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Abstract—There has been a growing interest in equipping
the objects and environment surrounding users with sensing
capabilities. Smart indoor spaces such as smart homes and offices
can implement the sensing and processing functionality, relieving
users from the need of wearing/carrying smart devices. Enabling
such smart spaces requires device-free, effortless sensing of
user’s identity and activities. Device-free sensing using WiFi has
shown great potential in such scenarios, however, a fundamental
question of person identification has remained unsolved. In this
paper, we present WiWho, a framework that can identify a
person from a small group of people in a device-free manner
using WiFi. We show that Channel State Information (CSI) used
in recent WiFi can identify a person’s steps and walking gait.
The walking gait being distinguishing characteristics for different
people, WiWho uses CSI-based gait for person identification. We
demonstrate how step and walk analysis can be used to identify
a person’s walking gait from CSI, and how this information can
be used to identify a person. WiWho does not require a person
to carry any device and is effortless since it only requires the
person to walk for a few steps (e.g. entering a home or an office).
We evaluate WiWho using experiments at multiple locations with
a total of 20 volunteers, and show that it can identify a person
with average accuracy of 92% to 80% from a group of 2 to
6 people respectively. We also show that in most cases walking
as few as 2-3 meters is sufficient to recognize a person’s gait
and identify the person. We discuss the potential and challenges
of WiFi-based person identification with respect to smart space
applications.

I. INTRODUCTION

There has been an increasing interest in offloading the
functionality of user’s smart devices to the infrastructure
surrounding the user. Embedding sensing, computation and
communication capabilities in the environment such as home
or office can allow a person to be truly “device-free” while
still receiving the same services otherwise available through
portable/wearable devices like smartphone. Such intelligent
environments are often referred as smart spaces. Numerous ap-
plications can be enabled with the realization of smart spaces.
For example, currently counting the number of steps walked by
a person requires her to constantly carry a device (smartphone
or fitness band) at all times even at home. Similarly, tracking
sleep behavior requires her to wear a sleep tracking device
even during her sleep. The need of carrying/wearing devices
introduces a great deal of discomfort to the user and also
inaccuracy in measurements when the user does not wear the
device as suggested. With the emergence of smart space, such
sensing and activity tracking functionality can be performed

by the environment (home or office) itself, relieving people
from the need of constantly wearing smart devices.

There are huge challenges in the true realization of smart
spaces. Tracking a person’s actions in smart spaces requires
sensing without any physical interaction. Monitoring a per-
son’s activities like sleep and walking through audio/video
is possible, however, it imposes unacceptable privacy risks.
Recent research on activity tracking using RF signals of WiFi
provides an attractive solution for device-free sensing. Authors
in [1] demonstrated that a large set of in-home activities
can be identified using WiFi. Similarly, device-free person
localization using WiFi is also shown to be feasible using [2].
WiFi-based activity recognition is especially attractive due to
the pervasiveness and low-cost availability of WiFi. The avail-
ability of Channel State Information (CSI) for 802.11n WiFi
devices has further fueled the device-free activity recognition
using WiFi.

Current state of WiFi-based activity recognition has many
limitations. One of the biggest limitations of such schemes
is that they cannot identify a person using WiFi in a smart
space. Person identification can be considered a prerequisite
for activity recognition since without that, it is not possible
to associate a sensed activity to a given person. For example,
if it is possible to identify the person who is in the home,
detected activity (e.g. cooking [1]) can be associated with that
person. Such person identification can make a way for many
applications in smart spaces. When a smart home detects that
one of the five family members has entered the home, it can
use that identity to trigger person-specific customization such
as adjust room temperature using thermostat, provide content
recommendation on television, start coffee machine etc. It
would also facilitate several applications related to Internet-
Of-Things (IoT) that might be otherwise infeasible without
knowing the person’s identity.

In this paper, we investigate person identification problem
using WiFi. Specifically, we address the following question
- can we identify a person out of the n known people
with simply the use of WiFi? We are primarily interested in
scenarios such as smart homes and offices where a person
currently present can be identified from the know n people
sharing the home or office. As an example, our technique is
applicable to a typical house or apartment complex that is
shared by 4-5 family members or an office that is shared by
6-7 people. In both cases, it is reasonable to assume that there
is an active WiFi connection. In this paper, we present WiWho,
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a framework which can monitor and mine the variations in the
WiFi signals to identify a person.

Person identification using WiFi is an extremely challenging
problem. One possibility is that in a small group of people,
a person can be identified uniquely from her height or body
mass. Sensing the impact of a person’s height or body mass
using WiFi signal is very difficult in indoor environments
due to severe multipath. Such fine-grained sensing is not
feasible using current off-the-shelf WiFi hardware and requires
a dedicated software-radio or an antenna assembly (such as [2]
or [3]). Our objective in this work is to use the existing WiFi
infrastructure to allow pervasive, low-cost deployment of smart
spaces. To address these challenges, WiWho relies on off-
the-shelf WiFi hardware to measure variations in WiFi signal
using detailed CSI. WiWho exploits the rich indoor multipath
to understand how various reflected paths are affected when
a person walks around. We show that after removing distant
multipath and other noise, it is possible to detect a person’s
walking steps directly from the CSI. This step information in
signal domain is rich enough to characterize the person’s gait
(manner of walking). Previous research [4], [5] has shown that
gait is sufficient to identify the person. By analyzing the shape
of a person’s step, walking speed and overall variation in CSI
due to walking, WiWho is able to identify a person uniquely
from a small group of people.

WiWho is well suited for person identification in smart
spaces. It does not require a person to carry any device (such
as a smartphone) for identification. This is especially important
in indoor scenarios as a person might not carry the smartphone
with her all the time. Unlike face/fingerprint recognition
methods which require deploying dedicated hardware, WiWho
is low-cost as it reuses the existing WiFi infrastructure for
identification. Another important advantage of WiWho is that
it simply relies on person’s walking and does not require her
to proactively perform any activity to get identified. It also
provides improved privacy compared to identification through
audio/video monitoring which can also track other private
activities of the person. With extensive evaluation, we show
that WiWho provides moderate to high accuracy of person
identification. We believe that such accuracy is reasonable for
smart space applications (homes and offices) where primary
purposes of identification are convenience and entertainment.
WiWho is not suitable for high-risk applications (such as
government identification or authentication at airports) where
mis-identification can have life-threatening consequences.

The contributions of this work can be summarized as
follows:

• We provide measurement-based evidence that channel
state information between two WiFi endpoints can be used
to identify walking steps of a (device-free) person. Similar
to accelerometer-based step detection, step cycles can be
constructed purely from the CSI data. This can enable various
smart space applications such as a device-free pedometer.

• We demonstrate that person’s step information available
by monitoring CSI is rich enough to determine the person’s
individual walking gait. Based on the previous works which
proved that gait can be used to identify the person, we
analyze the CSI-based gait of different people to determine the

properties that can allow us to distinguish different people. To
this end, we present WiWho, a framework that can passively
monitor the CSI in smart spaces, and identify a person (out
of a small group of known people) based on her walking gait
analysis.
• We evaluate WiWho using experiments with off-the-shelf

hardware and 20 volunteers at multiple locations. WiWho can
identify a person with average accuracy of 92% to 80% from
a group size of 2 to 6 people respectively. In most cases,
it only requires a person to walk for less than 2-3 meters
in order to get identified based on the gait analysis. We
discuss the potential and limitations of such WiFi-based person
identification from the perspective of smart space applications.

The remaining of the paper is organized as follows. Sec-
tion II provides an overview of WiFi-based sensing ap-
proaches. We discuss the design goals and system overview in
Section III. Section IV provides a motivating study describing
how CSI can detect steps and feasibility of person identifi-
cation. Section V describes the details of walking detection
and Section VI provides the details of person identification
using CSI-based gait. The evaluation results are presented in
Section VII followed by a discussion in Section VIII. We
conclude in Section IX.

II. RELATED WORK

Wireless Sensing: Recently, wireless signal based sensing
has innovated many applications. Recent works have shown
that we can leverage the wireless signals to detect human
motion and activities [1], [2], [6]–[8], recognize gestures [3],
[9] and other types of sensing (e.g. hearing people talk [10],
counting crowd [11], estimate queue length [12], detecting
fall [13] and monitoring sleep [14]). However, among these
wireless sensing applications, there remains one fundamental
question unsolved - person identification. This paper is the first
work to achieve person identification purely using wireless
signals in a device-free manner. We believe that our work
can be applied with the aforementioned works to enable more
practical and personalized applications in smart spaces.

Gait-based Person Identification: Gait has been recog-
nized as a unique signature for human beings. Recent works
have demonstrated that gait can be used as a biometric signa-
ture for person identification. In [15], [16], authors use video
cameras to record people walking and extract gait information
from the video record. These video based methods introduce
major privacy concerns and require camera deployment incur-
ring high cost. Other works leverage various sensors, such as
floor sensors [17], rotation sensors [18] and accelerometer-
based wearable or smartphone sensors [19]–[21], to capture
gait signature. Ngo et al. [5] use the largest inertial sensor-
based gait database which contains 744 subjects to further
evaluate and compare different sensor based gait identification
approaches. Pan et al. [22] deploy geophone on the floor and
identify walking people through detected structural vibration.
However, all above sensor based methods require people
carrying additional devices on the body or deploy these sensors
in the environment which are not convenient and require
additional cost. Our work solves this problem in a convenient,
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Fig. 1: System architecture of WiWho

low-cost and effortless manner leveraging the existing WiFi
infrastructure.

Many other methods can be used for person identification.
Unar et al. [4] did a comprehensive survey about all possi-
ble biometrics which can be used for person identification.
Some biometric technologies, such as fingerprint, retina and
face recognition, have higher accuracy and are more reliable.
However, such kind of methods can not be directly used for
smart spaces scenarios either due to their high cost or inability
to operate in a device-free manner.

III. OVERVIEW OF WIWHO

In this section, we describe the design goals, usage scenarios
and challenges of WiWho, provide an overview and discuss
its limitations.

A. Usage Scenarios and Design Goals

Usage Scenarios: Our objective in this work is to design
a low-cost, device-free solution for person identification using
WiFi. It is necessary to point out that our objective is not
to design a person identification system that provides nearly
100% accuracy. Our system should not be used in many situa-
tions/scenarios such as identifying a person at an airport or any
other government identification where error in identification
can lead to life-threatening consequences. Instead, our system
is useful for purposes of convenience and entertainment in
homes and offices where the penalty of mis-identification is
not catastrophic.

Design Goals: In the view of the application context, the
proposed person identification system in smart spaces should
meet the following goals:

(1) Device-free and effortless: The system should not
require the person to carry any device. It is expected that the
person in a smart space is not carrying her smartphone or any
similar device such as a wrist-band. This is inline with the
design goal of a smart space itself where instead of relying
on the person, more and more functionality is handled by the
infrastructure itself. Requiring the person to carry a device
that can provide identification credentials to the smart space
reduces the overall usability and introduces inaccuracies when
the person does not wear the device as intended. Furthermore,
no proactive interaction from the person should be necessary
in order to get identified. This means that the person should not

have to perform any additional activity (such as posing for face
recognition) to make the identification process as effortless as
possible.

(2) Low cost and moderate accuracy: The solution should
be low cost. Moderate identification accuracy is acceptable.
This means that a solution which can provide very accurate
identification but incurs high cost is less desirable than the
one where moderate accuracy is feasible at a lower cost.
An example of such system is fingerprint-based biometric
authentication which is not only a high cost solution but also
defeats our previous goal of effortless person identification.

(3) Privacy: Person identification process should not re-
sult in privacy leakage. Using of audio/video monitoring for
identification (e.g. voice/face recognition) is not desirable,
since they can track each and every movement of the person.
Similar to the design goal of low-cost, it is necessary that our
solution protects the person’s privacy even if that reduces the
identification accuracy.

B. Central Idea and Challenges
Our central idea in this work is to exploit WiFi signals

for person identification. It can be claimed that WiFi-based
person identification can meet all the design goals described
above. WiFi is already pervasive in indoor environments such
as home and office. This means that using WiFi-based sensing
will eliminate the need of deploying a dedicated system.

At first, it is not clear how WiFi-based sensing can be
used for identifying people in an indoor environment. One
possible solution is to analyze the WiFi signals reflected from
a person’s body. Assuming that the person was stationary
(e.g. standing without any movements), the received signal
might have different signature for different people depending
on his/her height, waist and body mass. The problem with
this approach is that it is extremely difficult to isolate the
signal that reflected from a person’s body because indoor
propagation is dominated by severe multipath (presence of
many reflected paths). Although recently WiTrack [2] showed
how body reflection waves can be used for tracking, it requires
a software radio platform and custom antenna assembly. We
are interested in developing a solution that can work with
low-cost off-the-shelf WiFi hardware without requiring any
modifications.

In this paper, we propose a novel way of using WiFi
signals for person identification. We show that even though
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the indoor environments face severe multipath, a person’s
walking activity can be recognized using CSI. It is also shown
that variation in the wireless channel state provides sufficient
information so that it is possible to identify a person’s walking
gait. Similar to accelerometer-based gait analysis, we analyze
the CSI-based gait information for different people and find
that it not only can provide detailed step information but also
can distinctly identify a person. This provides us a novel
technique to identify a person from a small group of people
without requiring the person to carry any device or perform
any activity proactively.

Challenges: There are many challenges in using CSI-based
gait for person identification. First of all, it is not clear whether
we can detect if and when a person is walking purely using
the CSI data. This is because in a rich multipath environment
such as home or office, the received signal is a combination of
multiple reflected paths. This requires design of a technique
that can distinguish CSI variations due to walking from that of
other activities. Second, even if we can determine that a people
is walking, to identify the person, it is necessary to observe
fine-grained gait information from the CSI. This requires that
the effect of a person’s walk is distilled from the noisy signal
which may be affected by other reflections (e.g. people moving
in the next room). Third, different from accelerometer-based
gait measurement which is location-independent, CSI-based
gait is highly dependent on the multipath of a given room. We
will address these challenges in Sections IV, V and VI.

C. System Overview

The outline of our WiWho is provided in Fig. 1. We assume
that there are two stationary endpoints in the room of the
home or the office where WiWho is deployed. These endpoints
communicate with each other to collect the current CSI. One
endpoint can be a WiFi AP and the other can be any WiFi
equipped device such as a desktop computer or a smartTV.
Two endpoints are only needed to collect the CSI data, and
the WiWho is only required to be operating on one of the
endpoints (say the AP). It is assumed that a person (not
equipped with any device) starts walking in the room. At the
same time, the collected CSI samples are constantly analyzed
to determine if the person is walking or not. This includes
removal of distant multipath and noise filtering. If it is detected
that a person is walking, the CSI samples are input to the gait
analysis module. The gait analysis consists of two parts:

(1) Step analysis: In the step analysis, the step cycle is
constructed from the CSI data and for each of the detected
step, and various features of its shape are derived.

(2) Walk analysis: It analyzes the overall walking behavior
of the person for the entire walk segment (multiple steps). This
provides information on various body movements that can be
different from person to person.

The characteristics of step and walk are extracted in the
form of features. They are then compared to pre-trained
people walk signatures using a machine learning classifier.
The classifier outputs its prediction of the person’s identity.
An important part of WiWho is training where per-person
gait signatures are built. In the training phase, each person
who would like to be identified walks on a pre-determined
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Fig. 2: Comparison between CSI Amplitude and on-body
accelerometer readings while a person is walking
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Fig. 3: Comparison between the CSI-based gait of 2 people
and the static environment profile

path for fixed number of times, where the CSI samples are
collected. The CSI samples are analyzed for gait and walk
characteristics, and a CSI-based gait signature is extracted for
each person.

Assumptions and limitations: WiWho assumes that per-
son’s walking path is a straight line. This is because CSI
variations when person turns while walking make it extremely
difficult to identify the steps and gait. We believe this as-
sumption does not reduce the usability of the system. In a
home or an office, a straight walkway such as a corridor or
a hallway can be chosen for the purpose. In fact, choosing
a walkway that leads to a home/office works better because
a person can be get identified at the same time when she
enters the home/office. Additionally, WiWho cannot be used
to track a person because the identification is only triggered
when the person enters/leaves the room. WiWho is designed
and evaluated for a single person in the room at any given
time, where we can associate a certain activity detected by
WiFi signals to this person. However, it can remove the impact
of another person’s presence outside the room using distant
multipath removal.
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Fig. 4: Comparing CSI-based gait for different people over
time

IV. MEASUREMENT BASED FEASIBILITY STUDY

In this section, we will provide some preliminary results
that serve as a motivating study for WiFi-based person iden-
tification.

A. Detecting Gait from CSI

The first challenge of designing WiWho is to detect if there
is a noticeable pattern in the observed CSI while a person is
walking. Note that just detecting whether a person is walking
or not is not enough to distinguish between different people.
WiWho requires detecting the step cycle and constructing gait
profile from a person’s walking activity using purely observed
CSI data.

To demonstrate that gait can be detected using CSI, we carry
out an experiment where a person walks on a straight line in a
room with two WiFi endpoints communicating and collecting
CSI. For generating the ground-truth of gait, the person also
carries a smartphone in the pocket. Fig. 2 shows synchronized
CSI and accelerometer data for the person’s walking. For
CSI, we plot the amplitude of 30 subcarriers for one spatial
stream, and for accelerometer, we plot the acceleration values
for X axis. Note that the CSI data shown in this section is
preprocessed from the raw data for removing various types of
noise. We will discuss this procedure in details in Section V-A.

It is observed from Fig. 2 that the step cycles can be
extracted from the CSI data. The steps observed through CSI
follow a similar pattern of alternating peak and valley. Unlike
accelerometer observations, the steps detected by CSI is less
fine-grained i.e. various phases of gait are not clearly detected
like [23]. However, we will show that this CSI-based gait
information is rich enough for person identification. Since CSI-
based gait is observed by nearby WiFi devices and not by a
device worn on the person’s body, it is dependent on location-
specific multipath. This means that the gait varies at different
locations as a person walks in a room. We will address these
issues in Section VI.

B. Difference in CSI-based Gait for Two People

Although we are able to get the gait information from CSI, it
is not clear whether such information is sufficient to uniquely
identify different people. To investigate this, we perform an
experiment where two people walk in a room on the same path
and we capture the CSI data. Fig. 3 shows the CSI data for
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Fig. 5: (a) Channel impulse response showing distant
multipath (b) Comparison of FFT energy in a 6s window

between different activities

the initial four steps while two people are walking separately.
Note that we also show the static environment CSI profile
where there is no person walking in the room. By visual
inspection, we can see the difference between the shape of
the steps for the two persons and the static profile is quite
clear. Also, the step lengths also observed to be different for
these two people. This visually observed difference and many
other underlying differences will be used for building unique
gait profile for each person which will be used for identifying
individual person.

C. Consistency of CSI-based Gait over Time

One of the most important question to investigate for person
identification through CSI-based gait is - does the CSI-based
gait for a given person remains the same over time for the same
location (e.g. room)? This means that if we learn a person’s
CSI-based gait at one time, can we use the same gait to identify
the same person at a different time? To address this, we ask 4
different people to walk one after the other for 20 rounds. To
understand the consistency over time, the rounds are separated
by 10 minutes. We plot the mean CSI amplitude across all
subcarriers of each round for 4 different people in Fig. 4. It is
observed that for any given person, the CSI-based gait remains
similar between each round even over nearly 2 hours of time
period.

Our preliminary study shows that CSI-based gait for one
person is more or less consistent over time, and it is sufficiently
different for different people. This motivates us to design a
person identification system based on CSI-based gait.

V. CSI PREPROCESSING AND WALKING DETECTION

A. CSI Preprocessing

Current WiFi standards like 802.11n and 802.11ac use
Orthogonal Frequency Division Modulation (OFDM) for their
physical layer. In OFDM, the channel is divided into multiple
subcarriers and the data is transmitted over the subcarriers
using the same modulation and coding. The CSI information
represents the amplitude and phase information of the OFDM
subcarriers. It is a complex-number matrix that shows the
Channel Frequency Response (CFR) of each individual subcar-
rier for all spatial streams. The raw CSI data can be considered
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noisy for direct use in person identification. Specifically, there
are two types of noise we are interested in removing - (1)
distant multipath and (2) high-frequency noise due to other
movements.

(1) Distant multipath removal: Distant multipath is a result
of reception of a strong signal due to reflection from a
distant object or person. For example, in case of WiWho,
such reflection can be due to person moving far away from
the room where CSI is collected. The distant multipath can
cause the observed CSI profile to vary in a non-deterministic
manner which can affect the gait analysis. To address this,
we remove the distant multipath from the CSI data. Note that
the CSI contains CFR for 30 subcarriers which includes the
distant multipath. We first convert the CFR to Channel Impulse
Response (CIR) which provides the delay profile of signal
reception. An example CIR is shown in Fig. 5a which contains
distant multipath components after the delay of 1 microsecond.
We remove the multipath components that have delay more
than 0.5 microseconds, and convert the CIR back to CFR
using FFT (Fast Fourier Transform). Note that this threshold is
chosen based on the multipath delay characterization provided
in previous studies such as [24]. The multipath removal allows
us to focus on the reflected paths within a room which is
necessary for fine-grained analysis of gait.

(2) High-frequency noise removal: Another important noise
removal procedure in our case is to eliminate the high-
frequency noise from time-domain CSI signal. The walking
activity of a person typically exhibits energy in 0.3 Hz to 2
Hz [25] frequency band. This is attributed to arm and leg
movements while walking which is known to happen at no
more than 2 Hz frequency. In order to distill the step cycles
from the time-series CSI data, we apply a butterworth band-
pass filter with cutoff frequency of 0.3 Hz to 2 Hz. Such filter
also removes the static DC component.

Note that the high-frequency filtering is only necessary
for step analysis which finds the step cycles and performs
step shape analysis. WiWho also performs walk analysis that
extends to an entire walk segment (multiple steps). In the walk
analysis, we are interested in studying the movement of body
parts which may happen at a faster rate than 2 Hz. Hence, we
will separately study different frequency bands (upto 10 Hz)
for walk analysis in Section VI-C.

B. Walking Detection

As shown in Fig. 1, the first step towards identifying a
person using CSI-based gait is to detect whether a person is
walking or not. In this section, we discuss how we can detect
walking activity using the CSI data and how we can distinguish
it from other indoor activities such as standing, sitting, typing
etc. Accurately detecting the walking activity will ensure that
the gait-based person identification is only initiated when a
person is found to be walking.

Our approach towards distinguishing various activities from
the CSI data stems from accelerometer and gyroscope based
activity recognition. Based on the previous research [25], [26]
on this topic, different human activities can be identified
using the frequency domain analysis of a person’s movements.
Typical indoor activities such as sleeping, standing, sitting,
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Fig. 6: Comparison of FFT coefficients for different activities

walking etc. show different characteristics in the frequency
domain. These activities can be categorized as low or mod-
erate intensity activities as shown in [25]. Since the walking
detection needs to be performed constantly to check if there is
any walking activity, the walking detection method should be
simple and efficient. Leveraging simple features in frequency
domain is ideal for the purpose.

Note that the smart space scenario allows us to exclude the
high intensity outdoor activities (driving, playing sports etc.)
which in turn simplifies how we can detect if a person is
walking or not.

To verify that frequency domain properties of different
activities are also observed in the CSI, we perform experiments
where (1) there is no person in the room, (2) a person
is sitting and performing routine activities such as typing,
moving objects on a desk, (3) a person is standing (without
taking steps) using her phone, writing on whiteboard and (4)
a person is walking. Fig. 6 shows the coefficients of the FFT
profile for the four activities (without the DC component)
observed by CSI data. As we can see, in the case where
there is no person in the room, very low amplitude of FFT
coefficient is observed in the low frequency band. Compared
to that, sitting and standing exhibit higher amplitude values
(more intensity) for the same frequencies. However, for the
walking activity, the observed intensity in 0.3-2 Hz band is
noticeably high. This is expected given that movement of legs
and arms are known to move at that frequency while walking.

To represent the FFT profile of different activities, we use
a metric referred as motion energy [25]. The motion energy
(or simply energy) can be calculated as

Energy =

window length/2∑
i=1

magnitude2 (1)

where magnitude values are the normalized Fast Fourier
Transform (FFT) coefficients calculated over the time window.
Fig. 5b shows the observed energy for the four activities for
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2 people. Since energy observed during walking activity is
much high compared to sitting and standing, we use calculated
energy as a way to detect if the person is walking or not.

VI. PERSON IDENTIFICATION USING CSI-BASED GAIT

As shown in Fig. 1, the CSI-based gait analysis of WiWho
consists of two parts: (1) step analysis and (2) walk analysis.
In this section, we first describe the features used for both the
parts, and then explain how they are used for step and walk
analysis to construct a gait pattern profile. The result of overall
gait analysis is used for person identification.

A. Constructing CSI Features

Designing the feature space that can capture a person’s
walking gait is challenging because CSI includes amplitude
and phase values for each of the subcarriers and spatial
streams, and dimentionality reduction is necessary for a
tractable analysis. In this work, we primarily focus on one
spatial stream mostly due to significant similarity between
the data from multiple spatial streams and to lower the
computational cost.

Let vt = {c1, c2, ..., cs} be the CFR vector for s subcarriers
at time t. We first append additional statistics to vt to generate
v∗t which includes vt, and the maximum, minimum, mean,
median, standard deviation, skewness and kurtosis of vt. These
statistics capture the shape (e.g. peakedness, symmetry, vari-
ation) of instantaneous distribution of CFR of all subcarriers.
This process is repeated for each new sample of CSI data for
the remaining of the feature calculation.

The features are calculated for a time window where the
window can be for a step or for the entire walk segment. Ta-
ble I describes the time domain and frequency domain features
that are calculated for the window. These features are shown to
be useful in accelerometer-based activity classification in [25].
For a window of size T , features of the table are calculated for
each subcarrier and its statistics included in v∗t for all t ∈ T .
These features enable detailed time and frequency analysis
of CSI data for a time window. We include the frequency
domain features such as entropy and energy as they profile the
walking activity inside the time window with high accuracy.
Note that the choice of time window depends on whether we
are analyzing individual steps or a walk segment. To evaluate
the impact of these features on person identification, we use
Information Gain(IG) [27] as a metric. Fig. 7 shows the top
ten features we use to conduct per-step and walking analysis.
The average IG value of selected features for walking analysis
is higher than the features for per-step based analysis. We
observe that the high IG features for walking consist of many
frequency domain features, however, for per-step analysis, the
high IG features are mostly time domain features.

B. Analyzing Person’s Steps

The step analysis evaluates how steps differ from person to
person as observed by CSI. Previous research [5] has shown
that the shape of the step varies noticeably for different people.
This has led to design of person authentication methods
[19] where smartphone’s accelerometer signal is analyzed to

• Time domain:
- Minimum (Min); min10th; maximum (Max); max90th; mean; variance
(Var); standard deviation (Std); range
- CV: ratio of standard deviation and mean times 100; skewness (3rd
moment); kurtosis (4th moment)
- First, second and third quartiles
- Inter Quartile Range (ICR): difference between the third and the first
quartile
- Mean Crossing Rate (MCR): number of times the signal crosses the
mean value)
- Area under the signal curve (Area) and autocorrelation

• Frequency domain:
- Energy: measure of total energy in all frequencies (Equ. 1)
- Entropy: measures the impurity in the CSI signal
- DomFreqRatio: calculated as the ratio of highest magnitude FFT
coefficient to sum of magnitude of all FFT coefficients
- FFTPeaks: 5 largest frequencies in the signal and their magnitude

TABLE I: Time window features

 0.8

 1

 1.2

 1.4

AC
M

ean

AC
Energy

AC
M

in

AC
R
ange

AC
Std

AC
Var

AC
AbsArea

AC
IQ

R

AC
M

ax

AC
M

ax90th

IG
 V

a
lu

e
s

(a)

 1.2

 1.4

 1.6

 1.8

D
C
M

ean

AC
Low

Energy

AC
Entropy

AC
AbsArea

AC
R
ange

AC
M

in10th

D
C
Area

AC
M

odVigEnergy

AC
M

in

AC
M

ax

IG
 V

a
lu

e
s

(b)

Fig. 7: Information Gain value of selected features for (a)
step and (b) walk analysis, where AC means the features are
calculated after a band pass filter of 0.3Hz to 2Hz and DC

means processing using a low pass filter of 1Hz.

differentiate between people. The challenge with the use of
CSI is that the shape of a typical step of a person is highly
dependent on the static multipath of the environment. The
shape of a person’s step changes at different locations in a
room depending on the multipath at that location. When the
person walks from one point to another point in a room, the
shape of steps also change depending on relative position of
WiFi endpoints and changing in multipath.

Step Cycle Construction: The step analysis requires find-
ing the step cycle of the first step. However, finding the step
cycle is not trivial. Let us consider that we have a time-series
CSI data starting from time Ts to Te. The number of steps
taken during the time period is unknown and we would like
to find out the step cycle of each step in the time period.
One possible solution is to create step template of different
people from the training data and compare it with CSI data in
(Te−Ts) window using Dynamic Time Warping(DTW) to find
out the step cycles. However, this requires a brute-force, since
every person’s step template has to be compared with current
window. Such brute-force incurs a prohibitively large compu-
tation cost given that DTW requires solving an optimization
problem with dynamic programming. Further more, due to the
step shape for each person will vary at different locations along
the walking path, such template matching method will have a
very low accuracy for constructing step cycles.

Instead of using DTW, we rely on a peak-valley detection al-
gorithm for step cycle construction. The peak-valley detection
algorithm uses local minimum and maximum of time-series
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Fig. 8: Selected features for (a) step and (b) walk analysis

data along with the significance constraint [28]. Using this
method, we denote the time from the start to the first valley to
be the duration of the first step (Fig. 2). Immediately after we
have detected that a person is walking, we start detecting the
step cycle. We also set up an expected step cycle time range
of 0.8s to 1.8s [29]. If we detect a step cycle which is less
than 0.8s, we will further include the next peak or valley. If
the detected step cycle is greater than 1.8s, we will start a new
detection. The duration of the first step is then used to detect
the rest of the step cycles. This assumes that the step duration
does not vary significantly during the walk segment. This is
reasonable since we assume that person walks on straight
line path without any turns or breaks. Note that peak-valley
detection algorithm does not detect trivial peaks/valleys since
the input CSI data is already filtered to remove high-frequency
noise.

Per-Step Feature Calculation: After the step cycle of each
step is determined from the input walking segment, the CSI
data in the time window of each step is used to calculate the
features. We first apply the 0.3-2 Hz band pass filter to remove
high-frequency noise, and then calculate the time domain
features of Table I. We do not calculate frequency domain
features as they provide only a little information within a small
time window. The time domain features represent the shape
of the person’s steps in the form of statistics. Given that the
shapes of different people’s steps are likely to be different even
at the same location, this will allow us to perform step based
person identification. Fig. 8a shows how two of the features -
area under the curve and range - are different for the steps of
different people. The results are shown for one representative
subcarrier only which is not enough for classification, but all
the features calculated for all subcarriers provide sufficient
information for identifying the person.

C. Analyzing Person’s Walk

The step analysis helps in identifying the typical pattern of
each step of a person. However, it can not capture the overall
walking behavior that changes at a time scale faster or slower
than the step duration. For such analysis, it is necessary to
perform frequency domain analysis in order to understand
various other characteristics such as the amount of energy
in the walk segment across different steps, high frequency
movement such as movement of arms, minor posture changes
and etc. Such characteristics found using walk analysis can

also help us to distinguish different people along with the
step analysis. To perform the walk analysis, we calculate the
features presented in Table I for the entire walk segment.
For calculation of frequency domain features, we first identify
three activity bands (subset of bands proposed in [25]) as

(1) Low-energy band: 0 - 0.7 Hz
(2) Activity band: 0.3 - 2 Hz
(3) High-energy band: 0.7 - 10 Hz
The low-energy band has been found to be useful to profile

slow-moving activities such as posture change. It also includes
the static DC component. The activity band is of primary
interest as it identifies the impact of arm and leg movement
while walking, and the energy (intensity) by which a person
performs these activities. The high-energy band mostly cap-
tures the fluctuations in the CSI that is caused by movements
of the person that are much faster in time. The frequency
domain features of Table I are calculated for all three bands
described above, while the the time domain features are only
calculated for the activity band. These features characterize
each person’s walking behavior which will be used along with
the step analysis to construct a complete gait pattern profile
for person identification. Fig. 8b shows the effectiveness of the
frequency domain features applied to three frequency bands.
It plots energy in the low-energy band along with the mean
of DC component to show that such features can distinguish
different people based on the pattern of their walking segment.

Apart from these features of step and walk analysis, we
also include one additional statistic for each person which is
number of steps per second captured by CSI. This represents
the walking speed of each person.

D. Person Identification using CSI-based Gait

After calculating step based features and walk segment
features, we combine them to build a complete gait pattern
profile for individual person. Note that in order to reduce the
computation when the walking segment is long, WiWho only
considers first few steps for step analysis.

WiWho uses decision tree-based machine learning classifier
to identify people based on the step and walk analysis. The
procedure to train the classifier requires the same set of
features as for the testing phase. In the training phase, a
person walks on a pre-determined straight line path for a
certain number of times. The CSI data is collected for these
instances and features are calculated. The process is repeated
for all the people who would like to be identified in the smart
space (e.g. home, office). As mentioned before, the person
identification classifier is specific to a given room in a home or
an office. This is because the changing the room and location
of WiFi endpoints changes the observed multipath, which in
turn affects how a person’s step is observer through CSI.
However, since the location of WiFi endpoints do not change
in a smart space once they are deployed, the classifier is only
required to be trained once for that location for all people.
Since different locations might have different constraints on
indoor space and possible length of walking segments, we
will evaluate the performance of WiWho in the cases where
person can walk for only a few steps in Section VII.
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(a) (b) (c)

Fig. 9: Location (a)1, (b)2 and (c)3 layouts and device setup

We note that machine learning algorithms other than de-
cision tree can be used in order to improve the identification
performance. However, our objective in this work is to demon-
strate the feasibility of person identification using CSI-based
gait, and we leave the further optimization of performance to
future explorations.

VII. PERFORMANCE EVALUATION

A. Implementation and Experiments

Devices and Setup: We implement WiWho using off-the-
shelf commercial WiFi devices. Our setup consists of an AP-
client pair. The AP is Asus RT-AC66U 802.11n WiFi router
which has 3 external omnidirectional antennas. The client is a
Dell laptop equipped with Intel 5300 802.11n WiFi NIC with
3 external omnidirectional antennas. The laptop runs Ubuntu
10.04 LTS with modified Intel driver and firmware [30] to
collect the CSI data. In our setup, the pair of WiFi devices
constantly communicate with 100 ping packets per second to
retrieve CSI at that sampling rate. Note that the active data
traffic generated by other WiFi devices have little impact on
our system. Our experiment is conducted during working hours
of the university. For each packet, the laptop records a CSI
sample with CFR of 30 subcarriers. We implement both online
and offline versions of WiWho which include preprosseing,
gait analysis and person identification modules with over 3000
lines of Python code.

Experimental Scenarios: Since our primary focus in this
work is smart spaces such as homes and offices, we choose
three different indoor locations for our evaluation. All the
three location layouts are depicted in Fig. 9. The three chosen
rooms have different sizes and furniture layouts. A total of 20
volunteers were chosen to collect their CSI while walking in
the three locations. The walking path is in parallel to AP-client
LOS link at a distance of 1m. We consider different group sizes
starting from 2 to 7 people at each location. These group sizes
were chosen based on the typical number of people sharing
a home (3-4) or a small office (5-7). For each group size,
we conduct the experiments for 10 different combinations of
people. In each combination, every person of the group walks
along the pre-determined path (as shown in Fig. 9) in a round-
robin manner for 20 times. Note that we do not ask people to
remain constant speed while walking. The experiment lasted
for 4-7 hours and the consistency of CSI profile over time is
reflected in our date set. These experiments result in over 180

combinations of people with different group sizes at different
locations.

A person’s walking pattern is known to depend on her
height, weight and age [5]. In our experiments, we selected
20 volunteers with both male and female, age from 22 to 32,
height from 5’4 to 6’ and weight from 120 lbs to 190 lbs.

Evaluation Metrics: We will use the following metrics in
evaluation of WiWho.

(1) True Positive Rate (TP rate): TP rate of identification of
person A is the fraction of walking instances of person A that
are correctly identified as person A. The overall accuracy of
person identification is the weighted average of TP rate of all
the people in consideration.

(2) False Positive Rate (FP rate): FP rate of identification
for person A is the fraction of walking instances that are
incorrectly identified as person A.

Apart from TP and FP rates, we will use confusion matrix to
detail how many times each person gets incorrectly identified
as (which) other person. In a confusion matrix, the rows
indicate the true identity of the person and columns indicate
the identity as predicted by WiWho, and each element of the
matrix is the fraction of the times the person in the row was
classified as the person in the column.

B. Walking Detection Validation

It is crucial for WiWho to detect the start of walking activity
from relatively stationary environment. Before performing the
gait analysis, WiWho has to recognize that either a person
entered the smart space or a person who was sitting or standing
with relatively low movements started walking. When the
walking is correctly recognized using the techniques presented
in Section V-B, the person identification module can be trig-
gered to identify the person walking. An important expectation
from WiWho is that it detects that person is walking in a
very short time. This evaluation of detection time and average
walking detection accuracy is shown in Fig. 10. We observe
that even at 0.2 second detection time, WiWho can detect the
walking activity with 92% TP rate and 6% of FP rate. It can
detect the walking with 97% TP rate just after 1 second of
start of the walking activity. After 4 seconds, the accuracy of
detection is 100%.

Fig. 11 shows the confusion matrix for walking activity
detection at 0.6 seconds. We observe that walking is often mis-
classified as standing with 15% of standing is mis-classified
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Fig. 10: TP rate and FP rate of walking detection

Fig. 11: The confusion matrix of walk detection with 0.6
second detection time. W is walking, S is sitting, T is

standing and N is without person

as walking and 5% of walking is mis-classified as standing.
This is expected since standing and walking both require the
person to be in the same posture and standing is necessary
before starting the walk. Since a typical step takes nearly a
second for completion, 0.6 second of detection time allows us
to capture the gait starting from the first step itself. We choose
0.6 second detection time in the rest of the implementation as
it already achieves 95% detection accuracy.

C. Person Identification with Different Group sizes
In this section, we will evaluate the performance of person

identification with different group sizes. As we discussed, the
application of WiWho is targeted towards smart homes and
offices, we only consider group of people in the range of 2 to 7.
For each of the group size, WiWho uses gait analysis (step and
walk analysis) to detect the person’s identity. Fig. 12 shows
the average accuracy and FP rate of person identification with
different group sizes for the 3 locations. We observe that as
the group size increases, the accuracy of person identification
decreases for all 3 locations. This is expected since introducing
more people in person identification increases the chances of
people having similar gait. For the same reasons, the average
and maximum accuracy of person identification is as high as
92% and 97% respectively with the group size of 2 (binary
classification). The average accuracy decreases to 75% when
the group size of 7 is considered. WiWho achieves nearly 80%

of person identification accuracy for group size of 6 or lower
for all 3 locations.

Person A B C D E F
Height 5’10 5’7 5’6 5’7 5’8 5’6
Weight(lbs) 175 130 170 145 125 165
Gender M M M M F M
Age 30 30 28 27 30 29

TABLE II: Characteristics of 6 volunteers

It is observed from Fig. 12b that the FP rate of person
identification varies only a little with the variation in group
size. For Locations 1 and 2, the average FP rate remains lower
than 6% irrespective of the group size, and for Location 3,
the average FP rate is observed to be close to 8%. It can
be claimed that for smart space applications in homes and
offices where typical group size is close to 5 people, WiWho
achieves high accuracy of person identification while meeting
the design goals.

Now we take a further look at the confusion matrix for
the case of group size of 6 people. The confusion matrix is
presented in Fig. 12c. It is known from the previous research
[5] that a person’s gait is loosely correlated to his/her height,
weight and age. Table 2 provides these characteristics for
the 6 volunteers to understand the misclassifications in the
confusion matrix. It can be observed that person F and person
C have similar height and weight which can be related to
frequent misclassification of person F to be person C. From
the confusion matrix, it can be said that person E is found to
be most uniquely identifiable among the group. From Table 2,
we notice that E is the only female in this group. In general,
we claim that identification using CSI-based gait have similar
properties as the acclerometer-based gait in terms of overall
accuracy.

D. Step Analysis vs. Walk Analysis

As discussed before, the gait analysis in WiWho is a
combined module of step analysis and walk analysis. In this
section, we show how well the step and walk analysis mod-
ules can perform person identification individually. The walk
analysis does not require the walk to be divided into steps,
however, it requires FFT computations for frequency domain
analysis (Section VI) of the walk segment. The step analysis
requires step cycle construction and calculation of time domain
features for each of the detected steps. Fig. 13 compares the
identification accuracy for only step or only walk analysis,
as well as the combined performance. It is observed that
walk analysis individually works better to identify different
people compared to step analysis. The step analysis applied
individually achieves lower accuracy of person identification.
This can be attributed to the fact that CSI provides more
information on how person walks and body movements during
the walk (frequency analysis of walk segment). In all cases,
we observe that the combined analysis always improves the
accuracy (≈ 5− 10%) over simply using walk analysis which
means that both step and walk analysis modules are essential
to achieve high person identification accuracy.
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Fig. 13: The performance with different feature calculation methods and different group size at different locations

E. Robustness with Different Walking Lengths

Another important factor in evaluation of WiWho is that the
length of walking segment that a person walks. In practical
scenarios, the layout of rooms and indoor spaces impose
the restriction that a use can walk only few steps without
taking a turn. We evaluate this situation using experiments at
Locations 1 and 2. Specifically, we repeat the experiments of
Section VII-C with a restriction on the distance a person can
walk before getting identified. The experiments are repeated
at for group size of 3, 5 and 6 (10 rounds each). The length
of walking segment is set to multiples of 2.4 meters (≈
4 steps) and 2.7 meters (≈ 5 steps) for Location 1 and 2
respectively. The results of person identification accuracy are
shown in Fig. 14. The accuracy either increases or remains
similar with increase in the length of walk segment. This
means that WiWho can identify person with high accuracy
even with CSI data for a few steps, increasing its applicability
in space-constrained indoor environments.

VIII. DISCUSSION AND LIMITATIONS

We now discuss the potential, challenges and limitations of
our WiFi-based person identification system.

(1) Feasibility: Our system requires fixed deployment of
both AP and the associated client. We believe that this does not
pose any issue since in typical scenarios, change in the position
of an AP is rare and it is possible to use stationary WiFi
devices (such as a smart TV) as the client. We also assume

that a person always walks on a straight line path. In a home or
an office environment, a straight walkway such as a corridor or
hallway can be chosen for the purpose, where a person can get
identified at the same time when she enters the home/office.
Changes in a person’s attire (e.g. clothes, shoes etc.) should not
affect system’s performance, however, we have not studied the
impact of other factors that can result in changes in person’s
gait (for example person carrying a heavy backpack or injured
limb).

(2) Detecting a person outside the group: We also evaluate
WiWho to detect if a person is not within the training group.
WiWho can achieve over 80% accuracy to detect whether the
person is “stranger” or not for a group size of 4 or less.

(3) Number of people: Majority of WiFi-based sensing
research assumes a single person system like ours. However,
this limitation is less severe in our case since it can be assumed
that WiWho is deployed in a hallway or a corridor where
typically only one person enters the premises at a time.

(4) Diverse set of people: WiWho is currently evaluated only
for the age group of 25-30 years. Previous research such as [5]
has shown that a person’s gait is dependent on the person’s
age which means that the attainable accuracy of WiWho is
likely to be higher when evaluated with other age groups (e.g.
kids or elderly people).

IX. CONCLUSIONS

In this paper, we presented WiWho, a framework for
identifying a person using the gait information detected via
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Fig. 14: The accuracy of identification for different group sizes with different walking lengths

WiFi. WiWho enables a device-free, effortless, low-cost and
pervasive solution for person identification in smart homes
and offices. We showed the feasibility of gait identification
through CSI and discussed necessary characteristics of CSI-
based gait that can identify a person. WiWho achieves an
identification accuracy of 92% to 80% for a group size of
2 to 6 respectively and only 2-3 meters walking length is
necessary. The limitations and potential of WiFi-based person
identification system are also discussed.
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