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ABSTRACT

Recent WiFi standards use Channel State Information (CSI)
feedback for better MIMO and rate adaptation. CSI pro-
vides detailed information about current channel conditions
for different subcarriers and spatial streams. In this paper,
we show that CSI feedback from a client to the AP can be
used to recognize different fine-grained motions of the client.
We find that CSI can not only identify if the client is in mo-
tion or not, but also classify different types of motions. To
this end, we propose APsense, a framework that uses CSI to
estimate the sensor patterns of the client. It is observed that
client’s sensor (e.g. accelerometer) values are correlated to
CSI values available at the AP. We show that using simple
machine learning classifiers, APsense can classify different
motions with accuracy as high as 90%.

Categories and Subject Descriptors

C.2.1 [Computer Systems Organization]: Network Ar-
chitecture and Design—Wireless Communication
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1. INTRODUCTION
In this paper, we propose APsense, a framework using

which an Access Point(AP) can estimate the patterns of mo-
tion sensors of an associated smartphone. APsense, bringing
the sensing capability to the AP, can classify fine-grained
motion of the smartphone which is typically only available
through Accelerometer, Magnetometer and Gyroscope (AMG)
sensors. APsense can be implemented on off-the-shelf com-
modity hardware without any additional communication over-
head. In order to perform fine-grained device motion detec-
tion, APsense uses CSI feedback information from the client
smartphone and extracts useful features that are indicative
of fine-grained motion. We show that changes in CSI feed-
back at the AP has a strong correlation with how observed
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values of AMG sensors change on the smartphone. As CSI
feedback is commonly being used in newer MIMO and MU-
MIMO systems, predicting fine-grained motion using CSI
does not require any additional communication. Estimating
how AMG sensor pattern changes can be used for many dif-
ferent applications such as gesture recognition and activity
recognition (e.g. walking, running etc.).

The major contributions of our work are as follows:
• Identify Motion: First, we show that CSI feedback

received at the AP from client smartphone can reflect fine-
grained motion of the smartphone. We perform experiments
on commodity NIC to collect CSI traces at different loca-
tions and show that it can clearly distinguish between the
cases where client is stationary or has fine-grained motion.

• Classify Different Motion Types: Next, we demon-
strate that certain features extracted from CSI can create a
unique signature for different types of motion. We evaluate
this using four different types of motion (described in Sec-
tion 3) and observe that CSI features can uniquely identify
them with simple machine learning algorithms. Based on
this, we design APsense framework which consists of ma-
chine learning classifier that can learn and classify within a
very short time period. Our evaluation shows that APsense
can classify different motions with overall accuracy greater
than 90% in certain cases.

•Correlate CSI and Sensor values: We then correlate
the CSI feedback values to smartphone’s AMG sensors, and
show that there exists a strong correlation between them.
We think this is an important first step towards our ulti-
mate goal which is to derive AMG sensor patterns using
CSI feedback. Since there are plethora of applications de-
signed on smartphone’s AMG sensors, deriving their values
passively using CSI would be extremely useful. As a first
step, we establish the correlation between them and leave
the actual derivation to our ongoing work.

2. RELATED WORK
Sensing using the wireless signals has gained a lot of atten-

tion recently. There are multiple characteristics of the signal
that can be used for the purpose of sensing motion. RSSI,
which measures the received radio signal power, has been
used for the purpose in some of the recent work. Youssef et.
al. [7] introduced a system that can detect and track a mov-
ing object using RSSI. More recently, Wang et. al. [4] pro-
posed to use RSSI to predict the length of human queues in
public areas. However, RSSI is a coarse-grained abstracted
measure and can not be used for detecting fine-grained mo-
tion. Compared to RSSI, CSI is a much more fine-grained
measure of the wireless channel. Wu et. al. [5] leveraged
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CSI to perform a more accurate indoor localization. Recent
work such as [8] and [6] have used CSI although their work
is mostly limited to detecting motion in surrounding and
not applicable to fine-grained motion detection (e.g. hand
gestures). Pu et. al. [3] designed a system that can recog-
nize human gesture based on the doppler shift of the wireless
signals although such system can not be implemented using
off-the-shelf hardware.

All the above work mostly deal with device-free motion
detection, while our focus is in this work is different. We
are interested in detecting fine-grained motion of a client
device (e.g. smartphone) when it is associated with an AP.
Our objective is to build a sensing framework where AP can
understand client’s sensor patterns purely using wireless sig-
nals. We think that such a framework can enable a number
of novel applications.

3. CSI AND MOTION

3.1 CSI Background
Current WiFi standards like 802.11n and 802.11ac use

OFDM in their physical layer. OFDM divides the channel
into multiple subcarriers and data is sent over the subcar-
riers using the same modulation and coding scheme. This
partitioning of the channel into subcarriers allows OFDM
to combat the frequency selective fading due to multipath.
Because each subcarrier is smaller than the coherence band-
width, it suffers from independent flat fading. This way, the
effect of multipath on different subcarriers can be considered
more or less uncorrelated.

The CSI information represents signal strength and phase
information for OFDM subcarriers. The received signal can
be modeled as

y = H · x+ n (1)

where y is the received signal, x is the transmitted signal, n
is the channel noise and H is the CSI which is a complex-
number matrix that indicates the channel frequency response
of each individual subcarrier for every spatial stream. This
way, CSI for all subcarriers and all spatial streams is a
m × n × w matrix, where m is the number of transmitter
antennas, n is the number of receiver antennas and w is the
number of subcarriers. Such a fine-grained matrix can accu-
rately capture the temporal and spectral conditions of the
channel and changes caused by small-scale multipath effects.
Our proposed APsense framework is leveraging the afore-
mentioned properties of CSI to recognize the fine grained
motions of the receiver and further predict the sensor pat-
terns of the receiver on the AP side.

Until recently, CSI values were not available outside the
NIC firmware which made it difficult to use it for any other
application. Recently, Harperin et. al. [2] developed firmware
and driver support for Intel 5300 802.11n NIC that can ex-
tract the CSI values in kernel/user space. We use their tool
in our work. Note that although 802.11n utilizes 56 subcar-
riers in a 20 MHz channel, the CSI tool [2] reports 30 values
for 30 groups evenly spread over the 56 subcarriers. This
way, CSI for one spatial stream is a vector

H = [H1,H2, . . . ,H30] (2)

where Hi represents the ith subcarrier group. Hi is a com-
plex number representing both amplitude and phase responses

Figure 1: Different type of hand motions studied in APsense

as follows

Hi =| h | ejp (3)

where | h | is the amplitude and p is the phase.

3.2 Experimental Settings
We use CSI tool [2] enabled on Intel 5300 802.11n NIC

with three external antennas as the receiver to collect the
CSI data which will be eventually available on the AP side
through the feedback information. In order to understand
the relationship between CSI changes and motion patterns,
we attach a Shimmer [1] device at the center of the external
antennas. The Shimmer device has accelerometer, magne-
tometer and gyroscope sensors, and we collect their values
to establish ground truth in our comparison. To check if CSI
can classify motions or not, we try four separate hand move-
ments as shown in Fig. 1. Albeit simple, these motions can
be combined to generate many other complex gestures. In
our experiments, the client stays at the same location, fac-
ing towards the AP in a line-of-sight link. We repeat each
motion 50 times while collecting both the CSI and Shimmer
sensor data. The CSI is collected at a rate of 10 samples per
second for a more tractable analysis, while the Shimmer data
is collected at 100 samples per second for higher accuracy
in understanding the motion type. The same experiments
are repeated for a case where the client device is stationary
in order to establish a base line for comparison. We also
repeat the experiments at four different indoor locations. In
order to reduce the impact of excessive multipath in our ex-
periments, we perform the experiments at night time with
nearly no movement of surrounding objects.

3.3 Identifying Motion Using CSI
Now we take a look at how fine grained motions can affect

CSI. Our observation is that the multipath changes due to
small motion affect individual subcarriers and each subcar-
rier suffers from uncorrelated flat fading. Also, we observe
that different subcarriers are affected in different ways for
different motions. To demonstrate this, we collect CSI traces
for three cases - device is stationary, motion 1 and motion 2
(Fig. 1). Fig. 2 shows the observed CSI amplitude density
distribution for each subcarrier within a 30 seconds’ trace.
As we can see in Fig. 2a, in the case where there is no mo-
tion, the amplitude values are much more concentrated. On
the other hand, Figs. 2b and 2c shows that in the case of
motion, the CSI amplitude is much more dispersed. Com-
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Figure 2: Density Distribution of CSI amplitude in each subcarrier for a 30s trace where client is (a) stationary, (b) in motion 1 and
(c) in motion 4. The x axis is the subcarrier index from 1 to 30 and the y axis is the CSI amplitude.

paring Fig. 2a with Figs. 2b and 2c shows that CSI can
clearly identify if the device is stationary or in motion. Fur-
thermore, the pattern of dispersion in Figs. 2b and 2c is
noticeably different which tells us that a closer look at the
CSI values can in fact classify different types of motions as
well.

3.4 Classifying Motions using CSI
We now know that CSI can identify whether or not the

receiver is in motion. Next, we take a step further to see if
CSI can also be used to classify different types of motion.

3.4.1 How is CSI Influenced by Motion?

Before doing rigorous feature extraction, we first calculate
some obvious yet important statistics about the subcarrier-
level information available in CSI. We first divide the CSI
data in time windows of t seconds and calculate different
statistics for each time window. As an example, we calculate
the mean of amplitude of 30 subcarriers at for all samples
in a time window and find the 90th percentiles of the mean
values. Intuitively, this should reflect the upper limit of
mean values in the time window without considering the
impact of outliers. As shown in Fig. 3a, the 90th percentile
of mean values is noticeably different for different motion
types. This is because different motion has different effect
on the maximum amplitude of all subcarriers. Next, we take
a look at a specific randomly chosen subcarrier and calculate
the standard deviation of its amplitude values in given time
window. As shown in Fig. 3b, we observe that this value
can be used to distinguish between static case, motion 3
and motion 4. Note that although the same value can not
be used for classifying motions 1 and 2, we see that the
same statistic about other subcarriers can be used for that
purpose. Next, we determine a more comprehensive set of
features that we use for motion classification.

3.4.2 CSI Features Extraction

To find a more complete set of candidate features, we
derive statistics in both time and frequency domains based
on the raw CSI data. We use two sets of features - features
for individual subcarrier and features across all subcarriers
in a given time window.

Features for individual subcarrier: We calculate the
following features using CSI amplitude value in each time
window.

• Mean/Median - Measuring the static component of
CSI amplitude with different motions’ impacts

• Min/Max/Range - Measuring the changing range of
CSI amplitude

• Standard Deviation - Capturing the fluctuation level
with in each time window

• Percentile at 10% / at 90% - Measuring the CSI am-
plitude range without potential outliers.

• Normalized Energy - Capturing periodic changing pat-
terns caused by different motion. Here, we use FFT to
calculate the samples in frequency domain.

• Normalized Entropy - Measuring the degree of disorder
using the frequency domain samples

Features across all subcarriers: To calculate a feature
across all subcarriers, we first calculate its value for a specific
CSI sample. We then take various statistics of that over the
time window where there are many different CSI samples.
For each feature calculated over all subcarriers, we calculate
its mean, min, max, range, standard deviation, skewness
and kurtosis over the time window.

In addition, to have a overall comparison in each time
window, for each time window T , we can get the following
matrix across subcarriers

H = [H1
T
,H2

T
,Hi

T
, · · · ,HT

T ] (4)

where Hi
T is a vector of length 30 and includes the CSI am-

plitudes of all subcarriers for ith time sample. After calcu-
lating the correlation matrix between Hi

T and Hj
T , we can

obtain the largest and the second largest normalized eigen-
values as the other two features for CSI [6]. As described
in [6], larger values of these two features indicate lesser or
no motion. This can be seen in Figure. 3c which shows the
largest eigenvalues of different motions.

Similarly, we also obtain the following matrix across time
between individual subcarriers

S = [S1,S2,Si, · · · ,S30] (5)

where Si is vector of length T and includes all the CSI am-
plitudes for ith subcarrier in this time window. We also
get a correlation matrix by calculating the correlation be-
tween Si and Sj. Then, we obtain the largest and the second
largest normalized eigenvalues of the correlation matrix and
use them as the features for CSI.
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Figure 3: Comparison different CSI features for different types of motions

Figure 4: APsense Architecture

4. APSENSE
In this section, we introduce APsense, our framework that

uses CSI feedback at the AP to recognize the fine-grained
motion of the associated clients. As we mentioned before,
the ultimate goal of APsense is to estimate the sensor read-
ing patterns (e.g. accelerometer) of the clients. Such CSI-
based sensing of client’s sensors on AP side can enable nu-
merous new applications without requiring any additional
message overhead. In this work, we have focused on classi-
fying different motions as a first step towards it.

4.1 System Overview
The architecture of APsense is shown in Fig. 4. Here, the

AP first collects the CSI information from the client smart-
phone. It then extracts useful features from raw CSI data as
shown in Section 3.4.2. These features are then used by ma-
chine learning module that can learn and classify different
motions. In the future, we plan to extend our system where
machine learning module can recognize/classify sensor pat-
terns (dotted boxes in Fig. 4) which can then be used for a
number of different applications.

Machine Learning Model: To learn and classify dif-
ferent motion based on CSI features, we use two commonly
used supervised machine learning techniques - Naive Bayes

and Decision Tree. We choose these two methods because
the can handle non-linear nature of the features and their
inter-dependencies. Also, decision tree can output simple
if-else classification models that are useful in understanding
the importance of different CSI features. We plan to use
other more complex and customized classifiers in the future.

Note that current design of APsense requires a small amount
of client feedback for training the classifier. Here, the client
device can provide the motion type to the AP along with
the CSI data for some initial samples. Once the classifier
model is built, it can then classify motions purely based on
the CSI data.

4.2 Performance Evaluation

4.2.1 APsense at Different Locations

As explained in Section 3.2, we evaluate APsense at four
different indoor locations. Table 1 shows the true positive
rate of both machine learning methods for all four locations.
Here, true positive rate is defined as the fraction of instances
correctly classified as motion type X out of all instances ac-
tually belonging to motion type X. As we can see, both the
machine learning methods can very well classify different
motions at all four locations. The classification accuracy
is much higher (93.8% and 85.9%) for locations L1 and L3
because both the locations have much richer multipath envi-
ronment compared to locations L2 and L4. We also combine
instances of all the locations and perform a single classifi-
cation across the locations. This is to evaluate how well
our classification can work when the model is trained at a
specific location. We observe in Table 1 that overall classi-
fication accuracy drops (especially for Naive Bayes) in the
combined case. This shows that APsense can achieve higher
accuracy if the model is trained using location specific CSI
profile.

Table 1: APsense Motion Recognition Results at Different Lo-
cations - TP Rate

Method L1 L2 L3 L4 Combined
Naive Bayes 0.927 0.783 0.859 0.738 0.568
Decision Tree 0.938 0.774 0.815 0.786 0.748
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Figure 5: TP Rate comparison with different time window sizes

Next, we take a look at the detailed results of combined
locations case in Table 2. Here, precision is defined as ra-
tio of number of true positives to the total number of true
positive and false positives. The ROC (Receiver Operating
Characteristics) area is the area under the curve when plot-
ting FP rate versus TP rate. We can see that stationary
case and motion 4 have a very high TP rate, while motions
1, 2 and 3 are often mis-classified reducing their TP rate.
We believe that this is due to nature and directions of the
motions. As shown in Fig. 1, motions 1, 2 and 3 are along
the same X-Y plane, keeping the distance same from the AP.
On the other hand, in motion 4, the motion is towards and
away from the AP.

Table 2: Detailed Analysis for Combined Locations Case

Motion Class TP Rate FP Rate Precision ROC Area
Static 0.989 0.007 0.978 0.997

Motion 1 0.592 0.079 0.646 0.892
Motion 2 0.614 0.072 0.672 0.920
Motion 3 0.625 0.098 0.580 0.891
Motion 4 0.848 0.054 0.778 0.969
Average 0.748 0.059 0.746 0.938

4.2.2 Time Window Size

The size of the time window over which we calculate the
CSI features is an important factor. The above results are
presented for the time window size of 5 seconds. We now ex-
periment with changing the size of the time window to see its
impact. Fig. 5 shows the comparison of TP rate for differ-
ent locations with time window size of 2 and 5 seconds. We
observe that larger time window size provides better classi-
fication accuracy for all locations. This is mostly because
more number of CSI samples are available for calculating
features in the case of larger window size.

4.3 Correlating CSI and Sensor values
In our ongoing work, we plan to extend APsense such

that it can estimate the client’s sensor pattern using the
CSI data. To test the feasibility, we calculate different fea-
tures of Shimmer sensor data collected in our experiments
(Section 3.2). We then calculate one-on-one correlation of
these features with CSI features. Intuitively, if these fea-
tures are correlated to each other, it means that we can use
the CSI data to derive how the sensor data changes. Fig.
6 shows the correlation coefficient for different pairs of CSI
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Figure 6: Correlation between sensor and CSI features

and sensor features. As we can see, a large number of pairs
show a very high correlation which tells us that we can use
the CSI features to derive the sensor patterns.

5. DISCUSSION AND CONCLUSION
In this work, we showed that CSI data can be used to

determine client’s fine-grained motion at the AP. There are
multiple challenges in APsense as it evolves in our ongo-
ing work. First, it is expected that motion detection accu-
racy would decrease when the surrounding environment has
many moving objects and the resultant multipath is severe.
Our current experiments were done in a controlled environ-
ment with mostly stationary surroundings. We are address-
ing these challenges as part of our ongoing work. Second,
since CSI samples are available only when actual frames are
sent, it would become challenging to detect motion when
available number of CSI samples are sparse. Revising the
CSI features for fewer samples such that motion detection
accuracy is still high is also an interesting direction of future
work.
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