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ABSTRACT
Major Wi-Fi Access Point (AP) vendors worldwide seek to provide
gigabit wireless connectivity, by densely deploying MU-MIMO ca-
pable APs, which can support multiple, concurrent data streams
to a group of clients, connected to them. However, MU-MIMO
gains can only be achieved if an AP can identify groups of clients
with homogenous con�gurations and orthogonal wireless chan-
nels, where concurrent transmissions will not cause inter-client
interference. Hence, MU-MIMO performance is fundamentally de-
pending on how the clients are assigned to APs. Our experiments
with 802.11ac commodity testbeds show that state-of-the-art client
assignment algorithms are MU-MIMO oblivious and limit the MU-
MIMO grouping opportunities in realistic settings. In this paper, we
design and implement MAPS, an MU-MIMO-Aware AP Selection
algorithm that is 802.11-compliant and can boost network’s MU-
MIMO throughput gains. We veri�ed MAPS’ gains over legacy de-
signs via extensive experiments with 802.11ac commodity testbeds.

CCS CONCEPTS
• Networks → Wireless access points, base stations and infrastruc-
ture;
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1 INTRODUCTION
The major Wi-Fi Access Point (AP) vendors worldwide seek to
provide ubiquitous, gigabit wireless connectivity, by deploying
high-density networks [1, 15], where a large number of clients and
APs operate in the same RF coverage zone. A key feature for such
deployments is MU-MIMO, which uses beamforming to support
multiple, concurrent data streams from an AP to a group of client
devices. MU-MIMO feature has already been adopted by the IEEE
802.11ac networks, to realize gigabit downlink speeds. It has been
also widely perceived among the primary means to meet the speed
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requirements of the next generation Wi-Fi 802.11ax [6] and 5G
networks [3]. However, MU-MIMO gains can be achieved only if an
AP can identify groups of clients with homogenous con�gurations
and orthogonal wireless channels, where concurrent transmissions
will not cause inter-client interference. Consequently, MU-MIMO
performance is fundamentally depending on how clients will be
assigned to APs, which operate in the same coverage zone.
Limitations of legacy designs: State-of-the-art AP selection de-
signs proposed by industry [2, 8] and academia [17, 29] assign
clients to the strongest signal (RSSI) AP. Interestingly, our exper-
iments with commodity MU-MIMO 802.11ac testbeds show that
they yield more than 50% lower network throughput compared
to the optimal client assignment. We have identi�ed three root
causes for such poor performance. (a) Legacy designs are MU-
MIMO oblivious and may assign clients with correlated channels
to the same AP. Grouping clients with correlated channels results
in high inter-client interference, which forces the AP to operate in
SU-MIMOmode (serving one client at a time). (b) Even when clients
communicate over orthogonal channels thanks to rich multipath
environment, legacy designs may still limit MU-MIMO grouping
opportunities, by assigning clients with heterogeneous bandwidth
con�gurations to the same AP. Speci�cally, clients which oper-
ate on di�erent 802.11ac bandwidth options cannot be grouped
together. This constraint is attributed to AP’s capability, which can
only transmit on a single center frequency and bandwidth at a time.
Moreover, the AP cannot always use the highest bandwidth option
for transmitting to all the clients in a group, due to clients’ di�erent
interference pro�les. (c) Finally, the widely adopted approach to
assign clients to the least “loaded" AP, can limit MU-MIMO gains,
even for clients which operate on orthogonal channels and homoge-
nous bandwidths. This is because more loaded APs may o�er more
grouping opportunities.
Design challenges: The design of MU-MIMO-aware AP selection,
which addresses the above limitations, poses signi�cant challenges.
First, a key design challenge is to identify clients with orthogonal
channels and assign them to the same AP. A naive approach would
be to associate each client to all APs in its range, and use explicit
beamforming feedback [19, 21, 26] to estimate channel correlation.
However, such an approach requires excessive hando�s in high-
densityWi-Fi deployments, and leads to poor performance. Hence, a
new, low-overhead approach is required for pro�ling the multipath
environment and estimating channel correlations. Moreover, MU-
MIMO-aware AP selection should be able to capture clients’ (and
APs’) bandwidth pro�les, which dynamically change in time, due
to interferences. Then, it needs to estimate how clients’ bandwidth
pro�les will a�ect their grouping opportunities at an AP. Finally,
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Figure 1: Client association in enterprise Wi-Fi.

AP selection must balance the load among APs, without limiting
their MU-MIMO gains, which are often con�icting objectives.
MAPS design: In this paper, we propose a newMu-mimo-Aware
AP Selection (MAPS) design for 802.11ac networks, which addresses
the aforementioned challenges. MAPS leverages a NULL frame prob-
ing scheme to collect CSI (Channel State Information) feedback from
clients, without requiring them to associate with APs. CSI samples
measured at the AP-side can capture the multipath characteristics
of the environment, and can be used as a proxy for clients’ channel
correlation, as shown by our experiments. MAPS �rst sanitizes CSI
samples by removing the RF-hardware triggered amplitude devia-
tions, using local regression smoothing �lters. It then constructs
a CSI pro�le that di�erentiates between persistent and transient
multipath. The CSI pro�ler applies a correlation metric among back-
to-back CSIs, which captures dominant multipath changes, and at
the same time remains robust to RF hardware-triggered CSI phase
shifts. Using the CSI pro�le, MAPS can estimate the SINR (Signal-to-
Interference-plus-Noise Ratio) and hence the PHY rate of a client as
a part of an MU-MIMO group. MAPS’ SINR approximation error is
typically small (<2 dB) compared to SINR estimation using explicit
client’s channel feedback.

MAPS introduces a novel client assignment model, which lever-
ages clients’ SINR, tra�c and interference pro�les to infer the e�ec-
tive MU-MIMO throughput of a client, at each AP. Our model can
balance between MU-MIMO gains and AP load, by considering the
Wi-Fi channel busy time, and the airtime to be allocated to a client,
at each AP. MAPS will then assign clients to APs which maximize
their throughputs. Since optimal client assignment is an NP-Hard
problem, we propose a low-overhead heuristic algorithm, which
performs close to optimal, as shown by our experiments.

We evaluate MAPS’ performance gains over legacy designs using
testbed experiments with 802.11ac commodity APs and MU-MIMO-
capable smartphones. Our results show that MAPS outperforms
legacy designs in 90% of the settings, with network throughput
gains greater than 50%. In the most (⇠85%) of our experiments,
MAPS performs the same as the optimal, best-throughput client
assignment. Our simulations using traces from Wi-Fi enterprise
networks verify MAPS gains in large scale topologies, where more
than 50 clients are connected to an AP.
Contributions: In summary, our main contributions are:
(1)We conduct a measurement study with commodity 802.11ac MU-
MIMO testbeds, and identify the limitations of legacy AP selection
designs (Sec. 3). To the best of our knowledge, this is the �rst work
that studies AP selection inMU-MUMOnetworks, using commodity
802.11ac testbeds.
(2)We design MAPS, a practical, 802.11-compliant system, which
can boost MU-MIMO gains by appropriately assigning clients to
APs. (Sec. 4).
(3) We implement MAPS in 802.11ac commodity hardware (Sec. 5),
and evaluate its performance in multiple network settings, using
802.11ac APs and smartphone devices (Sec. 6).

2 BACKGROUND
2.1 IEEE 802.11ac Background
The key di�erentiator of 802.11ac over its predecessors is the MU-
MIMO feature, which uses beamforming to support concurrent
downlink data streams from an AP to a group of clients. An 802.11ac
AP can support MU-MIMO beamforming, by using a sounding pro-
tocol [10] to collect VHT Compressed Beamforming Feedback (CBF)
from wireless clients. The CBF is represented by V, which is a steer-
ing matrix that speci�es how AP should decorrelate transmitted
data to multiple clients. A client calculates V by applying Singular
Value Decomposition (SVD) on H as H = UDVH . Here, H (or CSI)
is the channel matrix measured at the client’s side from sounding
packet. Then, an AP usesV to precode the transmission data. Apart
from CBF, 802.11ac clients provide SNR (Signal to Noise Ratio)
feedback to AP. An 802.11ac AP selects a set of clients to transmit
data concurrently through a client selection algorithm that precedes
sounding and beamforming. Client selection algorithm is vendor-
speci�c and unspeci�ed by the 802.11ac standard. 802.11ac supports
20, 40, 80 MHz channel bandwidths, and an optional 160 MHz band-
width. An 802.11ac device can use a 20 MHz sub-channel only if it
is not occupied by another transmission in its vicinity. An 802.11ac
AP can negotiate communication at higher channel widths through
an RTS/CTS handshake protocol [10, 27]. Interestingly, only clients
with the same channel bandwidth con�guration can be grouped to-
gether in the same MU-MIMO group. This is because an AP can
only transmit using a single center frequency and bandwidth at a
time. Moreover, clients of di�erent channel bandwidth may have
di�erent interference pro�les, and hence the AP cannot transmit
data to all of them using the highest channel bandwidth.

2.2 Enterprise Wi-Fi Networks
In this paper, we focus on enterpriseWi-Fi networks where multiple
APs operating in infrastructure mode, provide wireless connectivity
in large buildings. APs are typically connected through Ethernet
to controllers, as shown in Figure 1. Controllers support network
management, and enterprise applications’ security. They also as-
sign clients to APs (i.e., AP selection) and initiate clients’ hando�s.
Speci�cally, prior to association, a client C scans Wi-Fi channels
for APs. In passive scanning mode, C listens for beacons. In active
mode, C broadcasts probe requests. The APs which receive these
requests send information about C (e.g., RSSI) to the controller,
which assigns C to an AP. The selected AP sends a probe response
to C , which initiates the authentication and association process.
If the controller decides to hando� C from AP1 to AP2, then AP1
sends a disassociate frame to C , and C follows the process shown
in Figure 1.

3 A MEASUREMENT STUDY
In this section, we show the limitations of legacy AP selection
approaches in MU-MIMO networks, by conducting experiments
with 802.11ac commodity wireless testbeds.

3.1 Platform and Methodology
Our experiments use commodity 802.11ac APs, equipped with a
Qualcomm Beeliner 4⇥4 MU-MIMO-capable 802.11ac 5 GHz radio.
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Figure 2: a) V correlation, b, c) Packet-Error-Rate, d) throughput for clients in our case study settings.
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Figure 3: Network topology for the case study setting.
The 802.11ac radio supports up to 80 MHz channel bandwidth and
up to 256-QAM modulation level, with 1733.3 Mbps peak PHY rate.
It has 4 antennas, but supports up to 3 data streams (clients) in
MU-MIMO mode. MU-MIMO client selection along with other core
MAC-layer functionalities (e.g., PHY rate and bandwidth adapta-
tion) are implemented in the AP’s �rmware, and the source code is
available for our implementation. Our experiments use Xiaomi Mi
4i smartphones as clients, which have an 802.11ac wave-2 chipset,
with one receiving antenna.

For our experiments, we have modi�ed the �rmware of our APs
to collect per-client wireless feedback such as: a) PHY rates (i.e.,
MCS, spatial stream, channel bandwidth), b) sounding feedback
statistics (i.e., V matrix, per-subcarrier SNR - cf. Sec. 2.2), c) frame
error rate, and d) CSI measured at the AP side, from the received
frames. We conduct experiments in enterprise and university cam-
pus settings.

3.2 Correlated Wireless Channels
We next show the limitations of legacy AP selection algorithms
in typical 802.11ac deployments, with testbed experiments. In our
case study setting, clients C1 and C2 are connected to the strongest
signal (RSSI) AP1 and C4 to AP2, as shown in Figure 3. All clients
operate at 80MHz. C1 and C2 form anMU-MIMO group and achieve
378 Mbps aggregate downlink UDP throughput compared to only
296 Mbps, when they operate at Single-User MIMO (SU-MIMO)
(where one client is served at a time). When a new client C3 wants
to join the network, legacy (e.g., RSSI-based) designs will assign
C3 to the highest RSSI AP2. However, is this the best-throughput
client assignment?

Our results show that clients C3 and C4 perform poorly in MU-
MIMO mode, at AP2. Speci�cally, the aggregate downlink through-
put at AP2 is 178.8% higher when C3 and C4 operate in SU-MIMO,
compared to forming an MU-MIMO group. Hence, C3 cannot lever-
age MU-MIMO gains by connecting to the highest RSSI AP2. Inter-
estingly, the aggregate (over AP1 and AP2) network throughput is
from 50 to 230 Mbps higher when C3 connects to the lower RSSI
AP1 (assuming AP1, AP2 operate on orthogonal channels). Particu-
larly, the best-throughput setting is observed when C1, C2 and C3
form an MU-MIMO group at AP1, and C4 operates in SU-MIMO
at AP2. The aggregate and per-client throughput for the above
settings is summarized in Table 1.

Client C3 cannot leverage MU-MIMO gains at AP2, because
its wireless channel is highly correlated with C4, leading to inter-
client interference. Channel correlation (and hence interference)
between clients i , j at subcarrier s , can be estimated by theV matrix
correlation [21] as:

�(i, j) =
Õ
s | |Vi (s)V H

j (s) | |pÕ
s | |Vi (s) | |2

pÕ
s | |Vj (s) | |2

(1)

Figure 2a shows that the V correlation between C3 and C4
(�(C3,C4)) is 64% higher than that of clients C1 and C2, which
gives the best MU-MIMO performance. Highly correlated chan-
nels result in inter-client interference and consequently to high
Packet-Error-Rate (PER). Figure 2b shows that the median PER for
C3 when grouped with C4 is approximately 70%, and the maxi-
mum PER exceeds 90%. On the other hand, the channel correlation
among the clients of the MU-MIMO group {C1, C2, C3} at AP1, is
lower than {C3,C4}, as shown in Figure 2a. Due to lower inter-client
interference, the PER for C3 at AP1 is lower than 10% for 90% of
the samples, as shown in Figure 2c. Hence, the best-throughput AP
selection algorithm needs to assign C3 to the lower RSSI AP1, in
order to leverage the MU-MIMO gains.
Summary: RSSI-based AP selection designs are oblivious to MU-
MIMO feature, and assign clients to APs, without considering the
channel correlation among clients connected to the same AP. Corre-
lated channels lead to high inter-client interference and low through-
put, in MU-MIMO settings.

Table 1: Per-client and aggregate (across APs) downlink UDP
throughput (Mbps), when C3 connects to AP1, AP2.

Setting C1 C2 C3 C4 Aggr.
AP1(MU),AP2(MU),C3-AP2 186 ± 5 192 ± 6 9 ± 2 92 ± 21 479
AP1(MU),AP2(SU),C3-AP2 186 ± 5 192 ± 6 147 ± 6 134 ± 5 659
AP1(MU),AP2(SU),C3-AP1 146 ± 2 148 ± 2 145 ± 2 269 ± 5 708

3.3 Heterogeneous Bandwidth Clients
We next evaluate a two-AP topology setting (similar to Fig. 3),
where C1 and C2 are connected to AP1 and AP2 respectively. C1
operates at 80 MHz and C2 at 40 MHz (due to the interference from
neighboring networks). Let’s consider a new client C3 operating at
80 MHz, whose RSSI is -50 dbm and -46 dbm from AP1 and AP2,
respectively. RSSI-based designs will assign C3 to AP2, without
considering that di�erent bandwidth clients cannot be grouped
together (cf. Sec. 2.2). Consequently, C2 and C3 will operate at
SU-MIMO. On the other hand, C3 could form an MU-MIMO group
with C1 at AP1, increasing by 40 Mbps the aggregate network
throughput (cf. rows 1, 3 of Tab. 2). Even when AP’s bandwidth
adaptation algorithm allows for C2 and C3 to form an MU-MIMO
group at 40MHz, at AP21, assigning C3 to the lower RSSI AP1 still
gives better network throughput, as shown in rows 2, 3 of Table 2.

Assigning clients to APs with high MU-MIMO gains can also
improve fairness. For example the Jain Fairness Index[12] of the
1Commodity 802.11ac APs do not adjust channel bandwidth, to increase MU-MIMO
grouping opportunities.
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network when C3 operates in SU-MIMO at AP2 is 0.82 (1 implies
perfect fairness), while it increases to 0.99, when C3 connects to
AP1.
Summary: RSSI-based AP selection designs can limit MU-MIMO
grouping opportunities, by assigning clients with heterogeneous band-
widths to the same AP.

Table 2: Per-client and aggregate downlink UDP throughput
(Mbps) and fairness, for heterogeneous width clients.

Setting C1 C2 C3 Aggr. Jain Idx
AP1(SU),AP2(SU)
C3-AP2(80MHz) 269 ± 5 80 ± 4 151 ± 5 500 0.82
AP1(SU),AP2(MU)
C3-AP2(40MHz) 269 ± 5 127 ± 10 125 ± 10 521 0.87
AP1(MU),AP2(SU)
C3-AP1(80MHz) 186 ± 5 161 ± 3 192 ± 6 539 0.99

3.4 Load Balancing
We �nally evaluate a topology of two APs in the same vicinity,
operating on the same wireless channel. This is a realistic setting in
dense AP deployments, when there are not enough non-overlapping
channels for adjacent APs. The approach of assigning the same
channel to adjacent APs has been also used by industry [1] for
better interference management and faster inter-AP hando�. In
our setting, client C1 operating at 80 MHz is connected to AP1,
while AP2 does not serve any client. We assume that AP1 fully
utilizes the wireless channel capacity to serve C1’s tra�c. Let’s now
consider a new client C2 operating at 80 MHz, whose RSSI from
AP1 and AP2 is the same. Existing designs [17, 29] will assign C2 to
AP2, to balance the load among APs. However, such assignment is
suboptimal in terms of throughput, as shown in Figure 2d. Clients
C1 and C2 operate in MU-MIMO when both are connected to AP1,
and achieve 515 Mbps aggregate throughput. However, when con-
nected to di�erent APs, they share the wireless medium, and hence
achieve 162 Mbps lower aggregate throughput.
Summary: Legacy load balancing designs can reduce MU-MIMO
grouping opportunities and hence throughput performance, by assign-
ing clients to the least loaded AP.

4 DESIGN
In this section we present MAPS (Mu-mimo-Aware AP Selection),
an 802.11-compliant system, which can boost MU-MIMO gains by
appropriately assigning clients to APs. MAPS seeks to increase MU-
MIMO grouping opportunities by setting three key design goals:
(a) to accurately identify clients with uncorrelated channels at low
overhead, and assign them to the same AP, (b) to assign clients with
homogenous bandwidth settings to the same AP, by monitoring
their interference pro�les, (c) to allow for client assignment to more
“loaded" APs, if they can form high-throughput MU-MIMO groups.
MAPS is a practical, lightweight design, which can be implemented
in commodity 802.11ac hardware, without client-side modi�cations.
MAPS architecture: An overview of MAPS is shown in Figure 4.
MAPS takes an implicit feedback approach to identify clients with
uncorrelated channels, without requiring them to be associated
to an AP. It leverages a NULL data probing scheme to collect CSI
samples at APs for each client in their vicinity. The compressed CSI
samples are sent to the controller, which upon sanitizing them, it
constructs the dominant multipath pro�le of a client, at each AP.
The controller uses a client’s CSI pro�le to estimate its performance
(i.e., PHY rate) as a member of an MU-MIMO group. A MAPS’ AP
further maintains client’s bandwidth and tra�c pro�les, which
along with AP’s Wi-Fi channel busy time and load, are used to
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Figure 4: MAPS architecture.

estimate the throughput of a client at an AP. When a new client
wants to join the network, or a client’s hando� is required, MAPS’
controller identi�es the APs in client’s range, and assigns it to the
AP which maximizes its throughput. Then, it sends its decision
to the selected AP, which uses the MAC Sublayer Management
Entity (MLME), to associate the client to itself. We next elaborate
on MAPS’ building blocks.

4.1 MU-MIMO Performance Inference
A key challenge for MAPS is to identify clients with uncorrelated
channels, and map them to the same AP. A naive approach would
be to periodically associate each client to all APs in its range, and
collect CBF to estimate clients’ channel correlation. However, such
approach requires frequent hando�s and long associations with
low-throughput APs. Given the dense Wi-Fi deployments with
multiple APs in a client’s range and the long hando� times (order
of seconds), explicit feedback approach will perform very poorly.
Hence, MAPS takes an implicit feedback approach.

4.1.1 Leveraging Implicit Feedback. MAPS uses implicit, AP-side,
CSI feedback to identify MU-MIMO groups of clients with uncorre-
lated channels.Intuitively, since the “physical" wireless channel is
reciprocal [20], CSI measured at the AP can capture the correlation
among clients’ channels. However, leveraging AP-side CSI poses
several challenges. How can an AP collect CSIs from clients not as-
sociated with it? Is it possible to �lter Wi-Fi RF-hardware triggered
noises of the collected CSI samples? How to construct a CSI pro�le
that captures both persistent and transient multipath characteris-
tics of the environment? We next describe MAPS’ approach to such
challenges.
CSI collection:MAPS leverages a NULL data probing scheme to
collect CSIs from the clients in AP’s vicinity. Speci�cally, an AP
transmits NULL frames, and estimates the CSI from the ACKs sent
by the client. A CSI sample is a Nt ⇥Nr matrix of complex numbers
reported per OFDM subcarrier, where Nt and Nr are the number
of antennas at the AP and client. A client will respond to a NULL
frame received by an AP, even if it is not connected to this AP, as
veri�ed by our experiments.

NULL probing is a low overhead CSI collection scheme. Particu-
larly, a NULL frame is only tens of bytes (depending on the 802.11
family). Hence, its transmission time is only 0.85 microseconds, for
the smartphones used in our testbed. This overhead is negligible
considering that MAPS only periodically (every 100ms) transmits
NULL frames.
CSI sanitization: Our measurements show that CSIs reported by
commodity APs can be noisy. Such noise is attributed to transmis-
sion power changes, rate adaptation, internal CSI reference level
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Figure 5: MAPS’ CSI pro�ling.
changes [22]. For example, Figure 5a shows that noise spikes can
exceed 10 dB. MAPS applies a robust LOWESS (Locally Weighted
Scatterplot Smoothing) �lter [5], which performs local regression
with weighted least squares to smoothen outliers. Non-parametric
smoothers like LOWESS are appropriate for CSIs, since they do not
assume that the data �t some distribution shape. Figure 5a shows
that such �lter removes noise from CSIs.

The smoothed CSI is used to estimate the SINR of a client k
operating in an MU-MIMO group of K clients as [21]:

SINR =

1
K

| |Dk | |2

|        {z        }
si�nal_power

N|{z}
noise_f loor

+
1
K

| |Dk | |2Õj,k | |VHk Vj | |2|                                  {z                                  }
inter f er ence

(2)

MAPS estimates V and D by applying SVD on CSI (cf. Sec. 2.2).
It computes the noise N using EVM (Error Vector Magnitude) feed-
back, provided by AP’s �rmware, for every received frame across
all subcarriers. Finally, it calibrates Dk to account for the transmit
power di�erence between the client and AP. Speci�cally, it mul-
tiplies the factor | |Dk | |2 with 10

PAP�Pclient
10 , which is the transmit

power di�erence (dBm) at AP and client sides. Pclient is available at
the AP through 802.11 Event Report frames. Notice that the SINR
metric can be estimated per OFDM subcarrier. MAPS computes an
e�ective SINR across all subcarriers using the approach proposed
in [7], which has been shown to be robust in frequency-selective
fading environment.
SINR accuracy: We evaluate our SINR metric’s accuracy, by com-
paring it with muSINR [21], which uses explicit, receiver-sideV and
D feedback (CBF). Figure 5b shows the distribution of the absolute
di�erence between the two SINR metrics, from multiple experi-
mental settings. We observe that for 70% of the cases, the SINR
estimation error is less than 2 dB. This error will not lead to erro-
neous PHY rate estimation most of the times (cf. Tab. 22-25 in [10]),
and hence it does not a�ect MAPS’ ability to infer client’s through-
put. Since MAPS’ SINR estimation is not used for core functions
such as rate adaptation, estimation error outliers will not signif-
icantly impact MAPS’ performance, as shown by our evaluation
results (cf. Sec. 6).

4.1.2 Identifying Dominant Multipaths. MAPS’ operations are
triggered at coarser time scales (sec.) compared to other CSI-based
algorithms, such as MU-MIMO grouping (msec.), to avoid excessive
hando�s. Hence, instead of simplymaintaining the latest CSI, MAPS
needs to construct a CSI pro�le which captures both persistent and
transient multipath characteristics of the environment.

Constructing a CSI pro�le is a challenging task. First, storing
and processing all the measured CSIs (collected at msec. scales) is
a big overhead even for a Wi-Fi controller. Hence, MAPS needs

to consider only CSIs that capture multipath changes. However,
capturing such dynamics is not trivial. Even if the multipath char-
acteristics of the environment remain the same, the phase of back-
to-back CSI samples may vary due to Wi-Fi RF hardware charac-
teristics [20, 22].A CSI pro�ler should be robust to such variations
and capture only signi�cant multipath changes.

Interestingly, di�erent from related studies [20], our experiments
show that such phase variations are not random. For example,
Figure 5c shows the phase curves of two back-to-back frames, in
a controlled environment with no object movement. We observe
an almost constant phase shift for all subcarriers (y-axis), and a
small shift in phase curve across frequency domain (x-axis), for
antennas 1, 2. However, we observe similar shapes of phase curves.
Since the hardware-triggered phase shifts do not change the shape
of the phase curves of back-to-back frames, we expect that their
correlation will be high. Figure 5d shows the distribution of the
correlation factor � (eq. (1)) for CSIs, collected frommultiple settings
in a time window of 0.5 msecs, of stable multipath environment2.
We observe that for 80% of the cases, � is equal or greater than 0.85
(� = 1 for same CSI samples).

While CSI correlation metric is robust to hardware-triggered
phase shifts, it can also capture changes in multipath environment.
We illustrate our point by studying the spatial distribution of CSIs
(in polar coordinate system) in cases of stable (Fig. 6) and dynamic
(Fig. 7) multipath environments. For stable multipath, back-to-back
CSIs overlap in space, which is re�ected in their CSI correlation. For
dynamic multipath, the CSIs’ main lobes do not overlap (cf. Fig. 7),
as indicated by their lower correlation.

MAPS leverages the CSI correlation metric to maintain L domi-
nant multipaths (i.e., CSIs). For each new CSI i , MAPS estimates its
correlation �(i, j) with each CSI j, of current CSI pro�le. If the
maximum correlation with a CSI j is greater than a threshold
(max j 2L{�(i, j)} > R), then MAPS replaces CSI j, with i and in-
creases a counter csi j (j is an index of the CSI pro�le)3. Otherwise,
the new CSI is stored in a new entry of the pro�le. If the CSI pro�le
is full (with |L| CSIs), MAPS will either replace an existing CSI j
with the new CSI, if csi j = 1, or it will discard i . MAPS periodically
resets CSI pro�les to allow for new multipaths.

MAPS needs to estimate clients’ SINRs for all the MU-MIMO
group assignments, to select the best AP (cf. Sec. 4.3). However, a
client’s SINR will change for each CSI in its pro�le. Processing all
CSIs for all groups, results in signi�cant processing overhead. MAPS
amortizes such overhead, using the counter csii , which re�ects the
“dominance" of a multipath. It selects as client’s dominant multipath,
its CSI i with a probability Pcsii = csii/

Õ |L |
j=1 csi j . Then, it uses the

2We compute � by using CSI H instead of V in eq. (1).
3R can be set to 0.85, from our experiments in Fig. 5d.
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dominant CSI for computing the SINR. Client’s SINR along with
its bandwidth and tra�c pro�les are used for estimating client’s
throughput at an AP, as we discuss next.

4.2 Client and AP Pro�ling
MU-MIMO grouping opportunities depend on clients’ bandwidth
con�guration (cf. Sec. 3.3) and tra�c pro�les.
Bandwidth pro�le: MAPS monitors the interference pro�le of
each AP and client, and connects homogenous bandwidth clients to
the same AP. Particularly, it maintains for each device, the number
of transmissions or receptions that could use the bandwidth option
bw 2 {20, 40, 80, 160}. MAPS estimates bw , by monitoring which 20
MHz sub-channels are occupied through the RTS/CTS handshake
process. Since, a device’s interference pro�le (and hence bandwidth)
may change at runtime, MAPS selects bwk for a device k , to be the
bandwidth option with the highest probability. The probability of a
bandwidth i is estimated as:

Pbwi =
#Packets_bw iÕ

j2{20,40,80,160} #Packets_bw j (3)

MAPS maintains di�erent bandwidth pro�les for di�erent channels
that APs may operate on. It periodically resets bandwidth pro�les,
to account for new interference dynamics. Finally, it computes
the bandwidth con�guration of a client k at an AP � as: bwk,� =
min{bwk ,bw� }.
Tra�c pro�le: MAPS monitors the size of 802.11ac aggregated
frames (i.e., A-MPDU) to capture tra�c dynamics. It maintains a
moving average of a client’s A-MPDU size as:

Sampdu = (1 � � ) · Sampdu + � · Sampdu (4)

where � = 1/8 in our implementation. It periodically ages the
tra�c pro�le as: Sampdu = (1 � �) · Sampdu , to consider client’s
idle time. Typically, small Sampdu implies low tra�c.

MAPS also maintains the wireless channel utilization u� and
the number of clients connected to each AP � . It captures the AP’s
channel busy time with a factor u� 2 [0, 1], which is the fraction
of free transmission cycle opportunities within the last 10 beacon
intervals. We next show how such pro�les are used to estimate
clients’ throughput.

4.3 AP Selection Model
MAPS introduces a novel client assignment model, which can boost
MU-MIMO gains. It �rst leverages clients’ pro�les to estimate the
e�ective throughput performance of a client, at each AP. Then, it
selects the AP which can maximize a client’s throughput. We next
elaborate on our model.

4.3.1 Throughput Model. MAPS estimates the throughput of a
client k at an AP � , considering: (1) client’s PHY rate rk,� , when it
operates in an MU-MIMO group at � , (2) client’s tra�c Sampdu,k ,
(3) 802.11 protocol overheads (to ), (4) channel busy time u� , and (5)
airtime allocated to clientwk,� . Speci�cally, it is:

Thrk,� = wk,� · u� ·
Sampdu,k

td + to
(5)

The factor u� 2 [0, 1] captures the WiFi channel busy time.
The amount of client’s data Sampdu,k is computed based on equa-
tion (4). The time consumed by 802.11 protocol overheads (e.g.,
sounding, ACK) is to . Finally, the data transmission time is modeled
as td = tplcp + Sampdu,k/rk,� , where tplcp is the PLCP preamble
transmission time, and Sampdu,k/rk,� is the frame transmission
time, where rk,� is the PHY rate.
PHY rate rk,� : For a given MU-MIMO group, MAPS �rst estimates
client’s SINR from equation (2). Then, it uses the 802.11ac rate
tables [10] to map the SINR to a PHY rate rk,� (i.e., MCS, spatial
streams). However, a client can form multiple di�erent MU-MIMO
groups at each AP. These groups may change in time, depending on
clients’ channel correlation characteristics, bandwidth and tra�c
pro�les. Hence, to estimate rk,� , MAPS �rst needs to estimate
which are likely going to be k’s MU-MIMO groups at AP � .

In practice, only the best-throughput MU-MIMO groups of tra�c
active clients are used for transmission. To this end, MAPS con-
siders only the active clients (i.e., Sampdu > 0) as candidates for
grouping. Then, it computes the set of MU-MIMO groups G� that
can be formed by the active clients associated to an AP � , subject to
the bandwidth constraint. Here, a group � 2 G� is a set of clients of
cardinality of at least one (|� | � 1). From all the possible MU-MIMO
group combinations G� , an AP serves only the best-throughput
MU-MIMO groups, while ensuring that all clients will be fairly
served. Given a set of clients K� at AP � , a fair allocation will
assign k at least 1/|K� | of the airtime. MAPS satis�es the above
constraints, by �rst ordering the set G� , in decreasing MU-MIMO
group throughput order4. Then, starting from the highest through-
put group � 2 G� , MAPS adds � to a new set G 0

� , subject to two
constraints:
(a) Group � cannot be a proper subset (or superset) of existing
groups in G 0

� : 8�i ,�j 2 G 0
� then �i 1 �j .

(b) Every client associated to the AP � must belong to at least one
group in G 0

� : 8k 2 K� then k 2 � for � 2 G 0
� .

The above algorithm selects the best-throughput sets, while en-
suring that all clients will be served at least once. Hence, the set
G 0
� ⇢ G� includes the MU-MIMO groups which will be likely

served by the AP. Note that MAPS can leverage any of the tech-
niques proposed in the literature [19, 21] to identify G 0

� , at low
computational cost.

Now, let’s assume thatG 0
k,� ✓ G 0

� is the subset of groups which
include client k . Then, we estimate rk,� as the average client’s
PHY rate when it is part of the groups � 2 G 0

k,� : rk,� =
1

|G0
k,� | ·Õ

�2G0
k,�

r
�
k,� .

Allocated airtimewk,� : MAPS uses a weight wk,� to capture the
airtime to be allocated to client k , at AP � . Factorwk,� depends on
number of groups which are likely to be served by AP � (i.e., |G 0

� |),
or by other APs in � ’s vicinity, operating on the same channel.
Speci�cally, the airtime to be allocated to a client k at � is the
cardinality of subset of groups that include k (G 0

k,� ⇢ G 0
� ), to

the total number of groups. Hence, we set wk,� to be equal to

4Group throughput is estimated from eq. (5), by considering the group’s total trans-
mitted data and transmission time.
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|G 0
k,� |/|G

0
� |. For example, in the case study scenario of Figure 3,

G 0
AP1 = {{C1,C2,C3}}, G 0

AP2 = {{C4}} when C3 connects to AP1,
and G 0

AP1 = {{C1,C2}}, G 0
AP2 = {{C3}, {C4}} when C3 connects

to AP2. Hence, C3 will get more airtime at AP1 (wC3,AP1 = 1),
compared to AP2 (wC3,AP2 = 1/2). Note that, if a set of APs A
in the same vicinity with � operate on the same channel, then
wk,� = |G 0

k,� |/
Õ
a0 2A |G 0

a0 |.
In conclusion, MAPS’ throughput model can capture inter-client

interference and client’s bandwidth pro�le with the rate factor
rk . It captures Wi-Fi channel utilization u� , and prevents client
assignment to APs with congested channels. Finally, it captures the
“load"w� at each AP (or APs in range, on the same channel), which
is required for load balancing. Our AP platform maintains all the
per-client state, which is required for throughput estimation.

4.3.2 Client Assignment Model. MAPS’ objective is to determine
the proper client-AP association set K� , 8� 2 A, such that the
sum-throughput of all clients can be maximized. This optimization
problem can be formulated as:

I ⇤ = argmax
I

’
k2K

’
� 2A

Ik,�Thrk,� subject to

’
� 2A

Ik,�  1, 8k 2 K

Ik,� 2 {0, 1}, 8k 2 K, 8� 2 A

(6)

where the binary variable Ik,� indicates whether a client k asso-
ciates with an AP � ,8� 2 A. Such constraint ensures that each
client associates with at most one AP.

We prove that our problem is NP-Hard, by reducing a simple in-
stance of it, to the maximum independent set problem. We describe
the reduction in our technical report [28]. Hence, we propose a
heuristic algorithm that seeks to maximize the aggregate clients’
throughput (eq. (6)), while satisfying all the constraints. The algo-
rithm operates as follows.
Pro�ling:MAPS periodically updates each client’s and AP’s pro�le.
CSI pro�les are updated every 100 ms, upon NULL frame transmis-
sion. Bandwidth pro�les are updated upon RTS/CTS handshake,
while tra�c activity is updated on per A-MPDU basis.
Hando� trigger: MAPS associates a timer with each client k 2 K .
It triggers AP selection for k , when its timer expires, or when a
special event occurs. Since hando� process lasts approximately for
1.5 seconds in our testbed, MAPS sets client’s timer in the order of
tens of seconds. It freezes the timer for very low tra�c clients (i.e.,
Sampdu ⇡ 0), to prevent frequent hando�s. It also defers hando�
process, when delay-sensitive tra�c (e.g., VoIP) is in progress. Client
assignment is also triggered upon client’s mobility. MAPS detects
mobility through SNR variations. By using both timers and events
for hando� trigger, MAPS remains adaptive to channel dynamics,
without triggering excessive hando�s.
Group formation: Upon triggering hando� for client k , MAPS
will identify the set of APs in its range. To reduce the MU-MIMO
group formation computational overheads, MAPS excludes in ad-
vance APs with very low RSSI, since they will likely be sub-optimal
in terms of throughput. Then, it calculates the set of groups G 0

�
(and G 0

k,� ) for APs in k’s range, using the greedy search approach
proposed in [21]. In summary, it �rst sorts in descending order,
the clients based on their SU-MIMO throughput, and iteratively

goes through the list, to group the clients that provide the high-
est aggregate throughput with the already selected clients. The
search terminates when the group is complete, or when adding
more clients to a group results in lower throughput than serving
them in SU-MIMO mode. Finally, MAPS computes k’s throughput
at AP � from equation 5. It assigns k to the AP which maximizes
its throughput.

Our experimental results show that MAPS heuristic algorithm
performs very close to the optimal AP selection.

4.4 Discussion
Downlink throughput: MAPS seeks to improve downlink net-
work throughput. This is because 802.11ac MU-MIMO is only sup-
ported in downlink direction, which dominates the uplink, in Wi-Fi
networks [18]. However, improving downlink throughput, allows
for more airtime (and hence better throughput) in uplink transmis-
sions as well.
Co-existence with existing AP functions: MAPS can work in
concert with existing AP core functionalities, such as MU-MIMO
grouping and rate adaptation algorithms. MAPS’ SINR estimation
could be also used for even improving such algorithms. We leave
such extensions for future work.
Legacy clients:MAPS seeks to optimize the assignment of IEEE
802.11ac MU-MIMO-capable clients to APs. Legacy 802.11a/b/g/n
clients are assigned to APs, based on legacy algorithms. However,
MAPS’ throughput model still considers the load o�ered by legacy
clients connected to an AP.

5 IMPLEMENTATION
Our AP’s �rmware has access to only 960 KB on chip memory,
whose 98% is already occupied by various functions. Given that one
decompressed CSI sample requires 3.6 KB memory space, storing
multiple CSIs for all connected clients in AP’s �rmware is not fea-
sible. Constructing CSI pro�les in the more powerful AP’s “host"
board, which runs on a dual core 1.4 GHz CPU with a 512 MB DDR3
memory may overload the AP. Instead, MAPS constructs clients’
CSI pro�les at the controller, considering that all data packets are
going through the controller and CSI communication overhead is
small. However, due to their low memory requirements, we still
implement clients’ bandwidth and tra�c pro�les, and maintain
channel busy time statistics, in AP’s �rmware. The rest of MAPS’
functionality is implemented (using MATLAB) at the controller, as
shown in Figure 4. Our controller is a laptop with 8GB DDR3 mem-
ory and 4 Intel core i7-3520M CPU. Note that our implementation
does not include the MLME module and hence does not support
real time hando�. To this end, upon estimating the best AP-client
assignments, we manually assign clients to these APs, and then
evaluate the network’s performance.

6 EVALUATION
In this section, we evaluate MAPS, using testbed experiments and
trace-driven simulations. We compare MAPS with DenseAP [17],
which is representative of legacy AP selection designs proposed
by research studies, and deployed by AP vendors. DenseAP uses
an available capacity metric, which estimates the throughput as
a function of PHY rate (calculated from RSSI) and Wi-Fi channel
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Figure 8: MAPS and DenseAP performance in representative settings. MAPS performs similar to Oracle.
busy time. It seeks to balance the load by assigning clients to less
loaded APs5. We also compare MAPS with an “Oracle", which is
the best-throughput (optimal) client assignment. Oracle �nds the
best setting through exhaustive search. Our experimental setup
consists of the 802.11ac APs and phones described in Section 3.1.
We evaluate multiple topologies, under various tra�c scenarios
(UDP, TCP, VoIP).

6.1 Performance in Representative Settings
We �rst evaluateMAPS’ performance in four representative settings,
which capture di�erent aspects of dynamics in 802.11ac networks.
We consider that APs generate saturated downlink UDP tra�c to
clients, and that they operate on orthogonal channels, unless it is
explicitely mentioned.
Correlated channels:We �rst evaluate MAPS in our case study
setting of Figure 3. Similar to Oracle, MAPS can identify the best-
throughput client assignment, and achieves 153 Mbps (or 27.5%)
aggregated throughput gain compared to DenseAP, as shown in
Figure 8a. Speci�cally, MAPS can identify the high correlation of C3,
C4’s wireless channels at AP2, by computing their CSI correlation
and SINR values. The correlation factor �(C3,C4) is 41% and 50%
higher compared to �(C1,C3) and �(C2,C3), as shown in Table 3.
Such high correlation does not allow for MU-MIMO operation at
AP2. Hence, MAPS will assign C3 to AP1.

DenseAPwill falsely assign C3 to the highest RSSI AP2. Although
the SU-MIMO is the best mode for such assignment (cf. Tab. 1), we
observed that the AP’s MU-MIMO client grouping algorithm will
periodically try to evaluate the performance of the group {C3,C4}.
However, this will result in high inter-client interference and high
PER (cf. Fig. 2b). When C3, C4 are grouped together, AP’s PHY rate
adaptation switches to low PHY rates to copewith such interference.
This is shown in the rate distribution Figure 8b, where the AP2
often uses the lowest available 802.11ac rate (29.3 Mbps) to transmit
to C3. However, when MAPS assigns C3 to the lower RSSI AP1,
the selected PHY rate is mostly 390 Mbps, which results in higher
throughputs.

Table 3: CSI correlation for case study setting.
Setting C1-C2 C1-C3 C2-C3 C3-C4

CSI Corr 0.42 0.51 0.48 0.72

Heterogeneous bandwidths:We next evaluate MAPS with het-
erogeneous bandwidth clients. We deploy two APs and �ve clients.
C1 and C2 are connected to AP1 operating at 80 MHz. C4 and C5
are connected to AP2. Due to interferences, C4 and C5 operate at
40 MHz. A new client C3 has a stronger RSSI with AP2, than AP1.
Hence, DenseAP will assign C3 to AP2 without considering that, C3
cannot form an 80 MHz MU-MIMO group at AP2. C3’s throughput
is 79 Mbps at AP2, while the total network throughput is 608 Mbps
5DenseAP performs transmit power control, which is out of the scope of this work.

(cf. Fig. 8a). However, MAPS can identify the opportunity of a high
throughput MU-MIMO group {C1, C2, C3} at 80 MHz, and assigns
C3 to AP1. Associating with AP1, C3 achieves 156 Mbps throughput,
with a total network throughput of 720 Mbps. Leveraging client’s
bandwidth pro�le, MAPS can almost double C3’s throughput. It also
boosts total network throughput by 112 Mbps (18.4%) compared to
DenseAP. MAPS performs the same as Oracle.
Mobility: We next study MAPS’ responsiveness to mobility. We
deploy two APs, three static and one mobile client. Static clients C1,
C2 are associated with AP1, and C4 with AP2. C3 is moving with
pedestrian speed around AP2. Our traces show that the highest
RSSI AP for C3 is always AP2. Hence, DenseAP assigns C3 to AP2.
This results in 65 Mbps throughput for C3 and 552 Mbps network
throughput.

MAPS monitors the channel dynamics of the mobile client C3,
and constructs a CSI pro�le for AP2 with three dominant multi-
paths, as shown in Figure 8c. The most dominant path among the
three is represented with the solid line. Interestingly, C3 and C4
channels overlap in space at AP2 (cf. Fig. 8c), which implies corre-
lated channels and high inter-client interference. To avoid client
groups with correlated channels, MAPS will assign C3 to AP1. C3
achieves 91 Mbps throughput at AP1, and the aggregated network
throughput is 663 Mbps (cf. Fig. 8a). This corresponds to a through-
put gain of 40% for C3, compared to DenseAP. Network throughput
is also increased by 20.1%.
Unbalanced tra�c: Di�erent from the previous experiments, we
next evaluate a setting where two APs operating on the same chan-
nel, have unbalanced loads. Speci�cally, clients C1 and C2 are con-
nected to AP1, while AP2 does not serve any client. Let’s now
consider a new client C3 in the network, with similar RSSI from
AP1 and AP2. DenseAP will assign C3 to AP2, to balance the load
across APs. Such assignment results in 75 Mbps and 389 Mbps
throughput for C3 and for the network, respectively. On the other
hand, MAPS will estimate factor wC3,AP1 to be equal to 1, and
wC3,AP2 to be 1/2. Hence, given a negligible inter-client interfer-
ence among C1, C2, C3 at AP1, MAPS will assign C3 to AP1. Such
assignment almost doubles C3’s throughput. It also increases the
network throughput by 50 Mbps.
Delay-sensitive tra�c: We �nally evaluate MAPS over delay-
sensitive tra�c, such as VoIP. In our setting, clients C1, C2 are
connected to AP1, and C4, C5 to AP2. Both APs generate saturated
downlink UDP tra�c to clients. DenseAP assigns a new client C3 to
the highest-RSSI AP1, while MAPS connects C3 to AP2, which max-
imizes MU-MIMO gains. Then, C3 initiates a VoIP call to another
device connected to the AP through Ethernet. Figure 8d shows the
one-way network delay for VoIP tra�c over a 30-second time win-
dow, for C3 at AP1 (DenseAP), and C3 at AP2 (MAPS). We observe
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Figure 9: Throughput and fairness comparison of MAPS, Oracle and DenseAP.
that the average and peak delays are only 1.1 ms and 8.4 ms, when
C3 connects to AP2. This is because MAPS’ assignment allows for
C3, C4, C5 to form an low interference MU-MIMO group. How-
ever, DenseAP assignment results in 11.4⇥ higher average delay
(12.4 ms) compared to MAPS. For 7% of the samples, the delay for
DenseAP exceeds 30ms, which is above the delay requirements
of VoIP applications [16]. This is because C3 mainly operates in
SU-MIMO mode at AP1, due to high inter-client interference with
C1 and C2. Interestingly, Figure 8d shows high delay variations for
DenseAP assignment, with delay peaks up to 94ms. We observe that
such peaks (at [2.7, 8.8] sec. and [23.8, 27.2] sec.) appear, when the
MU-MIMO grouping algorithm tries to group C1, C2, C3 together.
Such grouping creates high PER and low throughput.

6.2 Larger Scale Field Trials
We further experimentally evaluate MAPS in multiple larger scale
topologies with 6 APs and 20 clients. We present the experimental
�oorplan in our technical report [28]. Apart from our APs, we detect
22 more BSSIDs at 5 GHz, to operate in various channels, in the
same RF coverage zone. We run each experiment for 5 minutes at
di�erent times of day considering both static and mobile clients,
and we report experiments from multiple runs. For each run, we
compare MAPS, DenseAP and Oracle, for saturated downlink UDP
and single-�ow TCP tra�c. Figure 9a shows the aggregated (over all
APs and clients) network throughput gains of MAPS over DenseAP.
Each point of the distribution re�ects a di�erent setting. We observe
that MAPS performs similar or better than DenseAP in more than
90% of the settings. For UDP, the gain is at least 149 Mbps in 50%
of the settings, and it can go up to 365 Mbps (which corresponds
to a 52.3% gain). Throughput gains for TCP are smaller (23.6%).
This is because UDP tra�c is always saturated compared to TCP.
The highest gains for MAPS are observed in static client settings,
when clients’ channels are highly correlated. The smallest gains (or
even loss) for MAPS are observed in highly dynamic environments,
where MAPS’ CSI pro�le may not capture the channel dynamics,
and may assign clients to lower RSSI APs, which happen to be
the lower throughput APs. In such settings, DenseAP outperforms
MAPS by up to 95 Mbps (cf. Fig. 9a).

MAPS mostly performs similar to Oracle. Speci�cally, Figure 9a
shows that MAPS throughput is the same with Oracle in 94% of the
settings for UDP, and 75% of the settings for TCP. Oracle outper-
forms MAPS in a few scenarios of highly dynamic environments,
as we discussed above.

Interestingly, MAPS can also improve the throughput fairness
among clients connected to APs in the same vicinity. We illustrate
our �nding in Figure 9b, which plots the di�erence of Jain Fair-
ness Index between MAPS and DenseAP, and between Oracle and

MAPS, for UDP and TCP. MAPS has always equal or larger Jain
index compared to DenseAP. The di�erence exceeds 0.2, which is a
signi�cant gain, if we consider that an index of 1 implies perfect
fairness. Since MAPS limits inter-client interferences (and hence
PER), it does not negatively a�ects certain clients’ TCP windows.
This results in better TCP fairness gains (compared to UDP) over
DenseAP (cf. Fig. 9b). MAPS achieves the same fairness as Oracle
in the vast majority of the settings.

6.3 Trace Driven Simulations
We next conduct trace-driven simulations to evaluate MAPS in
larger scale network topologies. For our simulation, we have col-
lected wireless link performance traces (e.g., CSI, throughput, PER)
from multiple settings. We have also collected per-client tra�c load
statistics from 82 APs of an enterprise Wi-Fi network, to simulate
realistic tra�c scenarios. We then combine these traces to simu-
late larger networks. We simulate scenarios where 20 APs and 108
(static and mobile) clients are placed in a building �oor. The number
of clients per AP varies from 1 to 54.

In Figure 9c, we present the aggregated (over all APs and clients)
network throughput gains of MAPS over DenseAP. We observe that
MAPS always performs similar or better than DenseAP. Speci�cally,
it achieves up to 1.2 Gbps (or 28.6%) and 663.8 Mbps (or 17.5%)
throughput gain over UDP and TCP, respectively. Figure 9c, further
shows that MAPS performs the same as Oracle, for 85% and 60% of
the settings, for UDP and TCP, respectively.

Interestingly, our results show that MAPS’ gains over DenseAP
do not necessarily drop when the number of clients connected to an
AP increases. For example, Table 4 shows the average throughput
for MAPS, DenseAP and Oracle, when the number of clients in
two APs’ vicinity varies from 12 to 108. We observe MAPS’ gains
over DenseAP range from 33% to 45%, with the maximum gain
to be achieved for 108 clients. This is because, the higher num-
ber of clients connected to an AP does not necessarily increase
the MU-MIMO grouping opportunities. Speci�cally, we observe
that the number of candidate clients for grouping at each trans-
mit opportunity (TXOP) is limited by: a) the active clients, b) the
fair scheduler implemented in our AP, which will not reschedule
the clients served in the previous TXOPs, c) the clients’ correlated
channels and channel bandwidth con�gurations. Particularly, we
observe that the MU-MIMO groups’ size for DenseAP is typically
less than maximum supported size of 3 clients, or it often operates
in SU-MIMO.

Finally, our simulations verify that MAPS can improve the fair-
ness among clients, as shown in Figure 9d. In conclusion, our exper-
iments show that MAPS can signi�cantly boost the performance
for large Wi-Fi networks.
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Table 4: Average throughput for varying number of clients.
Total clients 12 36 60 84 108

MAPS Thr. (Mbps) 313 ± 5 314 ± 2 333 ± 1 341 ± 1 346 ± 1
MAPS clients AP1/AP2 6/6 19/17 31/29 40/44 52/56
DenseAP Thr. (Mbps) 223 ± 5 223 ± 2 250 ± 1 242 ± 2 237 ± 1

DenseAP clients AP1/AP2 6/6 18/18 32/32 42/42 54/54
Oracle Thr. (Mbps) 360 ± 3 361 ± 2 360 ± 2 362 ± 1 362 ± 1

Oracle clients AP1/AP2 6/6 19/17 31/29 40/44 52/56

7 RELATEDWORK
There are several studies related to our work.
AP selection: AP selection algorithms can be classi�ed in cen-
tralized [17, 29] and distributed [11, 13, 25]. Similar to MAPS, in
centralized solutions, APs exchange RSSI, tra�c load, interference
feedback with a controller, which decides the network-wide op-
timal client assignment. In distributed algorithms, it is the client
which selects the best AP. However, all the above systems have been
designed for legacy 802.11a/b/g/n networks and are oblivious to
MU-MIMO feature. Hence, they can limit the MU-MIMO grouping
opportunities, as shown by our experiments. AP selection designs
proposed by AP vendors [2, 8], are also RSSI-based and have the
same limitations in MU-MIMO settings.

The theoretical study in [9] jointly solves the problems of MU-
MIMO AP selection and client grouping. It seeks to assign clients
with uncorrelated channels to the same AP. However, such proposal
has two key limitations. First, it is oblivious to clients’ bandwidth
con�gurations, and it does not consider the impact of AP load and
channel utilization to throughput performance. Hence, it performs
poorly in the scenarios described in Sections 3.3, 3.4. Second, our
results have shown that MU-MIMO grouping and AP selection
happen at di�erent time scales (msec. and sec. scales, respectively).
Thus, triggering AP selection at msec. granularity can cause exces-
sive hando� overheads. Di�erent from [9], MAPS decouples these
two functions, and considers clients’ heterogeneity and AP load,
when assigning clients to APs.
MU-MIMO grouping and scheduling: There have been several
MU-MIMO client grouping and scheduling proposals [19, 21, 23, 30].
Such designs can only achieve high MU-MIMO gains, if clients
with uncorrelated channels have been assigned to an AP. Thus,
they can realize their full potential, only by working in concert
with designs like MAPS. Moreover, MU-MIMO grouping designs
leverage explicit beamforming feedback to identify uncorrelated
channels. Such approach requires excessive clients’ hando�s (cf.
Sec. 4.1), and it is not e�cient for AP selection. Hence, MAPS uses
implicit CSI feedback to assign clients to APs.
NetworkMU-MIMO:MAPS assigns clients with orthogonal chan-
nels to APs, to allow forMU-MIMOgroupswith no inter-client inter-
ference. For a given client assignment, recent designs [4, 14, 24, 26]
enable APs and clients in interfering cells to coordinately cancel the
inter-cell interference, using their antennas for beamforming and in-
terference cancellation. Such solutions typically require client-side
modi�cations and are not 802.11-compliant. On the other hand, we
implement MAPS in 802.11ac-compliant commodity APs and con-
trollers. Note that, MAPS could also work in concert with network
MU-MIMO, to further improve performance.

8 CONCLUSION
In this paper, we have studied the AP selection problem in MU-
MIMO Wi-Fi networks, using commodity 802.11ac testbeds. Our
experimental results show that legacy AP selection designs assign

clients with correlated channels and heterogeneous bandwidths
to the same AP, limiting the MU-MIMO grouping opportunities.
Their approach to load balancing is also MU-MIMO oblivious and
can decrease the MU-MIMO gains. To this end, we propose a new
Mu-mimo-Aware AP Selection (MAPS) design, which can identify
the best-throughput client assignment, at low overhead. Our re-
sults show that MAPS signi�cantly outperforms legacy designs. We
believe that MAPS can be a key building block for designing the
future MU-MIMO 802.11ax and 5G networks.
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