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Abstract—Identity-based attacks (IBAs) are one of the most serious threats to wireless networks. Recently, there is an increasing
interest in using the received signal strength (RSS) to detect IBAs in wireless networks. However, current schemes tend to generate
excessive false alarms in the mobile scenario. In this paper, we propose a stronger Reciprocal Channel Variation-based Identification
and classification (RCVIC) scheme for the mobile wireless networks, which exploits the reciprocity of the wireless fading channel and
RSS variations naturally incurred by mobility to improve the detection performance. Different from current schemes only detect IBAs,
RCVIC scheme conducts a multi-stage detection processes. If the IBAs are detected, RCVIC scheme partitions the received frames
into two classes. The frames in the same class should be sent from the same senders, which could benefit the further analysis, such as
network forensics, attacker localizing and trajectory analysis, etc. The feasibility of RCVIC are numerically evaluated through theoretical
analysis and simulations. It is further validated through experiments using off-the-shelf 802.11 devices under different attacking
patterns in real indoor and outdoor mobile scenarios.
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1 INTRODUCTION

AMONG the various types of attacks in wireless net-
works, identity-based attacks (IBAs) are one of the

most serious threats to wireless networks[1, 2]. For instance,
in IEEE 802.11 networks, an attacker can sniff the traffic
in the network and get to know the MAC addresses of
the legitimate users. Then it could masquerade as a legit-
imate user by modifying its own MAC address. IBAs are
considered to be an important first step in an intruder’s
attempt to launch a variety of other attacks [3], such as ses-
sion hijacking, man-in-the-middle, data modification, and
authentication-based denial of service. Although traditional
cryptographic techniques can potentially prevent IBAs in
wireless networks, the authentication key can still be com-
promised. If the key is broken, the cryptography-based
mechanism will fail and IBAs are easy to lunch.

Under the above circumstances, there is an increasing
interest in using the environment-dependent wireless chan-
nel features such as received signal strength (RSS) and
channel state information (CSI) to detect IBAs in wireless
networks [4–8]. The foundation of these schemes is that
CSI and RSS are location-specific due to path loss and
channel fading, and they are random and unpredictable.
An attacker who is at a different location from the genuine
user will incur different CSI or RSS profiles as observed by
monitors/access points [9].
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There are two typical solutions for current channel-
based IBA detection schemes. One [10] is based on the
assumptions that the previous data frame Dn−1 has already
been authenticated, then the receiver just need to determine
whether current frame Dn is sent by the same sender. If
the CSI or RSS of Dn is “similar” enough to Dn−1, it is
believed to be sent by the same sender or not. Otherwise,
it is sent by the attacker. However, in a mobile scenario,
these schemes tend to generate excessive false alarms [11].
This is mainly because this type of scheme only works well
when the interval between two consequent frames is within
the channel coherence time. Furthermore, if one frame was
erroneously measured by the receiver, or it was fabricated
by a nearby attacker [12], the receiver could get erroneous
judgement on all the subsequent frames.

The other typical solutions are based on the cluster
partition analysis [4–6]. Work [4] partitioned the receive
frames of RSS trace into two classes and detect IBAs if
the two classes have low correlation. If there is no attack,
the distance between the two cluster centres should be
close. Based on the cluster partition results, the receiver
can implement further countermeasures to enhance security,
such as determining the number of attackers and localizing
them [5, 6]. However, in a mobile environment, work [11]
showed that the detection performance will decrease with
excessive false alarms, when the nodes are moving with a
higher speed.

In this work, we propose a novel Reciprocal Channel
Variation-based Identification and classification (RCVIC)
technique to improve the detection performance in mobile
environments. RCVIC consists of four distinct and ordered
processes as: DATA-ACK communication, RSS records feed-
back, IBA detection and partition. In order to improve the
detection performance in mobile environments, RCVIC first
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directly detects IBAs by utilizing DATA-ACK communica-
tion with RSS records feedback processes. Then, if the fur-
ther detection is triggered, the well-designed RSS variation
lists are constructed for further detection. Finally, if IBAs
are detected, RCVIC scheme triggers the partition process to
partition the received frames into two classes without prior
channel information. The frames in the same class should be
sent from the same senders, which are very beneficial for the
system to implement the further analysis, such as network
forensics [13], attacker localizing [4], etc.

In the first DATA-ACK communication, RCVIC assumes
that the sender and receiver can record the RSS value of
the bidirectional frames with a short time interval. In the
RSS records feedback phase, the receiver asks the sender to
feedback the RSS records during DATA-ACK communica-
tion. Then receiver can directly detect IBA by checking the
length of feedback RSS records. If the length of feedback
satisfies requirements, the receiver further detects IBAs by
constructing well-designed RSS variation lists, based on its
own RSS records and feedback RSS records. Based on the
reciprocity of the wireless channel [9], the mobile sender and
receiver should observe similar temporal RSS variation lists.
Therefore, when there is no IBA, the reported RSS variation
lists should be correlated with the receiver’s observation.
Meanwhile, for the location decorrelation property of the
wireless channel, an attacker cannot observe the same chan-
nel variation as the sender-receiver channel if it is located
several wavelengths away [9]. In case there is an IBA, the
RSS records observed by a victim node should be a mixture
of the RSS induced by the genuine user and the attacker.
Since the attacker cannot figure out the RSS variation lists
observed by the genuine user, its reported RSS records
should be less correlated with the victim node’s, and IBAs
can be detected.

One advantage of RCVIC is that it can make use of
the readily available RSS measurement of DATA and ACK
frames, so it can be implemented in the current 802.11
systems with minimal overhead. It can also be generally
applied to any wireless networks, as long as there are bi-
directional frames exchanged between the communication
parties within a time interval shorter than the channel co-
herence time. Our contributions are summarized as follows:

• We proposed a multi-stage detection and decision
model. If an IBA is detected by RSS variation lists,
RCVIC partitions the frames to two classes for fur-
ther analysis.

• The closed-form expressions of false alarm rate and
detection rate, regarding to attack density and chan-
nel reciprocity coefficients are derived. The optimal
hypothesis threshold for RCVIC detection is ana-
lyzed. The numerical results illustrate how channel
reciprocity, attacking intensity and channel correla-
tion variations affect the RCVIC detection and false
alarm rate.

• We evaluate RCVIC through extensive experiments
using off-the-shelf 802.11 devices under different at-
tacking patterns in real indoor and outdoor mobile
scenarios. we show that RCVIC can detect IBAs with
a high probability even when the attacker is half a
meter away from the genuine user.

TABLE 1
Summary of important symbols

∆Sgv RSS variation at victim if no Attack
∆S̃gv RSS variation with measure error at victim if no attack
∆S̃vg RSS variation with measure error at genuine if no attack
∆S̃a RSS variation with measure error at attacker
∆S̃v RSS variation with measure error at victim under attack
ρgv Reciprocity coefficient of victim and genuine nodes
ρav Reciprocity coefficient of attacker and victim
ρag Reciprocity coefficient of attacker and genuine nodes
ρ̃gv RSS variation correlation coefficient if no attack
ρ̃a RSS variation correlation coefficient under attack
ρ̃A RSS correlation coefficient under attack of situation A
ρ̃B RSS correlation coefficient under attack of situation B
ρ̃C RSS correlation coefficient under attack of situation C
Pa Attack intensity

r
Ratio of the number of attacking frames to the
number of genuine frames

The rest of this paper is organized as follows. In Sec-
tion 2, we discuss the related work. Section 3 introduces the
RCVIC system model and attack model. We propose RCVIC
IBA detection algorithm in Section 4. The IBA detection
performance evaluation is provided in Section 5. Section 6
illustrates the RCVIC partition process. We conduct the nu-
merical simulations to verify the performance of RCVIC in
Section 7. In Section 8, we analyze the experimental results.
Related issues about RCVIC are discussed in Section 9.
Finally, we conclude this paper in Section 10. For ease
of reference, some important notations are summarized in
Table I.

2 RELATED WORK

There is an increasing interest in using wireless channel
features, such as RSS and CSI to detect IBAs in wireless
networks [5, 14]. In work [4], a generalized IBAs detection
model was proposed that utilized the spatial correlation of
RSS inherited from static wireless nodes. The model used
K-means algorithm to partition the received RSS records
into two clusters. In particular, the RSS records over time
from the same physical location will belong to the same
cluster points in the n-dimensional signal space, while the
RSS records from different locations over time should form
different clusters in signal space. Based on work [4], work
[5, 11, 14] proposed an integrated detection and localization
system that can localize the positions of multiple attackers
as well as determine the number of attackers. Since the
RSS is readily available in current devices, the RSS based
IBAs detections were further extended to various mobile
application scenarios, such as trust ad hoc networks and
vehicular networks [7, 8].

In the mobile environments, the RSS or CSI measure-
ments will change over time, thus will generate excessive
false alarms. Work [11] considered channel variations due
to environmental changes and terminal mobility. It nu-
merically verified that the detection performance tends to
degrade with excessive false alarms, when the nodes are
moving at a higher speed. Aiming to improve the detection
performance, work [15] proposed a CSI profile model, which
integrated different detection strategies for static and mobile
users, respectively. Works [16] utilized multiple antennas
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Fig. 1. IBA attack model. “After”/“Before” means the attacker’s frames ar-
rive after/before the genuine node’s. “Interleaved” means the attacker’s
frames are interleaved with the genuine node’s.

and multiple landmarks to improve the detection perfor-
mance. For unknown the channel model, works [10, 16] uti-
lized learning algorithms to enhance the spatial resolution
of the channel information and thus improve the detection
performance. However, utilizing learning algorithms usu-
ally requires an additional training phase, which increases
the overall delay and complexity [12].

The most related work is the DEMOTE system proposed
in [17]. DEMOTE partitions the RSS trace of a node identity
into two classes, and detect the IBA when the two classes
have low correlation. However, it cannot work well when
the attacker is close to the genuine node or when the
attacking frames come after or before the genuine ones.
With regularly interleaved attacking and genuine frames,
DEMOTE needs about 150 seconds (or 1500 frames) to detect
the IBA with desirable performance.

Difference from conference version: Preliminary re-
sults have been published in a previous conference version
[18] (IEEE INFOCOM) of this journal version. Comparing
to the conference version, we have made significant im-
provements and propose a stronger RCVIC model, which
not only detect IBAs, but also partition the received frames
into two classes, which are very beneficial for the system to
implement the further analysis, such as network forensics,
attacker localizing, and trajectory analysis, etc. In addition,
we derive the tractable closed-form expressions of IBA false
alarm rate and detect rate, the key factors that impact IBA
false alarm rate and detect rate are fully investigated. The
optimal hypothesis test threshold for RCVIC detection is
also analyzed. The factors that impact the performance are
fully investigated.

3 SYSTEM MODEL AND MULTI-STAGE DECISION

3.1 Attack model

We consider an 802.11-based wireless network and intro-
duce three different single antenna parties: a genuine node,
a victim, and an attacker. We assume a powerful attacker
who could compromise the authentication key by sniffing
the communication traffic between the victim and genuine
node, if cryptographic authentication mechanisms are em-
ployed. After that, it masquerades the genuine node by
modifying its own identity into the genuine one’s, and
sends fake frames to victim. The attacker can manipulate
arbitrary fields in a frame, such as the source and destina-
tion IP/MAC addresses, sequence number, and so on. We

t1

t1

(a) Genuine node sends data frame at t1.

t2t1

t1 t2

(b) Attacker inserts attack frame at t2.

Fig. 2. DATA-ACK communication. (a) At t1, victim received genuine
node’s DATA frame and feedback ACK. Genuine node recorded the
corresponding RSS. Attacker eavesdropped ACK and recorded its RSS;
(b)At t2, victim received attacker’s frame and feedback ACK, attacker
recorded RSS from ACK of himself.

assume the attacker may have compromised the authentica-
tion key of the genuine node if cryptographic authentication
mechanisms are employed. The RCVIC scheme aims to
detect such IBAs. If an IBA is detected, the victim could
initialize a rekey process (renew/update the authentication
keys) to recover from the attack and conduct further analy-
sis.

When IBAs are lunched, the attacker intends to insert
fake frames to victims after/before or interleave with the
genuine node’s frames. Therefore, The frames of victim
received might be all sent from a genuine node, or some of
them are sent from an attacker. Those attacking patterns are
shown in Fig. 1 which will be referred as “After”, “Before”
and “Interleaved” in the rest of this paper.

3.2 DATA-ACK communication and RSS feedback

RCVIC consists four distinct and ordered processes as:
DATA-ACK communication, RSS feedback records, IBA de-
tection and partition, which are described below.

DATA-ACK communication: We assume there is bidi-
rectional communication between genuine node and victim
which allows them to probe the bidirectional RSS channel
characteristics in a synchronized way. For each time slot,
if victim receives a frame from the same MAC address, he
records its RSS and immediately sends back an ACK frame to
the sender within a very short time interval. When a genuine
node has send a data frames and then “listen” an ACK
within a very short monitor time window, he also records
his RSS value. Otherwise, if he does not sent a DATA, he
does not monitor the feedback channel to receive ACK. It
is reasonable to assume that the time interval between the
data frame and its corresponding ACK frame is very small,
and the channel reciprocity should hold well during the
exchange of the data frame and ACK frame. In an 802.11
system, this ACK frame is naturally provided by the DATA-
ACK frames [19]. For example, the time interval between
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Fig. 3. DATA-ACK communication and RSS records feedback.

a DATA and its ACK frame is about 0.47ms, by assuming
the DATA frame size is 512 bytes and transmission rate
is 12Mbps in 802.11g networks [19, 20] (We assume ACK
frames are reliable and our scheme can tackle the case of
unreliable ACK frames, which is discussed in Section 9).

We assume the attacker can eavesdrop the ACK frames
destined from victim to genuine node in DATA-ACK com-
munication phase. However, for the location decorrelation
property of the wireless channel, attacker can only observe
“falsified” RSS records from eavesdropping ACKs, based
on his specific-location. Therefore, the RSS records of ACKs
corresponding to the spoofed DATA frames will be highly
correlated with RSS records at victim, giving that the chan-
nel reciprocity holds well (as shown in Fig. 2 (b)). However,
the correlation between the falsified RSS records from the
eavesdropping ACKs and the ones at the victim node will
be much lower (as shown in Fig. 2 (a)).

Fig. 2 shows an example where genuine node and at-
tacker send frames to victim at two different time slots
t1 and t2, respectively. In the figure, we use green circles
and red triangles to denote RSS records based on different
locations of genuine node and attacker, respectively. In
addition, for RSS records of attacker, we use red triangles
with different fill patterns to denote the highly correlated
records from ACK of itself, and the lowly correlated records
from eavesdropping ACK of genuine node, respectively.

RSS records feedback: In the first DATA-ACK phase,
when the victim has received M DATA frames from the same
MAC address, he requests the sender to feedback the M
RSS records of ACK frames during their past DATA-ACK
communication period. This value of M is only known by
victim, and victim can randomly change value of M time
by time without pre-informing genuine node. The process
is shown in Fig. 3. The M RSS records might be all sent
from genuine node, or sent from an attacker who inserted
falsified/eavesdropped RSS into his RSS records. Next we
describe RCVIC multi-stage detection processes.

3.3 RCVIC multi-stage detection and partition
We outline RCVIC multi-stage detection flows in Fig 4. After
received M data frames, victim requests the sender to feed-
back the M RSS records during DATA-ACK communication
period, and conducts further IBA detection process based on
different situations below.

1) If victim received RSS feedback records with a
length MF 6= M , he directly declares an IBA attack
and perform the following partition process.

Partition 

There has 
an IBA?

Declare
IBA

Detect IBA 

No

Yes

DATA-ACK 

RSS feedback MF =M ?
No

Return Declare
normal

Yes Declare
IBA

Further 
analysis

Fig. 4. RCVIC multi-stage IBA detection flow.

2) If MF = M , victim conducts further IBA detec-
tion by constructing the RSS variation lists from
his RSS records and the feedback. If an IBA is
further detected, the following partition process is
triggered. Otherwise, if victim does not detect an
IBA, he believes there is no IBA and return without
conducting the next processes.

The specifical RCVIC detection, partition algorithms are
provided in the following Sections. We provided attack
analysis below.

3.4 Attack discussion
From analysis above, the primary purpose for the attacker
is to conduct IBAs and try to avoid detection. If IBAs are
detected, victim and genuine node will updated/renew
their authentication keys, which will prevent the attacker
from impersonating the genuine node further. Therefore,
the attacker has no incentive to expose itself or increase the
chance of being detected. In order to avoid the immediately
detection described above in (1) of Section 3.3, the attacker
must always feeds back RSS records with the length of
M = MF to satisfy the expected length of the feedback
list. Consequently, attacker must record each RSS of ACKs
corresponding to himself, and eavesdrop all the ACKs sent
from victim to genuine node in the DATA-ACK phase.
Otherwise, he can hardly know the exact number of M ,
and he cannot always feedback the RSS records to satisfy
the expected length of M = MF .

We assume in DATA-ACK communication phase, victim
received attacker’s DATA frames with a density Pa, where
0 < Pa < 1 denotes the ratio of the number of attack
frames to the total number of received DATA frames. Thus
attacker can averagely get PaM ACK frames from victim
and record PaM RSS records by himself. However, in the
DATA-ACK communication period, the genuine node can
only received MG = M − PaM ACK frames and record
MG corresponding RSS records by himself. This is mainly
because the PaM DATA frames received at victim were
spoofed successfully by the attacker (This process is indi-
cated in Fig. 2), and genuine node does not record any RSS
of ACKs which correspond to the spoofed DATA sent by the
attacker.
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Because genuine node only honestly records the RSS
of the ACKs corresponding to the DATA frames sent by
himself, when victim asks for RSS feedback, the genuine
node honestly feedback MG RSS records to victim during
their past communication period. If victim received MG

RSS records, he can immediately detect an IBA attack
because MG < M . Therefore, to avoid be detected easily,
the attacker also must launch jamming [21] to interfere
victim to receive MG < M RSS records feedback from
genuine node. For a worst case consideration, we assume a
powerful attacker that can successfully interfere victim and
enforce victim receive the RSS feedback from attacker.

From discussion above, if attacker directly feeds back
MA = PaM RSS records where he has recorded, victim can
easily detect IBA since MA < M . Therefore, in order to
avoid detection and meet the length requirement MA = M ,
attacker must eavesdrop all (1 − Pa)M ACK frames sent
from victim to genuine node in DATA-ACK phases. He
can record the corresponding (1 − Pa)M eavesdropping
RSS values or just insert (1 − Pa)M random records as
the falsified RSS records. After that, when victim asks for
RSS feedback, by combining his PaM RSS records with the
(1 − Pa)M falsified RSS records, the attacker can feedback
the exactly right number of MA = M RSS records to
victim. We assume attacker does not disrupt the order of
his feedback RSS records. Because if he disrupts the RSS
records order, the correlation between his RSS feedback
records and RSS records at victim becomes quite low and the
IBA will be easily detected by victim. On the other hand, the
attacker can work much harder than genuine node to make
victim only received attack’s stream, where Pa = 1 (as the
worst case for IBA detection) to make victim only received
one stream of RSS signals from attacker. However, in the
practical application, this attack is very hard to realize. On
one hand, the attacker should first sniff the communication
traffic between genuine node and victim, e.g., to find the
target of attack. Therefore, when IBAs are lunched, the
genuine node usually has already communicated with the
victim for a certain period of time and the corresponding
RSS records have already been established at both sides.
On the other hand, even if the attacker could launch the
attack in the very beginning, it is hard for the attacker to
fully prevent the genuine node from communicating with
the victim. In order to do so, the attacker has to block/jam all
the communications between the genuine node and victim,
which would be easily detected by the genuine node or
victim using existing jamming detection methods [21–23].
For example, as shown in Fig. 2 (b), when genuine node
sends frames to victim, but he cannot receive any/few ACK
from victim, he could lunch the jamming detection methods.

4 RCVIC IBA DETECTION DESIGN

In this section, we present the IBA detection algorithms. In
subsection 4.1, the RCVIC detection algorithm is illustrated.
In subsection 4.2, we illustrate the construction of RSS
variation lists. In subsection 4.3, we discuss the appropriate
parameter selection.

p

te1 ts1 te2 ts2
tg

1et 1st 2st2et

tg

d

dΔS

pΔS

Fig. 5. Victim constructs RSS varitaion lists ∆Sp and ∆Sd with length
N under IBA

4.1 RCVIC IBA detection
In RCVIC, the victim sends a verification request feedback to
the sender for the M RSS records of the ACK frames during
their past communication period. If there is an IBA attack,
we consider the worst case scenario that victim received the
M RSS records responded by attacker, as discussed above
in Section 3.3.

After receiving the RSS records of the M ACK frames,
denoted as Sp = [S(t′1), ..., S(t′M )], the victim constructs
K RSS variation lists using Sp and its own RSS records
Sd = [S(t1), ..., S(tM )]. We assume Sp and Sd are sorted by
time and aligned. For each pair of the constructed variation
lists, the victim computes the sample correlation coefficient
of the two variation lists. It then computes the mean of
these correlation coefficients. If the mean is larger than
some threshold, it assumes no attack. Otherwise, it raises
an alarm. The flow of IBA detection is summarized in
Algorithm 1.

Algorithm 1 IBA detection flow
Input: Sd = [S(t1), ..., S(tM )], Sp = [S(t′1), ..., S(t′M )]
Construct K pairs of RSS variation lists (∆Spk ,∆Sdk ) (1 ≤
k ≤ K)
Compute sample correlation coefficient ρ̂k of each pair of the
lists, and ρ =

∑K
k=1 ρ̂k
K

if ρ ≤ ρth then
“attack”

else
“no attack”

end if

The intuition behind RCVIC is that if there is no attack,
the RSS variations of the genuine node and the victim
should be highly correlated according to the reciprocity.
While if there is an IBA, the correlation should be degraded,
because the reported RSS record is a mixture of the “right”
and “wrong” RSS. This point is indicated in Fig. 2 and 3.
Next, we will discuss the method of constructing the RSS
variation lists, and the reason we construct multiple of them.

4.2 Constructing RSS variation lists
The process of constructing RSS variation lists ∆Sp and
∆Sd with length N are illustrated in Fig. 5. Given two RSS
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measurements S(ts) and S(te), we define the temporal RSS
variation as:

∆S(ts, te) = S(ts)− S(te) (1)

We call ts and te as the start time and end time for this varia-
tion. An RSS variation list is a sequence of RSS variations:

[∆S(ts1 , te1), . . . ,∆S(tsL , teL)]

where L is the list length.
Given RSS records Sp and Sd, Algorithm 2 constructs

K RSS variation lists with maximum length N . It runs K
rounds. In the kth (1 ≤ k ≤ K) round, we first select the kth

frame as the start frame. Then we try to find the end frame
which is lagged within an interval [tl, tu], called the lag
interval (tl < ts− te < tu). If we find such a frame (with end
time tj), we compute the first RSS variations (∆Sd(ti, tj)
and ∆Sp(t

′
i, t
′
j)) and append them into ∆Sdk and ∆Spk ,

respectively. We then search for the next variation with start
time lagging the end time of the previous variation by an
interval of at least tg , called guard interval. We try to find the
following RSS variations in the same way, until we run out
of the list or reach the maximum list length N . The running
time of this algorithm is O(KN).

Algorithm 2 RSS variation lists construction
Input: Sd = [S(t1), ..., S(tM )], Sp = [S(t′1), ..., S(t′M )], K, N ,
tl, tu, tg
Output: (∆Spk , ∆Sdk ) (1 ≤ k ≤ K)
for k = 1 to K do

∆Spk=∆Sdk=∅, n = 0, tpre = −∞, i = k;
while i < M do

for j = i+ 1 to M do
if tl ≤ tj − ti ≤ tu && ti − tpre ≥ tg then

append ∆Sd(ti, tj) to ∆Sdk , ∆Sp(t
′
i, t

′
j) to ∆Spk ;

n++, tpre = tj , i = j + 1;
break;

end if
end for
if n == N then

break;
end if

end while
end for

Parameter selection and discussion: The selection of the lag
interval [tl, tu] in Algorithm 2 should follow two principles.
1) tl should be larger than the channel coherence time to
ensure the variation is unpredictable and contains reason-
able entropy. Within the channel coherence time, the channel
is considered stable or predictable. 2) tu should not be too
large, otherwise, the large scale path loss may dominate the
variation, which may cause the variation to be predictable if
the mobility pattern of the genuine or victim is observable
by the attacker. The guard interval (tg) is used to guarantee
the independence among the variations in the list, hence it
should be larger than the channel coherence time.

The list length N should be long enough to achieve a
good estimation of the correlation coefficient. The K should
not be too small. We will show in Section 8.1 that N > 50
and K > 5 are good choices in practice.

5 IBAS DETECTION PERFORMANCE EVALUATION

In this section, we theoretically analyze the RCVIC detection
performance and derive the closed form expressions of
detection rate and false alarm rate.

The performance of a detection scheme is usually eval-
uated by the receiver operating characteristic (ROC) curve.
The ROC curve plots the false alarm rate α against detection
rate β. The false alarm rate is the probability of assuming an
attack but there is actually no attack. The detection rate is the
probability of detecting the attack when the attack happens.
Our goal is to achieve high detection rate with low false
alarm rate. Thus RCVIC can be modeled as a hypothesis
test:

H0 : No attack; H1 : There is an IBA

where H0 and H1 are the null and alternative hypothesis,
respectively. According to Algorithm 1, we have

α = Pr(ρ ≤ ρth|H0) =

∫
ρ≤ρth

f0(ρ)dρ (2)

β = Pr(ρ ≤ ρth|H1) =

∫
ρ≤ρth

f1(ρ)dρ (3)

where f0 and f1 are the PDF of the sample correlation co-
efficient under null and alternative hypothesis, respectively.
For illustration purpose, we give the following definitions:

• forward genuine channel (g → v): channel from the
genuine to the victim

• backward victim to genuine response channel (v →
g): channel from the genuine to the victim

• attacking channel (a→ v): channel from the attacker
to the victim

• eavesdropping and backward victim to attacker
channel (v → a): channel from the victim to the
attacker

5.1 False alarm rate if no attack

This subsection derive RCVIC false alarm rate when there
are no attacks.

5.1.1 RSS variation at victim and genuine node
According to the empirical measurement, the RSS follows a
log normal shadowing fading model [9]. Suppose at time t,
the victim receives a data frame sent from the genuine node,
and the genuine node receives an ACK frame at time t′. The
RSS of the data frame can be expressed as:

Sgv(t) = PT (d0)− 10αgv log
(dgv(t)

d0

)
+Xgv(t) (4)

where d0 is a close-in reference distance, Pg(d0) is genuine
node’s transmission power in dBm at the reference distance
d0, dgv(t) is the distance between the genuine node and the
victim at time t, αgv is the path loss exponent, Lgv(d0) ,
and Xgv(t) is a stationary Gaussian random process of zero
mean and standard deviation σX .

Assume the distance between the two nodes is not
significantly changed during [ts, te] when we construct the
variation ∆Sgv(ts, te). According to (4), we have

∆Sgv(ts, te) ≈ Xgv(ts)−Xgv(te) (5)
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This is a reasonable assumption when te − ts is small (e.g.
tens of milliseconds). We validate it in Section 8.1 that
setting this interval as 60ms in an indoor walking scenario is
enough to make Xgv(ts) and Xgv(te) uncorrelated. There-
fore, we can consider Xgv(ts) and Xgv(te) as i.i.d. Gaussian.
Then ∆Sgv(ts, te) should follow N (0, 2σ2

X).
In practice, there will always be unavoidable measure-

ment errors of the RSS. The errors may be caused by inter-
ference, ambient noise, or device impairment. We model the
measured Sgv(t) with errors as

S̃gv(t) = Sgv(t) + nv(t) (6)

where nv(t) is the measurement error on the victim fol-
lowing N (0, σ2

v). Therefore, the measured RSS variation
becomes

∆S̃gv(ts, te) = ∆Sgv(ts, te) + ∆nv (7)

where ∆nv = nv(ts) − nv(te). Under the assumption of
the independence between the measurement errors, ∆nv
should follow N (0, 2σ2

v).
RSS variation at genuine node: Similarly, the RSS vari-

ation of the corresponding ACK frames received by the
genuine node can be represented as

∆S̃vg(t
′
s, t
′
e) = ∆Svg(t

′
s, t
′
e) + ∆ng (8)

where ∆Svg(t
′
s, t
′
e) ≈ Xvg(t

′
s)−Xvg(t

′
e) and ∆ng (following

N (0, 2σ2
g)) is the difference of measurement errors at the

genuine node.

5.1.2 The false alarm rate if no attack:
Under the no attack situation, for a given threshold ρth, we
can evaluate α by using expressions in Property 1 as below.

Property 1: the false alarm rate α is denoted as

α =

∫ ρth

0
f(ρ|ρ̃ = ρ̃gv) dρ (9)

where

f(ρ|ρ̃) =
(N − 2)Γ(N − 1)(1− ρ̃2)

(N−1)
2 (1− ρ2)

(N−4)
2

√
2πΓ(N − 0.5)(1− ρρ̃)N−1.5

·

2F1(0.5, 0.5;
2N − 1

2
;
ρρ̃ + 1

2
), (0 ≤ ρ ≤ 1).

Γ(·) is the gamma function and 2F1(·) denotes the gaussian
hypergeometric function. ρ̃gv is the population correlation
coefficient, which is written as

ρ̃gv =
ρgv√

(1 + σ2
v/σ

2
X)(1 + σ2

g/σ
2
X)
. (10)

ρgv denotes the sample correlation coefficient between
Xgv(ts) and Xvg(t

′
s) and that between Xgv(te) and Xvg(t

′
e).

Proof. From the analysis above, the constructed RSS vari-
ation lists ∆Sp and ∆Sd with length N are sample se-
quences from two Gaussian population ∆S̃gv(ts, te) and
∆S̃vg(t

′
s, t
′
e) with population correlation coefficient ρ̃gv . For

two sample sequences with length N from bivariate Gaus-
sian variables with population correlation coefficient ρ̃gv ,
the PDF of the sample correlation coefficient [24] can be
presented with hypergeometric function in Property 1. From

B C

A B C and

C A BAdS

Victim RSS record from DATA of genuine

Victim RSS record from DATA of attacker
Fig. 6. ∆Sd is regarded as a “package” list and each “package” contains
two RSS records. There are three types of“package” corresponding to
situation A, B and C, respectively.

(2), we get property 1. For the detailed derivation of (10),
please refer to Appendix A for the derivation.

Discussion: From Property 1, the false alarm rate is
determined by the sample sequences length N and channel
reciprocity coefficient ρgv . Further, ρgv is determined by the
time interval between the data frame and its corresponding
ACK frame, which are denoted as t′s − ts and t′e − te.
We could shorten the time intervals to obtain a relatively
high ρgv . The values of measured ρgv in the real world
experiments are summarized in Table 3. Moreover, ρ̃gv is
degraded by the estimation errors as ratios of σ2

v/σ
2
X and

σ2
g/σ

2
X . When the ratio is larger, ρ̃gv deviates more from ρgv ,

and when the errors approach zero, ρ̃gv approaches ρgv .

5.2 Detection rate under attack

This subsection derives the detection rate under different
attack patterns. For IBA attack situation, the M RSS record
frames observed by victim are mixed of RSS of forward
genuine channel g → v and attacking channel a → v. In
the second phase, assume the victim receives the M RSS
record frames sent from the attacker, which are RSS records
of eavesdropping channel v → a.

5.2.1 RSS variation at attacker and victim
No matter what attacking pattern is, the RSS variations
observed at the attacker is

∆S̃va(t′s, t
′
e) = ∆Sva(t′s, t

′
e) + ∆na (11)

where ∆Sva(t′s, t
′
e) = Sva(t′s) − Sva(t′e) and ∆na (follow-

ing N (0, 2σ2
v)) is the measurement error difference at the

attacker.
The frame received/overheard by the attacker at time

t′s and t′e can be the ACK frame destined to the at-
tacker/genuine node. Similar to the discussion in Sec-
tion 5.1, ∆Sva(t′s, t

′
e) should follow N (0, 2σ2

X) assuming
the shadowing fading of the eavesdropping channel has the
same statistics as the genuine channel.

RSS variation at victim: There are four situations when
computing the RSS variations at the victim:

• Situation A: Sav(ts)−Sav(te), both frames come from
the attacker.

• Situation B: Sgv(ts)−Sgv(te), both frames come from
the genuine node.

• Situation C: Sav(ts) − Sgv(te), former frame comes
from the attacker, and the latter frame comes from
the genuine node.

• Situation D: Sgv(ts) − Sav(te), former frame comes
from the genuine node, and the latter frame comes
from the attacker.
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Thus under IBA attack, the constructed RSS variation list
∆Sd observed by the victim is mixed with three kinds of
random variations, corresponding to situation A, B and C
(situation D is included into situation C), respectively, which
can be illustrated in Fig. 6. In the following discussion, for
simplicity, we will denote ∆Sva(t′s, t

′
e) as ∆Sa, and the RSS

variation observed at the victim as ∆Sv . The corresponding
measured RSS variations with errors are ∆S̃a and ∆S̃v .

5.2.2 Population correlation coefficient

Situation A: Same as the analysis in the genuine channel, the
correlation coefficient of ∆S̃v and ∆S̃a under situation A is

ρ̃A =
ρav√

(1 + σ2
v/σ

2
X)(1 + σ2

a/σ
2
X)

(12)

where ρav is the correlation coefficient between the attacking
channel and eavesdropping channel.

Situation B: The victim measured RSS variation can be
expressed by (7), the reported RSS variation from the
attacker is the overheard one, then

ρ̃B =
ρag√

(1 + σ2
v/σ

2
X)(1 + σ2

a/σ
2
X)

(13)

where ρag is the correlation coefficient between the eaves-
dropping channel and forward genuine channel. Generally,
ρag should be around zero according to the location decor-
relation property of the wireless fading channel.

Situation C: In situation C, since the attacker and the
genuine node is physically close, we have

∆Sv ≈ Xav(ts)−Xgv(te) (14)

We can derive that

ρ̃C =
ρav + ρag

2
√

(1 + σ2
v/σ

2
X)(1 + σ2

a/σ
2
X)

(15)

Situation D: Situation D is symmetric to situation C, so
ρ̃D = ρ̃C .

5.2.3 The detection rate under different attack patterns

The detection rate can be evaluated by using Property 2
below.

Property 2: For a given attack intensity Pa, the detection
rate β under attacks is written as :

β =

∫ ρth

0
f(ρ|ρ̃ = ρ̃a) dρ (16)

where function f(ρ|ρ̃a) is the expression in the box of
Property 1 by taking ρ̃ = ρ̃a. ρ̃a denotes the population
correlation coefficient between ∆S̃a and ∆S̃v under “Inter-
leaved” and “After/Before” attacks, which is written as

ρ̃a =
Paρav + (1− Pa)ρag√
1 + σ2

v/σ
2
X

√
1 + σ2

a/σ
2
X

(17)

The derivation please refer to the Appendix B.

0.2 0.4 0.6 0.8
0

2

4

6

8

 Sample correlation coefficient 

 S
am

pl
e 

co
rr

el
at

io
n 

co
ef

fi
ci

en
t P

D
F 

 

 

f
0
(ρ)

f
1
(ρ)

ρ
gv

=0.7
ρ

av
=0.7

ρ
ag

=0.3
β

α

ρ
th

(a)

0.2 0.4 0.6 0.8
0

2

4

6

8

10

 Sample correlation coefficient

 S
am

pl
e 

co
rr

el
at

io
n 

co
ef

fi
ci

en
t P

D
F 

 

 

f
0
(ρ)

f
1
(ρ)

β

ρ
gv

=0.8
ρ

av
=0.8

ρ
ag

=0.1
α is lower

ρ
th

(b)

Fig. 7. The key factors that impact false alarm rate. (a) (ρgv , ρav , ρag) =
(0.7, 0.7, 0.3) in and (ρgv , ρav ; (b)ρag) = (0.8, 0.8, 0.1).

5.2.4 The key factors that impact false alarm rate

From Property 2, the hypothesis functions in (2) and (3) are
written as

f0(ρ) = f(ρ|ρ̃ = ρ̃gv), f1(ρ) = f(ρ|ρ̃ = ρ̃a).

Thus for a given judgment threshold ρth, we can numeri-
cally calculate the detection rate β and false alarm rate α by
Properties 1 and 2. From (10) and (17), it is found that the
false alarm rates are mainly determined by the correlation
coefficients ρgv , ρav and ρag , attack density Pa (with the
similar effect of channel fading with measurement errors).
As analysis above, ρav will be relatively higher (typically
close to 1) because the channel reciprocity holds well during
the short time intervals of the DATA and ACK pairing
frame. On the other side, ρag will be much lower than ρav
(typically close to 0), because of the location decorrelation
property of the genuine and attacker [17, 25, 26]. From (17),
the correlation coefficient is “smoothed out” by the lower
value of ρag multiplied with attack intensity Pa, which leads
to a lower false alarm rate. When Pa → 0, it has ρ̃a → ρ̃gv ,
the correlation coefficient becomes the no IBAs stations in
(10). On the other hand, when Pa → 1, then ρ̃a → ρ̃A in
(12), where the correlation coefficient is only determined by
ρ̃av .

For further illustration, Fig.7 shows the hypothesis func-
tions f0(ρ) and f1(ρ) under N = 100, Pa = 0.5. The corre-
lation coefficients are set as (ρgv, ρav, ρag) = (0.7, 0.7, 0.3)
and (0.8, 0.8, 0.1), respectively. In Fig.7 (a) and (b), the
size of shaded area insides f1(ρ) (the red dotted function
curve) on left side of ρth which represents the detection
rate β, while the size of blank area under f0(ρ) (the blue
solid function curve) on left side of ρth that measures the
false alarm rate α. By comparing (a) and (b) in Fig.7, it is
found that a larger gap between f0(ρ) and f1(ρ) leads to a
higher detection rate β under the conditionally lower false
alarm rate α. However, their gap is mainly determined by
the gaps between channel reciprocity coefficients (ρgv, ρav)
and ρag . As the tie to the actual detection process, Fig.7
indicates that RCVIC constructing multiple RSS variation
lists (instead of using the original RSS [5]) to detect IBAs
that can decrease the false alarm rate by ruling out the
following two “bad” situations: 1) smoothing out a “good
luck for attacker” when attacker’s variations are correlated
with genuine node during his moving, and 2) smoothing
out a “bad luck for genuine node” variation list when there
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TABLE 2
ROC performance of Fig. 7 nearby the approximately optimal threshold.

ρth(881) 0.64 0.66 0.68
β 0.9961 0.9986 0.9996
α 0.0003 0.0012 0.0036

ρth(773) 0.59 0.61 0.63
β 0.8928 0.9393 0.9691
α 0.0284 0.0550 0.1006

is no attack but some occasional variations between genuine
node and victim that are not correlated well.

5.3 RCVIC optimal decision threshold
This subsection analyzes the optimal threshold ρoptth . Assume
the event of existing an attacker with probability τ , then let

β̄ =

∫ 1

ρth

f1(ρ|ρ̃a)d ρ = 1− β (18)

To minimize the sum of error detection rate β̄ and false
alarm rate α, we can formulate the problem as the opti-
mization problem below

min τ β̄ + (1− τ)α (19)

Based on (2)-(19), we can get the optimal threshold ρoptth
which is the solution of formula

(1− τ)f0(ρoptth |ρ̃gv)− τf1(ρoptth |ρ̃a) = 0, 0 < ρoptth < 1 (20)

Because the complex expressions of f0(ρoptth |ρ̃gv) and
f1(ρoptth |ρ̃a), the exact solution ρoptth is hard to obtain. How-
ever, based on (20), we can get the approximately op-
timal solution by mathematical software. Table II shows
the analytical ROC performances of Fig. 7 (a), (b) nearby
the approximately optimal thresholds (terms with “881”
and “773”). We can see that the RCVIC can achieve good
ROC performance. In Fig. 7 (b), RCVIC can achieve about
β = 0.9986 with α = 0.0001. While in Fig. 7 (a), RCVIC can
achieve a performance of β = 0.94 with α = 0.05.

6 RCVIC PARTITION PROCESS

If IBAs are detected, RCVIV conducts the next partition for
further analysis. Victim first partitions the received frames
into two classes. The frames in the same class should be sent
from the same senders. This partition is achieved by apply-
ing the unsupervised threshold methods Otsu [17, 27, 28]
without the prior channel or location information about the
users. The detailed analysis and algorithms about partition
are provided in Section 6.1 as below.

6.1 RCVIC partition approach
The basic principle of partition for mobile users is that
for most of time slots during their movements, the RSS
traces from the genuine node and attacker are correlated
to the different locations in physical-time space. Thus it is
reasonable to assume that genuine node and attacker are
more likely to appear at different locations in most of time
slots during the movements, rather than “encountering” at
the same location. Thus RSS records from genuine node and
attacker are not highly correlated to each other in general,
which can be partitioned by victim node [17, 28].

Class Sx

dS

Class Sy

Further 
analysis

Fig. 8. RCVIC partition for further analysis

6.1.1 Partition algorithm
In RCVIC partition, where each part has M consecutive
RSS records, corresponding to the M time slots. The RSS
record in the ith time slot is denoted as Si ∈ Sd, (i =
1, 2, 3....M). The victim partitions Sd into two classes as
Sx = (Sx,1, Sx,2, ...Sx,l) and Sy = (Sy,1, Sy,2, ...Sy,h), l +
h = M , corresponding to the RSS records sent from two
different nodes. At a time slot ti, the received Si may be
sent from the genuine node or attacker, thus the conditional
probability distributions are denoted as p(s|s ∈ Sx) =
p(s|X) and p(s|s ∈ Sy) = p(s|Y ).

In practical applications, it is not feasible for us to know
the closed form expressions of p(s|X) and p(s|Y ) for mobile
users. Without a prior knowledge about the distribution
of either node’s RSS, we obtain an optimal threshold by
applying the unsupervised threshold methods, such as Otsu
thresholding [27, 28] to partition the RSS records into two
classes. Otsu thresholding obtains compact clustering by
using the inter-class variance, in order to make the partition
classes as tight as possible and thus minimize their overlap.
Due to page limit, we do not introduce the detailed Otsu
thresholding algorithm here. The more algorithm details
please refer to [27]. The key steps of our partition algorithm
are described below.

(1)RSS histogram estimation: the distinct RSS values are
denoted as sj with j ∈ (1, 2, ..., L), where L is the number
of distinctive values in Si. Denote p(sj) as an estimate of
the probability such that

∑L
j=1 p(sj) = 1

(2)Optimal threshold ρt searching: victim note searches a ρt
which leads to the maximization of the inter class variances
as

max
ρt

ρt−1∑
i=1

p(si) ·
L∑

j=ρt

p(sj) · [µ1(ρt)− µ2(ρt)]
2 (21)

where µ1(ρt), µ2(ρt) are the mean values of the two parti-
tion RSS classes separated by a threshold ρt.

6.1.2 Factors impacts RCVIC partition
One factor impacts RCVIC partition is the average distances
between genuine node and attacker: As discussed above, it
is hard for the attacker to always keep closed to genuine
node during their movements. Thus for most time slots
during their movements, if the distances between genuine
node and attacker is larger than the correlation distance,
the RCVIC partition process can work well. The correlation
distance is mainly determined by the prorogation environ-
ments. It is usually about 1m for indoor and 1 ∼ 3m for
outdoor environments [9].

The other factor is the time interval between two con-
secutive RSS records, which is defined dt = ti+1 − ti. The
user will move a maximum distance as ∆d = vdt in the
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Fig. 9. Analytical and simulation results of ROC performance under
different channel reciprocity coefficient and attacks

time interval, where v denotes the nodes’ moving speed.
The time interval should be small so that the RSS fluctuation
is not too dramatically. As we have known that dt is usually
less than 0.005s [20], and the users is usually walking or
running with a speed v < 5m/s. As a result, ∆d ∼ 0.02m,
which is very small.

6.1.3 System further analysis
After the partition process, victim separates Sd =
[S(t1), ..., S(tM )] into two classes as Sx and Sy . Accordingly,
based on the time indexes of Sx and Sy , victim can separate
the received M data frames into two classes, and the data
frames in the same class should be sent from the same
senders, too. However, the victim cannot directly identify which
class of RSS records/data frames is belonged to attacker/genuie
node by utilizing the feedback RSS records. This is mainly
because the feedback of RSS records may be sent by attacker.
Thus the attacker may potentially fool the victim to classify
the genuine stream to the attacker’s by inserting false RSS
records into the feedback.

However, even if victim cannot directly find which class
is possibly sent by attacker/genuine node without any prior
knowledge of genuine node, the partitioned classes could
still benefit the further analysis, such as network forensics
[13], attacker localizing [4] and trajectory analysis, etc. Be-
sides, this partition implementation is with relatively low
cost, which is desired for practical implementation.

On the other hand, in the DATA-ACK communication,
the attacker could deliberately record the “falsified” RSS
records from ACK of himself to hide the attack evidence,
e.g., as shown in Fig. 2 (b), attacker could record the
“falsified” RSS records at time slot t2 for ACK to himself.
However, this will only increase the probability of detection
since the correlation between the ”falsified” RSS records
and the ones at the victim node will be decreased. Thus,
it will only expose the attacker with a higher chance which
contradicts the attacker’s incentive of avoiding detection.

7 NUMERICAL PERFORMANCE EVALUATION

In the subsection, we present the numerical and simulation
results of ROC performance and verify our analytical ap-
proach. In the simulation, we generate 50,000 times of RSS
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Fig. 11. (a) Impact of length N on ROC performance; (b) Impact of
background noise to shadow power ratio on ROC performance.

sampling records for both of interleaved and after attack
to get the average ROC performance. Fig. 9 shows the
analytical and simulation results of ROC performance un-
der “Interleaved” and “After” attack with (ρgv, ρav, ρag) =
(0.7, 0.7, 0.3), (0.7, 0.7, 0.2), (0.8, 0.8, 0.2) and (0.8, 0.8, 0.1),
corresponding to abbreviation “73, 72, 82” and ”81”, respec-
tively. In Fig. 9, we denote the analytical and simulation
results by term “ana” and “sim”. The attack density is set as
Pa = 0.5, the length of RSS variation lists is set as N = 100
and σ2

X = 1, σ2
a = σ2

g = σ2
v = 0.

7.1 Impact of reciprocity
From Fig. 9, all of the analytical results are very close
to simulation results. Also, the interleaved attack results
are close to the after attack results, which fully validates
our theoretic analysis above. From Fig. 9, under the same
ρgv, ρav , a higher ρag will obviously decrease the ROC
performances. On the contrary, under the same ρag , a higher
ρgv will increase the ROC performances clearly. This phe-
nomenon can be interpreted as a higher ρgv will increase the
population PDF gap between ρ̃gv and ρ̃a, thus will increase
the ROC performance. It verifies our theoretical analysis in
subsection 5. From Fig. 9, it can be found that even though
ρgv decreases to 0.7 against ρag is higher as 0.3, we can
still achieve desirable performance about β > 90% percent
against with false alarm rate α = 0.05.

7.2 Impact of attacker density
Fig. 10 compares ROC performance with attack density
Pa = 0.5, 0.25, 0.1 and Pa = 0 under the interleaved at-
tack. The reciprocity coefficients are set as (ρgv, ρav, ρag) =
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Fig. 12. Classification accuracy under different attacks and Pa

(0.7, 0.7, 0.3). In Fig. 10, the RCVIC can achieve perfor-
mance β > 90% against false alarm rate α < 0.04 under
Pa = 0.5. Correspondingly, the higher attack density will
decrease the ROC performance. If the attacker is a passive
eavesdropper with Pa = 0,the detect rate will closed to 1
with false alarm rate α→ 0.

7.3 Impact of N and noise to power ratio
Fig. 11 (a) shows ROC performance under the interleaved
attack with (ρgv, ρav, ρag) = (0.8, 0.8, 0.2). The lengths are
set as N = 25, 50, 100, respectively. The other parameters
are the same with Fig. 9. From Fig. 11 (a), we can find
a larger N can clearly improve the ROC performance.
However, too large N will cause longer delay for the
RCVIC system. From Fig. 11, we find with N = 50, the
system can achieve a relatively better performance. Fig.
11 (b) shows the impact of background noise to shadow
power ratio on ROC performance. In Fig. 11 (b), we set
the ratio σ2

a/σ
2
X = σ2

g/σ
2
X = σ2

v/σ
2
X = 0, 0.1, 0.25 and 0.5,

respectively under N = 100. The other parameters are the
same with Fig. 9. Intuitively from (b), a larger measurement
error ratio will degrade the performance. Therefore to keep
a high SNR communication is necessary.

7.4 Classification performance
Fig. 12 shows the classification accuracy performance. In
Fig. 12, we let the genuine node and attacker are random
located in a circular region with radius R = 5m and
randomly moving with ∆d = 0.1. Victim is located in
the center of the circular. We compute numerical average
accuracy performance by separating Sd and Sp into M/N
segments. Each segments contains N = 50 and 100 RSS
records, versus attacker intensity Pa varying from 0.1 to
0.9. From Fig. 12, it can be found that RCVIC model can
achieve an accuracy performance higher than 90 percents
for N ≥ 50. When Pa is close to 0.5, RCVIC will achieve
the highest accuracy performance. This is mainly because
the numbers of attacker and genuine node’s frames will
be equivalent, and in this case the interval distances of
consecutive frames from one node becomes the smallest in
average, thus increases the correlation of the RSS records
sent from the same node, which inevitably improves the
classification accuracy performance.
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Fig. 13. (a) Impact of ∆d on classification accuracy;(b) Impact of R on
classification accuracy.

Fig. 13 (a), (b) represent the scenarios the parameters ∆d
impacts the classification accuracy performance. From Fig.
13 (a), we can find that a higher ∆d will decrease the clas-
sification accuracy. Because the higher mobile speed with
larger inter-frame time interval will decrease the classifica-
tion accuracy. From Fig. 13 (b), it finds that nodes moving
in a smaller region will decrease the classification accuracy.
This is mainly because users moving in a smaller region
will have higher probability to be close to each other during
their movements. The numerical results above validate our
analytical results and show the prospective performance of
RCVIC. The next section will investigate the RCVIC scheme
in the real world tests.

8 EXPERIMENTAL METHODOLOGY

We carried out extensive mobile experiments in real in-
door and outdoor environments and test the applicability
of RCVIC under different mobile scenarios and attacking
patterns. The three parties are Dell E5400 laptops, which
use Intel iwl5300 chipset and iwlwifi driver. All experiments
run 802.11g and operate on channel one in the 2.4GHz
frequency. We fix the transmission rate at 12Mbps and
transmission power at 15dbm. The genuine node and the
attacker generate CBR UDP traffic to the victim using Ping.
The Ping packet size is set as 512 bytes and the Ping request
interval is set as 10ms. We use the Ping request and ACK
frames to emulate the data and ACK frames in our model.
Tcpdump 4.0.0 [19] are used to log the frame RSS. Each
experiment runs for 5 minutes. Interference exists in the
experiments due to nearby campus 802.11 access points and
clients operating on the same channel.

We conducted the experiment in both indoor and out-
door environments. The indoor experiment is carried out on
the second floor in a campus building illustrated in Fig. 14.
The victim is fixed in a room, and the genuine node and at-
tacker are walking in the hallway. The outdoor environment
is an open lawn. The mobile nodes walk around the victim
within 150 feet. We consider two mobile scenarios: random
and shadowing. In random mobile scenario, the genuine node
and the attacker randomly walk around. In the shadowing
scenario, the attacker shadows the genuine node within
0.5m, which allows us to work with the worst case where the
attacker has the most similar location (and received signal
strength) as the genuine node.

Aligning and Matching DATA and ACK: We first align the
DATA (Ping request) received by the victim with the corre-
sponding ACK received by the genuine node. Since the ACK
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Fig. 14. Indoor experimental environment

has no sequence number, in order to match a Ping request
with its corresponding ACK, we mixed the records of the
sent Ping request, received ACK, and received Ping reply at
the genuine node. Then we sorted these records according
to time. If there is a Ping request successfully delivered, we
will see three consecutive records representing Ping request,
ACK, and Ping reply in the sorted records with the Ping
request and reply having the same sequence number. Then
we match the ACK with the corresponding Ping request
received at the victim. Using the same method, we match
the DATA-ACK between the victim and the attacker. At the
attacker, we also match the overheard ACK with the Ping
request sent from the genuine node to the victim.

We then generate the RSS variation lists at both genuine
and victims using the RSS of the matched DATA-ACK,
which serves as the genuine data. For attacks, we mix the
RSS of the received and overheard ACK as the attacker’s re-
port, and use the RSS of the corresponding mixed DATA as
the victim’s records. We tried different tl and tg for different
scenarios and environment. We found that setting tl = tg as
60ms and 160ms makes each RSS variation independent for
the indoor and outdoor environments, respectively. We fix
these parameters in the evaluation.

8.1 Experimental analysis
Table 3 summarizes the measured correlation coefficient
between the forward (g → v) and backward (v → g)
genuine channels (ρgv), between the forward (a → v) and
backward (v → a) attacking channels (ρav), and eavesdrop-
ping (v → a) and forward genuine (g → v) channels.
The standard deviations of ∆Sgv , ∆Svg and the attacker
overheard RSS variation ∆Sag are also summarized. We
found that the reciprocity between g → v and v → g, and
that between a → v and v → a hold well with correlation
around 0.7 or above. While the eavesdropping channel has
very low correlation with the forward genuine channel. The
overheard RSS variations by the attacker are nearly uncorre-
lated with that observed by the victim. We also verify that all
the RSS variations follow Gaussian distributions. Due to the
page limitation, we do not show all the detailed experiments
results here. The readers can refer to Fig. 4 in the conference
paper.

TABLE 3
Correlation coefficient and standard deviation of the RSS variations.

ρgv ρav ρag σ∆gv σ∆vg σ∆ag

Indoor shadow 0.69 0.72 0.15 3.55 3.00 3.66
random 0.67 0.69 0.15 3.49 2.83 3.53

Outdoor shadow 0.81 0.63 -0.07 3.28 2.91 5.24
random 0.74 0.67 0.02 3.01 2.78 4.70

8.1.1 Impact of list lengths
In this subsection, we analyze the performance of RCVIC
under different lengths of variation list, number of con-
structions, frame intervals, and attacking intensities. Fig. 15
shows the empirical ROC varying different parameters un-
der the indoor shadowing scenario. We divide the RSS traces
into consecutive blocks with equal durations of 3s, 6s, and
12s, which yield different lengths of variation list such as
25, 50, and 100, respectively. For each block, we generate
10 variation lists according to Algorithm 2. The attacking
intensity Pa = 0.5.

Fig. 15(a) shows the empirical ROC. We can see that with
list lengths increased, the detection performance improves.
Even when we only use a very short list length (N = 25),
we can still achieve around 90% detection rate with 10%
false alarm rate. When the list length is 100, we can most
surely detect the attack without false alarm. It also shows
that RCVIC can detect the IBA under different attacking
patterns, and achieve similar performance. Note that it only
cost 12s to achieve a desirable detection performance, where
the existing solution DEMOTE need about 150 seconds to
achieve a comparable performance.

8.1.2 Impact of number of constructions
Fig. 15(b) shows that when the construction number in-
creases, the detection performance improves. The perfor-
mance gain decreases when we increase the construction
number. When K reaches 10, we can get desirable detection
performance (about 98% detection rate with 5% false alarm
rate).

8.1.3 Impact of frame intervals
Fig. 15(c) shows the performance under frame intervals of
10ms, 30ms, and 60ms. The list length N is fixed at 50, and
the construction number K = 10. Since the performance
shows similar trend under the three attacking patterns,
we only show the performance for the attacking pattern
“After”. We can see that when the frame interval becomes
larger, the performance degrades. The intuition behind this
observation is that under the same list length and tl and
tg , the constructed variation list would be more similar for
larger frame interval. For example, when the frame interval
is 60ms, which is equal to tl and tg , after shifting the start
index at 3, we will get a variation list which repeats N − 1
elements of the first constructed one. So the sample correla-
tion coefficients might be very similar under these two con-
structions. In this case the newly constructed variation list
might not contribute much for the strength of the detection.
While when the frame interval is smaller, it is more likely to
construct uncorrelated variation lists, although there would
be unavoidable correlation between the variation in each
construction due to temporal correlation of the RSS.
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Fig. 15. Empirical performance of RCVIC under different parameters in the indoor shadowing scenario

8.1.4 Impact of attacking intensities

For easy understanding, let r denotes the ratio of the attack-
ing frames to the genuine frames that victims received, thus
r = 1/(1 − Pa). Fig. 15(d) shows the ROC under different
attacking intensities under attacking pattern “Interleaved”
in the real world expriments. The frame interval is 10ms,
N = 50, and K = 10. It shows that the performance
degrades when the attacking intensity increases. However,
even with r = 2, RCVIC can still detect the attack with good
performance (e.g. about 85% detection rate with false alarm
rate of 5% and 90% detection rate with false alarm rate of
10%). We observe similar trend for the other two attacking
patterns.

9 DISCUSSION

Unprotected ACK Frames: If the ACK frame is used at the
genuine user, he should make sure that it is sent from the
victim. An attacker can try to generate ACKs for any DATA
frames it overhears to confuse the genuine user in recording
the wrong channel variation, which raises the false alarms.
However, this attack is not easy to be successful because
when the victim receives the DATA, it will instantly send
back an ACK to the genuine node. The attacker’s ACK may
collide with the victim’s ACK, so the genuine node will not
record the corresponding RSS but considers the ACK is lost.

Unprotected Feedback Channel: For the case of unprotected
feedback channel, the attacker could eavesdrop on the RSS
records of the genuine node’s feedback to victim and com-
bine with its own observations, then feedback them to the
victim. However, this attack is hard to be successful. As
analyzed in Section 3.3, when the victim asks for the RSS
records feedback, the genuine node immediately responses
with MG = (1 − Pa)M RSS records. If the victim received
the MG RSS records, he can immediately detect the IBAs
because the number of RSS records in the feedback is less
than M . However, because attacker has to construct M
records that may pass the check, the attacker must first
monitor and eavesdrop RSS records feedback from genuine
node, then combine them with its own observations. After
that he can feedback them to victim. Thus the attacker
will inevitably suffer a larger processing delay (potentially
doubling the delay of genuine node’s response) than the
genuine node. So the victim node can set a delay threshold
for the response to significantly thwart this kind of attack.

MAC Retransmissions and Reliability: An unacknowledged
DATA frame (due to loss or corruption of DATA or ACK)

will cause retransmission. By using the frame sequence
number of the 802.11 frame as a marker, we can always
match the DATA and ACK frames properly. If the victim
receives multiple retransmitted DATA frames (having the
same sequence number), it can use the RSS of the latest
one. So our scheme can be extended to unreliable DATA
or ACK cases in 802.11 networks. Actually, the ACK frame
has very high reliability above 99.5% as we computed from
our empirical data.

Due to the page limitation, we do not show all the
detailed discussion here. The readers can refer to Section
VIII in the conference paper.

10 CONCLUSION

This paper proposed a RCVIC scheme for IBA detection
in mobile wireless networks. We evaluated RCVIC perfor-
mance through detailed theoretical analysis. We validated
its feasibility through numerical simulations and real world
experiments by using off-the-shelf 802.11 devices under dif-
ferent attacking patterns in indoor and outdoor mobile sce-
narios. Experimental results show that RCVIC can achieve
desirable performance under the tested scenarios. RCVIC
allows the user to tune the parameters to achieve strong
security strengths (nearly 100% detection rate without false
alarm) but introducing negligible overhead.

APPENDIX A
DERIVATION OF (10)

For simplicity, we use X1 and X2 to represent Xgv(ts)
and Xgv(te), X ′1 and X ′2 to represent Xvg(t

′
s) and Xvg(t

′
e),

and X3 and X4 to represent ∆nv and ∆ng , respectively.
According to the assumption, X1/X ′1, X2/X ′2, X3 and X4

are all independent to each other. They all follow Gaussian
distributions with zero means. Therefore, X1 − X2 + X3

and X ′1 − X ′2 + X4 should follow N (0, 2(σ2
X + σ2

v)) and
N (0, 2(σ2

X +σ2
g)), respectively. According to the reciprocity,

the correlation coefficients between X1 and X ′1 as well as
X2 and X ′2 are both ρgv .
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′
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√
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APPENDIX B
DERIVATION OF (17)
Proof. First we prove the ”Interleave” attack. From the anal-
ysis above, ∆Sd with length N is a mixture of three types
of variations corresponding to situation A, B and C, respec-
tively. From (12), (13) and (15), the three cases correspond
to three independent gaussian variables and their popula-
tion correlation coefficients with ∆S̃a are ρ̃A, ρ̃B and ρ̃C ,
corresponding to situation A, B and C, respectively. Thus
∆Sd can be regarded as samples coming from a mixture
gaussian variable ∆S̃v [26], where ∆S̃v follows a mixture
gaussian distribution N (0, 2σ2

X + 2σ2
v). Let (PA, PB , PC)

denotes the probability of situation A, B and C occurred
in ∆Sd and λA, λB , λC denote the gaussian variables when
∆S̃v corresponding to situation A, B and C, respectively.
The population correlation coefficient ρ̃a between ∆S̃v and
∆S̃a is derived as:

ρ̃a =
PAE(λA∆S̃a) + PBE(λB∆S̃a) + PCE(λC∆S̃a)√

2σ2
X + 2σ2

v

√
2σ2

X + 2σ2
a

=
2σ2

XPAρav + 2σ2
XPBρag + σ2

XPC(ρav + ρag)√
2σ2

X + 2σ2
v

√
2σ2

X + 2σ2
a

=
PAρav + PBρag + 0.5PC(ρav + ρag)√

1 + σ2
v/σ

2
X

√
1 + σ2

a/σ
2
X

Victim will sample 2N RSS records from M RSS feedback
records to build ∆Sd. For a large N , the probability of sam-
pling k RSS records from attacker is Ck2NP

k
a (1 − Pa)2N−k.

The probability of sampling a RSS record from attacker node
is (2NPa)/(2N) = Pa and probability of a sampling a RSS
record is from genuine node is (1−Pa). After that the victim
will construct ∆Sd with length N by the 2N sampling RSS
records. The process can be regarded as victim generates
N independent “packages” from 2N RSS sampling records,
and each “package” contains two RSS records, which is
shown in Fig. 6. The probability of a “packages” correspond-
ing to situation A, B, C can be written as PA = P 2

a , PB =
(1−Pa)2, PC = 2Pa(1−Pa), Taking them into the equality
above, we obtain property 2. Similarly, for “before/after”
attacks, when N becomes large, the victim node averagely
get NPa “packages” A, N − NPa “packages” B and zero
“packages” C . Thus the density of situation A, B and C in
SB are PA = Pa, PB = 1− Pa, PC = 0. Taking them into
the equality above, we obtain property 2
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