition of the game including the action spaces
and objective functions of the players (Section III-A). We
then describe an example primarily to show how Bayesian
Persuasion, when designed properly, can help reshape the
interactions between the attacker and the defender, leading to
a reduced loss for the defender (Section III-C).

A. Game Model
We consider a system in which a strategic attacker can

observe the defender’s actions and then move in a rational way.
The system consists of four components: a critical resource, a
fully connected network with n (n � 2) nodes, one attacker
and one defender. The goal of the attacker is to maximize
its payoff by comprising the resource, while the goal of the
defender is to protect the resource at a minimum cost. Figure 1
illustrates an example of a 4-node system. The interplay
between the defender and the attacker forms a two-player
game.

In this game, the defender adopts a MTD strategy by
migrating the resource across the network to make it difficult
for the attacker to identify the real location of the resource.
Since the attacker may observe the defender’s actions by mon-
itoring network traffic, we consider a Bayesian Stackelberg
game by allowing the defender to commit to and declare
a randomized migration strategy. Knowing this strategy (but
not its realization), the attacker then determines which node
to attack or not attack. The defender can further employ a
signaling strategy by sending a message to the attacker to
affect its behavior. We consider a one stage game where the
defender migrates the resource once and the attacker takes one
corresponding action.

At the beginning of the game, the resource is installed
at node 0 (randomly selected). The defender could migrate

the resource from node 0 to one of the n � 1 nodes in
the network, or keep the resource at node 0. Denote p =

{p(i)|p(i) 2 [0, 1], i = 0, 1, n � 1,
Pn�1

i=0 p(i) = 1} as the
defender’s randomized migration strategy where p(0) is the
probability that the defender keeps the resource at node 0 and
p(i) (i = 1, 2, ..., n � 1) is the probability that the defender
moves the resource to node i. In the rest of paper, for simplicity
of exposition, we say that the defender moves the resource to
node 0 (even though there is no migration) if the defender
keeps the resource at the original node 0.

Given p, the attacker will either attack the node i whose
p(i) = maxp or not attack. Let ⇡ denotes the attacker’s binary
strategy, where

⇡ =

⇢
1 attack,
0 not attack.

The attacker’s expected payoff is then defined as a function
of p and ⇡ as follows:

U(p,⇡) = (maxp� ca) · ⇡ (1)

where ca � 0 is the attack cost, which is assumed to be a
constant that is known to the defender. Since maxp  1, it is
reasonable to assume that ca < 1.

On the other hand, the defender’s cost is captured by the
following linear quadric form:

C(p,⇡) = (maxp · ⇡) + cd (1� p(0))2 (2)

where cd � 0 is the unit migration cost, which is a constant
known to the defender. The first term in (2) depicts the
expected loss from attack, which is related to both p and ⇡.
The second term depicts the migration cost, which is related to
P only. The quadratic form captures the resource requirement
of moving the resource, e.g., network bandwidth and energy,
which is often nonlinear. In fact, we have also studied a
linear migration cost model, e.g., C(p,⇡) = (maxp · ⇡) +
cd (1� p(0)). We have proved that if the defender has a linear
migration cost function, signaling strategies cannot improve
the defender’s cost.

Due to randomized of migration strategy, the attacker is
uncertain about the real destination. This fact can be further
utilized by the defender. In particular, in the beginning of
the game, in addition to p, the defender could also commit
to a signalling scheme ⌃ (to be defined) and declare it to
the attacker. After the real migration destination is sampled
from p, the defender can then send a signal according to
⌃ conditioning on the sampled destination. Assuming the
attacker is rational, it can then use the Bayes’ rule to get a
posterior belief and make a move accordingly. The attacker
might also ignore the signal and make decision upon the prior
belief only.

More specifically, we consider the following form of sig-
naling adopted from Bayesian Persuation. Let �(m|i) denotes
the conditional probability that the defender tells attacker it



will move to m when its true destination is i. The defender’s
signaling scheme is then defined by the following matrix:

⌃ =

0

BBB@

�(0|0) �(1|0) · · · �(n� 1|0)
�(0|1) �(1|1) · · · �(n� 1|1)

...
...

. . .
...

�(0|n� 1) �(1|n� 1) · · · �(n� 1|n� 1)

1

CCCA

Thus, (p,⌃) form a pair of joint migration and signaling
strategy. Given (p,⌃), the probability that the defender sends
a signal indicating movement to node m can be determined
as:

qm =

n�1X

i=0

p(i)�(m|i) (3)

When a signal “m” is received, the attacker uses Bayes’
rule to obtain a posterior belief q(i|m) =

p(i)�(i|m)
qm

, i.e., the
probability that the defender migrates the resource to node i
conditioned on the signal “m” received. The following matrix
summarizes the attacker’s posterior belief for each signal.

Q =

0

BBB@

q(0|0) q(1|0) · · · q(n� 1|0)
q(0|1) q(1|1) · · · q(n� 1|1)

...
...

. . .
...

q(0|n� 1) q(1|n� 1) · · · q(n� 1|n� 1)

1

CCCA

When a signaling scheme is adopted, the attacker can base
its attack decision on the signal received. Define the attacker’s
strategy against (p,⌃) as ⇧ = {⇡(m)|⇡(m) 2 {0, 1},m =

0, 1, ..., n� 1}, where

⇡(m) =

⇢
1 attack node i whose q(i|m) = maxQ(m, :),
0 not attack.

where Q(m, :) denotes the elements in the (m+1)-th row of
Q.

The attacker’s payoff when receiving signal “m” is:

U (Q,⇡(m)) = {maxQ(m, :)� ca} · ⇡(m) (4)

Then the attacker’s expected payoff is:

eU ((p,⌃),⇧) =
n�1X

m=0

qmU (maxQ(m, :),⇡(m))

=

n�1X

m=0

n�1X

i=0

p(i)�(m|i)U (Q,⇡(m)) (5)

The defender’s expected payoff as a function of the at-
tacker’s action is:

eC ((p,⌃),⇧) =
n�1X

m=0

qm maxQ(m, :)⇡(m) + cd (1� p(0))2

=

n�1X

m=0

n�1X

i=0

p(i)�(m|i)maxQ(m, :)⇡(m)

+ cd (1� p(0))2 (6)

As is common in the security game literature, we assume
that when multiple strategies give the attacker the same payoff,
the tie is broken in the favor of the defender.

Table I summarizes the notation used in this paper.

Table I: List of Parameters

Symbol Meaning
n number of nodes

p(i) probability of moving the resource to node i
p defender’s migration strategy, p = {p(i)}

�(m|i) probability of sending “m” conditional on migrating
the resource to node i

⌃ defender’s signal pattern, ⌃ = {�(m|i)}

qm probability of the defender sending “m”

q(i|m) probability of the defender moving the resource to node i
conditional on sending “m”

Q attacker’s posterior believe, Q = {q(i|m)}

⇡ attacker’s strategy when the defender doesn’t send signals
⇡(m) attacker’s action on receiving signal “m”
⇧ attacker’s strategy ⇧ = {⇡(m)}

cd migration cost
ca attacking cost

B. Discussion of the Model
We consider a simplified model for moving target defense.

In particular, we consider a single stage game and assume a
homogeneous migration cost. This setting serves as a good
starting point as it helps us to obtain an explicit form of the
joint migration and signaling schemes and makes it easy to
identify the impact of signaling in the context of MTD.

We consider a Stackelberg game with the defender as the
leader and the attacker as the follower. Stackelberg games have
been extensively used for modeling cyber-security scenarios
as they naturally capture the fact that a targeted attacker may
first observe the defender’s action and then make a move [25].
As the leader of the game, the optimality of the defender’s
strategy relies on the assumptions that (1) the attacker correctly
identifies the randomized strategy of the defender; and (2) the
attacker is rational and will respond to the defender’s strategy
as expected. In our setting, it further means that the signals
from the defender should be correctly received and responded.
As we show in Sections IV and V, the optimal migration
strategy boils down to determining the value of p(0) while
the optimal signaling matrix ⌃ contains at most four different
values. Thus, our strategy can be communicated to the attacker
at very low cost.

C. A Motivating Example
Before we present the results for the general case, we give

a small example in this section to illustrate how a signaling
strategy can improve the defender’s performance.

Consider a network with three physical nodes 0, 1 and
2, where the resource is installed at node 0 at present. We
compare three migration strategies of the defender with the
system parameters set as cd =

3
2 and ca =

1
3 :

1) p = {1, 0, 0}.
C = 1 + 0 = 1, U = 1� 1

3 =

2
3 ;

2) p = { 1
3 ,

1
3 ,

1
3}.

C = 0 + (1� 1
3 )

2 ⇥ 3
2 =

2
3 , U = 0 (not attack);

3) p = { 1
2 ,

1
4 ,

1
4}.



C =

1
2 + (1� 1

2 )
2 ⇥ 3

2 =

7
8 , U =

1
2 � 1

3 =

1
6 .

Obviously, the defender’s minimum cost is 2
3 when she

adopts a strategy P = { 1
3 ,

1
3 ,

1
3}. However, the defender

could improve her performance by announcing her moving
destination! It can be proved that there is a unique optimal
joint strategy to the defender, where p = { 1

2 ,
1
4 ,

1
4} and

⌃ =

0

B@

1
2

1
4

1
4

0

1
2

1
2

0

1
2

1
2

1

CA

Under this strategy, the probability of sending signal “0”, “1”
and “2” are: q0 =

1
4 , q1 = q2 =

3
8 , respectively. In this case,

the attacker’s posterior belief Q is:

Q =

0

@
1 0 0

1
3

1
3

1
3

1
3

1
3

1
3

1

A

Thus, the attacker will attack node 0 when he receives “0” with
probability 1. The attacker will not attack when he receives
“1” or “2” since maxQ(1, :) = maxQ(2, :) = 1

3  ca. Thus,
the attacker’s payoff is: U =

1
4 ⇥ (1 � 1

3 ) =

1
6 , while the

defender’s cost is reduced to: C =

1
4 +(1� 1

2 )
2⇥ 3

2 =

5
8 < 2

3 .
Notice, the attacker will accept the signals since his payoff is
better than if he ignores the signals. In the rest of the paper,
we will study the general problem of how the defender jointly
designs the migration and signaling strategy.

IV. OPTIMAL PURE MIGRATION STRATEGY

To begin with, we analyze the case when the defender only
adopts a migration strategy in this section. The analysis will
be extended to the joint migration and signaling setting in the
next section.

A. Subgame Perfect Equilibrium (p⇤,⇡⇤
)

In this subsection, we characterize the subgame perfect
equilibrium of the two-player Bayesian Stackelberg game
when the defender adopts p.

Definition 1. A pair of strategies (p⇤,⇡⇤
) form a subgame

perfect equilibrium if
• The defender’s cost C(p,⇡) is optimized at p = p⇤ over

every possible responses from the attacker, and
• Given p⇤, the attacker’s payoff U(p⇤,⇡) is optimized at

⇡ = ⇡⇤.

We solve the game via a backward induction. First, ac-
cording to (1), the attacker’s best strategy can be found
straightforwardly as a function of p:

⇡⇤
=

⇢
1 if ca < maxp,
0 if ca � maxp.

Therefore, the attacker’s action is only related to the maxi-
mum element in the defender’s strategy p. The defender’s cost
function in (2) can then be expressed as the function of p(0)
and maxp as follows:

C (p(0),maxp) =

⇢
maxp+ cd (1� p(0))2 maxp > ca,
cd (1� p(0))2 maxp  ca.

The following lemma gives a necessary condition for a
strategy p to be optimal. (See proof in the technical report
[26].)

Lemma 1. If p is an optimal migration strategy, p(0) is the
maximum element in p.

Lemma 1 also implies that if p is the defender’s optimal mi-
gration strategy, then p(0) � 1

n . It follows that the defender’s
cost function (2) can be written as a function of p(0) and ⇡:

C (p(0),⇡) = p(0) · ⇡ + cd (1� p(0))2 (7)

where,

⇡ =

⇢
1 if p(0) > ca,
0 if p(0)  ca.

(8)

Moreover, if the defender’s cost is optimized at some p with
p(0) = p⇤(0), then it is also optimized for any p0 with p0(0) =
p⇤(0), p0(i)  p0(0),

Pn�1
i=1 p0(i) = 1� p0(0), i = 1, 2, ..., n�

1. Thus, the problem of optimizing p can be simplified to
optimize p(0). Also, since the defender should disclose her
strategy, p(0) can be communicated at very low cost compared
to communicating p.

Therefore, the defender’s strategy can be written as the
following optimization problem with variable p(0).

min C (p(0),⇡)

s.t. p(0) 2 [

1

n
, 1].

(9)

The theorem below fully characterizes the set of subgame
perfect equilibria (p⇤(0),⇡⇤

) of the migration game. (See
proof in the technical report [26].)

Theorem 1. Given ca, cd and n,
1) If ca < 1

n and cd  n
2(n�1) , (p⇤(0),⇡⇤

) = (

1
n , 1)

The equilibrium payoffs are:
C⇤

=

1
n + cd

�
1� 1

n

�2, U⇤
=

1
n � ca

2) If ca � 1
n and cd  1+

p
2ca�c2a

2(1�ca)2
, (p⇤(0),⇡⇤

) = (ca, 0)

The equilibrium payoffs are:
C⇤

= cd (1� ca)
2, U⇤

= 0

3) Otherwise, (p⇤(0),⇡⇤
) = (1� 1

2cd
, 1)

The equilibrium payoffs are:
C⇤

= 1� 1
4cd

, U⇤
= 1� 1

2cd
� ca

B. Discussion on (p⇤(0),⇡⇤
)

Figure 2 provides a graphical illustration of the set of
equilibria in Theorem 1. cd and ca form Quadrant I of a two-
dimensional Cartesian system. Blue dash lines and ca = 1

separate Quadrant I into three areas which correspond to the
three equilibria in Theorem 1. We have the following insights
from this figure:

1) By increasing the number of nodes in the network,
the defender could almost avoid the equilibrium (

1
n , 1)

which leads to the highest cost for the defender com-
pared to any other equilibria with the same cd.
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Figure 2: Illustration of Theorem 1

2) For a fixed n, the defender always benefits from reducing
cd since both (

1
n , 1) and (ca, 0) ensure lower cost with

the same ca.
3) Even with an extremely large cd and a tiny ca, e.g., a

poorly connected network and a very powerful attacker,
there always exists a pure migration strategy that incurs
less cost than no migration (p(0) = 1).

V. OPTIMAL JOINT MIGRATION AND SIGNALING
STRATEGY

In this section, we investigate the joint migration and
signaling strategy in our game. We would like to answer three
questions in this section: 1) What is the optimal joint strategy?
2) When does a joint strategy improve a pure migration
strategy? 3) How much improvement can a joint strategy
achieve?

A. Subgame Perfect Equilibrium ((p�,⌃�
),⇧�

)

We characterize the subgame perfect equilibrium of the two-
player game when the defender adopts (p,⌃).

Definition 2. A group of strategies ((p�,⌃�
),⇧�

) form a
subgame perfect equilibrium if

• The defender’s expected payoff eC ((p,⌃),⇧) is optimized
at (p,⌃) = (p�,⌃�

) over every possible responses from
the attacker, and

• Given (p�,⌃�
), for each signal “m” realized by

(p�,⌃�
), the attacker’s expected payoff eU ((p�,⌃�

),⇧)

is optimized at ⇧ = ⇧

�.

According to (5), the attacker’s best strategy is straightfor-
ward when given a signal “m” and (p,⌃) as follows,

⇡�
(m) =

⇢
1 if ca < maxQ(m, :),
0 if ca � maxQ(m, :).

The defender’s problem is to jointly design an optimal
(p�,⌃�

) = argminp,⌃
eC ((p,⌃),⇧). It can be written as the

following optimization problem with variables {p(i),�(m|i) :
i,m = 0, 1, 2, ...n� 1}.

min eC ((p,⌃),⇧)

s.t.
n�1X

m=0

�(m|i) = 1, for i = 0, 1, ..., n� 1.

�(m|i) � 0, for i,m = 0, 1, ..., n� 1.
p(i) � 0, for i = 0, 1, ..., n� 1.
eU ((p,⌃),⇧) � U(p,⇡⇤

(p)).
(10)

The last condition implies that the attacker accepts the signal-
ing strategy if and only if his expected payoff is greater than
the payoff without signals under the same prior belief p.

The defender should decide to adopt either an optimal
migration strategy p⇤ or an optimal joint migration and
signaling strategy (p�,⌃�

). Since we have already solved
p⇤ in Section IV, it is sufficient to find those (p�,⌃�

) that
satisfy eC ((p�,⌃�

),⇧�
) < C(p⇤,⇡⇤

). We will first show in
what conditions there exists such (p�,⌃�

), and then solve the
explicit form of the (p�,⌃�

). (See proof in the technical report
[26].)

Lemma 2. If ca < 1
n or ca � 1�

q
1

2cd
, for any joint strategy

(p,⌃), eC ((p,⌃),⇧) � C(p⇤,⇡⇤
).

From Lemma 2, it is sufficient to solve (10) under the
condition 1

n  ca < 1 �
q

1
2cd

. The result is summarized in
the following theorem, which is the main result of the paper.

Theorem 2. Given ca, cd and n, if 1
n  ca < 1 �

q
1

2cd
,

eC((p,⌃),⇧) is optimized at (p�,⌃�
), where:

p� = {1� 1
2cd(1� ca)

,
1

2cd(1� ca)(n� 1)
, ...,

1
2cd(1� ca)(n� 1)| {z }

n�1

}

(11)

⌃

�
=

0

BBBB@

p0�ca
p0(1�ca)

ca(1�p(0))
p(0)(1�ca)(n�1) · · · ca(1�p(0))

p(0)(1�ca)(n�1)

0

1
n�1 · · · 1

n�1
...

...
. . .

...
0

1
n�1 · · · 1

n�1

1

CCCCA

(12)
eU ((p�,⌃�

),⇧) is optimized at ⇧ = ⇧

�
= {1, 0, ..., 0| {z }

n�1

}.

((p�,⌃�
),⇧�

) form a subgame perfect equilibrium.

Proof. As the full proof is long, we only provide a proof
sketch here. We prove this theorem in five steps:

1) If eC((p,⌃),⇧) is optimized at (p�,⌃�
), the attacker

attacks if and only if he receives one certain signal.
We prove this statement by recursion: if a joint strategy
((p,⌃),⇧) exists such that the attacker attacks when
he receives k out of n signals, then there exists another
strategy such that attacker attacks when he receives k�1

out of n signals, and the later strategy has a better
performance than the former one for the defender.



2) If p(i) = argmaxp�, then the attacker attacks if and only
if he receives “i”.

3) p(0) = maxp�. This is because changing order of the
elements in p does not effect the first term in (6) (if we
switch the i�th and j�th elements in p, we should also
switch i�th and j�th rows and i�th and j�th columns),
however, if and only if p(0) = maxp, the second term
in (6) achieves the minimum value.

4) Solving p� and ⌃

�. According to the three statements

above, p�
= {p(0), 1� p(0)

n� 1

, ...,
1� p(0)

n� 1| {z }
n�1

}, �(0|i) =

1��(0|0)
n�1 , �(i|0) =

1��(0|0)
n�1 and �(m|i) =

1��(0|i)
n�1 ,

m, i = 1, 2, ..., n � 1. The defender’s expected payoff
is:

eC ((p,⌃),⇧) =
n�1X

i=0

p(i)�(0|i)q(0|0) + cd (1� p(0))2

=p(0)�(0|0) + cd (1� p(0))2 (13)

Then the optimization problem in (10) can be simplified
with only two variables p(0) and �(0|0) as shown below,

min p(0)�(0|0) + cd (1� p(0))2

s.t. p(0) > ca,
�(0|0) > 0,
p(0)�(0|0)(1� ca) � p(0)� ca.

(14)

If and only if 1
n  ca < 1�

q
1

2cd
, p(0) = 1� 1

2cd(1�ca)
,

�(0|0) =

p0�ca
p0(1�ca)

are the unique solutions of the
problem above. Otherwise, there is no solution for (14).
This step also prove the statement in Lemma 2: if ca �
1�

q
1

2cd
, for any joint strategy (p,⌃), eC ((p,⌃),⇧) �

C(p⇤,⇡⇤
).

5) ⇧

�
= {1, 0, ..., 0| {z }

n�1

}. Without signals, p(0) = 1 �

1
2cd(1�ca)

= maxp� > ca, then ⇡�
= 1, the attacker

will attack node 0 with an expected payoff:

U(p�, 1) = 1� 1

2cd(1� ca)
� ca (15)

With signals, the attacker forms his posterior belief Q
as follows:

Q =

0

BBB@

1 0 · · · 0

ca
1�ca
n�1 · · · 1�ca

n�1
...

...
. . .

...
ca

1�ca
n�1 · · · 1�ca

n�1

1

CCCA

maxQ(m, :) =

⇢
1, if m = 0

ca, otherwise

Thus, the attacker will attack node 0 if and only if he
receives signal “0”. Also, the attacker’s payoff is:

eU�
=q0U (Q(0, :),⇡�

(0))

=

✓
1� 1

2cd(1� ca)2

◆
(1� ca)

=1� 1

2cd(1� ca)
� ca (16)

eU�
= U(p�, 1), the attacker will accept the defender’s

signals. When the defender adopts (p�,⌃�
),

This concludes the proof of Theorem 2.

From Theorem 2 we can observe that the optimal migration
strategy p� and signaling matrix ⌃ contain only two and four
values, respectively. Thus, our strategy can be communicated
to the attacker at very low cost.

The following corollary shows the corresponding equilib-
rium payoffs under ((p�,⌃�

),⇧�
). It also indicates that under

the condition 1
n  ca < 1 �

q
1

2cd
, the defender’s cost is

always reduced by the joint strategy. (See proof in the technical
report [26].)

Corollary 1. Given ca, cd and n, if 1
n  ca < 1�

q
1

2cd
, the

defender’s equilibrium cost is:

eC�
= cd(1� ca)

2 � cd


1� ca �

1

2cd(1� ca)

�2

< C(p⇤,⇡⇤
) (17)

The attacker’s equilibrium payoff is:

eU�
= 1� 1

2cd(1� ca)
� ca (18)

According to Theorem 2 and Corollary 1, if and only if
1
n  ca < 1�

q
1

2cd
, C ((p�,⌃�

),⇧�
) < C(p⇤,⇡⇤

).

B. Discussion on Subgame Perfect Equilibria
In this subsection, we discuss the overall equilibrium strate-

gies as studied in Section IV and Section V. According to
Theorem 1 and Theorem 2, the subgame perfect equilibria
when the defender adopts either a pure migration strategy or
a joint strategy can be summarized as follows:

1) ((p�,⌃�
),⇧�

), where p�, ⌃

� and ⇧

� are defined in
Theorem 2, if 1

n  ca < 1�
q

1
2cd

.

2) (p(0)⇤,⇡⇤
) = (ca, 0), if ca � 1

n and cd  1
2(1�ca)2

.

3) (p(0)⇤,⇡⇤
) = (

1
n , 1), if ca < 1

n and cd  n
2(n�1) .

4) (p(0)⇤,⇡⇤
) = (1� 1

2cd
, 1), if ca < 1

n and cd � n
2(n�1) .

Figure 3 provides a graphical illustration of the set of sub-
game perfect equilibria in both cases. ca and cd form Quadrant
I of a two-dimensional Cartesian system, red dash lines and
ca = 1 separate Quadrant I into four areas which correspond to
the four equilibria above. Comparing this to Figure 2, the area
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Figure 3: Illustration of subgame perfect equilibria when the defender
adopts a joint migration and signaling strategy

where the joint strategy is beneficial consists of two parts: the
area bounded by cd =

1
2(1�ca)2

, cd =

1+
p

2ca�c2a
2(1�ca)2

and ca =

1
n ,

and the area bounded by cd =

1+
p

2ca�c2a
2(1�ca)2

and ca =

1
n .

From this figure, we have the following suggestions to the
defender to ensure a more secure system:

1) The defender can benefit from the joint strategy in
almost every system settings by increasing the number
of nodes in the network. For those settings that do
not satisfy 1

n  ca < 1 �
q

1
2cd

, the defender could
adopt p⇤(0) = ca to avoid being attacked. This property
implies that the defender can always obtain benefit from
signaling in a large network.

2) The signaling strategy is beneficial even with an ex-
tremely large cd. In fact, the signaling strategy has a
relative better performance in the large cd area.

3) For a fixed n, the defender cannot always benefit from
the signaling strategy by increasing or reducing cd. How-
ever, if the defender could increase ca, e.g., increasing
attack complexity or reducing the chance of a successful
exploit in a given amount of time, the defender could
always adopt a useful joint strategy.

VI. NUMERICAL RESULTS

In this section, we examine our proposed model via numer-
ical study under different system scenarios and configurations.

A. Defender Adopts a Pure Migration Strategy

We first present the equilibrium payoffs for both players
when the defender adopts a migration strategy as studied in
Theorem 1. The red and blue curves in Figure 4 represent
the defender’s equilibrium cost and the attacker’s equilibrium
payoff, respectively.

• Scenario 1: ca � 1
n , ca = 0.3, n = 4, cd 2 [0, 3].

Figure 4a shows that a larger cd is always harmful to the
defender. However, the attacker is not always beneficial
from a smaller cd since the defender could prevent the
resource from being attacked when cd  1+

p
2ca�c2a

2(1�ca)2
.

• Scenario 2: Defender and attacker have the same cost
parameters, ca = cd = 0.3, n 2 [2, 8]. From Fig-
ure 4b we find that the defender’s equilibrium cost
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Figure 4: Equilibrium Payoffs C⇤ and U⇤ v.s. cd and n.

drops dramatically when ca exceeds 1
n . However, further

increasing n cannot provide more benefit to the defender.
Therefore, adding more nodes is not always beneficial to
the defender.

B. Defender Adopts a Joint Migration and Signaling Strategy

In this subsection, we compare the defender’s equilibrium
cost when the defender adopts a joint strategy as mentioned
in Section V with the case when the defender adopts a
pure migration strategy. The red and blue curves in Figure 5
represent the defender’s equilibrium cost with joint strategy
and pure migration strategy, respectively.

• Scenario 1: The defender has a low migration cost: e.g.,
cd = 1, n = 4, and ca 2 [0, 1]. In Figure 5a, the
defender’s equilibrium cost has been slightly reduced
in a small range through joint strategy. Therefore, if
employing the signaling strategy has a cost, e.g., a cost
on information disclosure or communication, the defender
might adopt a pure migration strategy.

• Scenario 2: The defender has a high migration cost cd =

6, n = 4, and ca 2 [0, 1]. The defender’s cost has been
reduced as much as 0.3 as shown in Figure 5b. Also, the
joint strategy is efficient over a large range of ca from
0.2 to 0.7. This implies that the joint strategy has better
performance especially when the migration cost is high.

• Scenario 3: ca � 1
n , n = 5, ca = 0.3, and cd 2 [0, 10].

From Figure 5c we can see that even with an extremely
high migration cost, the joint strategy is always beneficial
to the defender.

• Scenario 4: Fix cd = 1.2. Vary n from 2 to 8, and set
ca =

1
n . We consider the problem that if the attacker has

a very small attacking cost, does the defender have an
efficient strategy to fight against such an attacker? We
setup a configuration that fixes the product of ca and n
so that we can reduce ca by increasing n. The x-axis in
Figure 5d represents both n varying from 2 to 8 and ca
varying from 0.5 to 0.125. With decreasing of attacking
cost, the defender’s equilibrium cost gets worse if she
adopts a pure migration strategy. However, the defender
could maintain a relatively stable cost through a joint
strategy. Therefore, we conclude that no matter how small
the attacking cost is, the defender could always construct
an efficient defense system to keep a relatively stable cost
in a large network.
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Figure 5: Defender’s Equilibrium Cost under Different System Set-
tings

VII. CONCLUSION

We propose a two-player Bayesian Stackelberg game that
models the joint migration and signaling strategies for the
defender in the face of a strategic and rational attacker. By
rigorous investigation, we show that MTD can be improved
through strategic information disclosure. We fully characterize
the subgame perfect equilibria of the game under a pure
migration setting and when both migration and signaling are
applied. Through theoretical analysis and numerical study of
the proposed model, we have derived several insights and made
suggestions for more efficient MTD.
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